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Massive increase in the stiffness of the human lens nucleus with age: the basis Massive increase in the stiffness of the human lens nucleus with age: the basis 
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Abstract Abstract 
Purpose:Purpose: To determine the stiffness of different regions of human lenses as a function of age, and to 
correlate the biophysical measurements in the lens center with nuclear water content. 

Methods:Methods: A custom made probe fitted to a dynamic mechanical analyzer was employed to measure 
stiffness values at 1 mm increments across equatorial sections of individual human lenses. 
Thermogravimetric analysis was used to determine the percentage water content in the nuclei of human 
lenses. 

Results:Results: There was a pronounced increase in lens stiffness over the age range from 14 to 78. In the 
nucleus, stiffness values varied almost 1,000 fold over this age range, with the largest change observed in 
lenses between the ages of 20 to 60. Nuclear stiffness values increased on average by a factor of 450. By 
contrast, in the cortex the average increase in stiffness was approximately 20 fold over this same time 
period. In lenses younger than age 30, the nucleus was found to be softer than the cortex. This was true 
for all six lenses examined. In contrast all lenses older than 30 were characterized by having nuclear 
values higher than those of the cortex. In lenses over the age of 50, the lens nucleus was typically an 
order of magnitude more rigid than that of the cortex. The crossover age, when the cortical and nuclear 
stiffness values were similar, was in the 30s. There was no significant change in the water content of the 
human lens nucleus from age 13 to age 82. 

Conclusions:Conclusions: There is a marked increase in the stiffness of the human lens with age. This is most 
pronounced in the nucleus. Since in vivo data indicate that the nucleus must change shape significantly 
during accommodation, it is highly likely that these measured changes in physical properties will 
markedly diminish the ability of the lens to accommodate, and thus may be a major contributing factor to 
presbyopia. Since there was no measurable difference in the water contents of the nuclear regions of the 
lenses, this marked increase in stiffness is not due to compaction of the lens nucleus. 
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 The lens is unique in that there appears to be no protein
turnover in the center throughout one’s lifespan. This lack of
turnover in the nucleus leaves it prone to age related changes.
Mature lens fibers lack cellular organelles and contain a highly
concentrated protein solution to enable light refraction.

Presbyopia, or “old man’s eyes,” affects almost all people
by the age of 50. This disorder involves a loss of accommoda-
tive ability, where near focussing becomes impossible. Herman
von Helmholtz [1] first expounded the basis for accommoda-
tion. In this scenario, contraction of the ciliary muscles leads
to a change in the lens curvature. This optical system moves
between two states; one where muscular force is applied to
the zonules which flattens the lens and allows distant vision,
and an accommodated state where zonular tension is released
and the lens assumes a more rounded shape to allow focus-
sing on near objects. The exact reason for the development of
presbyopia is unknown, and many hypotheses have been pro-
posed. One theory postulates that changes in the ciliary muscle
are implicated [2-5] and another school of thought suggests
that presbyopia is the result of age related changes to the lens
or capsule [6-9]. In the latter hypothesis it is suggested that

changes with aging result in the inability of the lens to alter
shape from the flattened form, to that of the more rounded
accommoded state, when zonular tension is released. Pres-
byopia has also been described as a geometric disorder result-
ing from the increased size and volume of the lens and the
angle of zonular insertion onto the lens [10]. The vitreous has
also been proposed to contribute to accommodation [11].

It has been found that there is an increase in the lens cross
sectional area in the accommodated form and that this differ-
ence in cross sectional area between accommodative states
declines with age [12]. A recent in vitro study found that re-
placement of a presbyopic lens with a flexible polymer re-
stores accommodative ability [13], strengthening the case that
lenticular causes may be a major contributor to presbyopia.

It is now clear that the lens nucleus must change shape
significantly to enable transition to the accommodated state
[14-16]. The extent of change required by the nucleus is far
greater than that of the cortex, which may not change shape to
any great extent [16].

Sclerosis, or hardening, of the lens tissue would obviously
hinder deformation and would significantly reduce the ability
of the lens to undergo the changes required for accommoda-
tion. Preliminary data suggests that sclerosis of the human
lens center might occur with age [17]. It has been suggested
that the changes in physical properties may be due to fiber
cell compaction in the nucleus [18], as has been found for
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several laboratory animal lenses. However, compaction of the
lens center does not appear to take place in normal human
lenses [19,20] although the number of lenses analyzed in these
studies has been small.

A number of methods for analyzing the physical charac-
teristics of lenses have been developed. These include testing
using ultrasound wave attenuation [21], and the use of an au-
tomated guillotine [22-24]. The main focus of these studies
has been the investigation of hardness changes in cataract
lenses, since this is an important factor when
phacoemulsification is to be employed during surgery. Few
studies have looked at how normal lenses change with age.
The bulk of studies on normal lenses have used techniques
such as applied radial force [8,9,20], or compression/stretch-
ing [25-27] tests. These have shown that there is a consider-
able decline in the ability of the lens to deform with age. How-
ever, the use of these techniques is limited due to the inability
to differentiate between capsular and lenticular changes, and
a limited ability to detect differences throughout the lens. The
use of a conical probe to examine changes within the lens
showed that an increase in hardness does occur with age [17].
This method involved the use of a miniature dynamometer, in
which a probe gradually penetrated the lens. The increasing
friction on the probe as it encounters greater depths in the lens
is a problem with this method of analysis, and there is also a
possible effect of compaction as the probe is inserted deeper
into the lens.

The aim of the present study was to generate a cross sec-
tional map of stiffness across the lens and to examine how
this profile changes with age. Instrumentation that has been
used to analyze materials such as hydrogels was employed.
The results of this study are surprising. Stiffness of the lens

center was found to increase by approximately 1,000 times
and the outer region of the lens by a factor of 50. In addition
we found that the nucleus of younger lenses was actually softer
than the cortical region. The massive change in the physical
properties of the lens center with age was not accompanied by
a change in water content.

METHODS
Analysis of lens stiffness:  Normal lenses covering a broad
age range were collected from the Lions NSW Eye Bank at
the Sydney Eye Hospital. These were transferred to
Wollongong and stored at -80 °C. Lenses (18) between the
ages of 14 and 76 years were analyzed with at least 2 lenses
per decade. The work was approved by the human research
ethics committee at the University of Wollongong.

Lenses were removed from the freezer, partially thawed
and then sectioned equatorially. The lens halves were then
cored using an 8.5 mm internal diameter trephine incorporat-
ing a removable 3.5 mm high steel ring which retained the
lens sample (Figure 1 and Figure 2). Once the ring containing
the lens was removed from the trephine, if necessary, a razor
blade was passed across the top of the 3.5 mm high steel ring
to produce a flat surface corresponding to an equatorial sec-
tion roughly through the middle of each lens. This procedure
provided support for the outer edges of the lens sections and
also normalized the sizes of all the lens samples.

The lens sample held within the ring was then placed into
a sample holder consisting of two pieces of Perspex. The top
piece has a central indent in which to position the metal ring
(Figure 1D,E), and two metal pins through it allowing it to
locate into the base piece. The base piece has a 10x10 1 mm
grid pattern drilled in it. This allowed movement of the sample
holder by 1 mm. The bottom of the base piece of the sample
holder was shaped to fit the stage of the penetration clamp of
the dynamic mechanical analyzer (DMA).

The instrument used for the analysis was a Q800 DMA
(TA Instruments, New Castle, DE). A custom made steel cy-
lindrical probe was designed with a flat bottom and a diam-
eter of 0.4 mm. This small probe enabled measurements to be
taken every millimeter across the surface of the lens samples.
All readings were performed at 22 °C.

Stiffness measurements on the lens sections were per-
formed using a controlled force test. The probe was positioned
on the lens surface and the force was ramped from 0 to a maxi-
mum force of 3 mN, at a rate of 1 mN per minute, while the
change in displacement over the course of the run was moni-
tored. Typically the displacement was of the order of 750 µm.
These measurements commenced at the edge of the sample
ring and then moved by 1 mm increments across the lens sur-
face. Three runs across each sample were taken wherever pos-
sible. This consisted of a run across the center of the sample
and then subsequent runs parallel to, but 1 mm above and be-
low the initial traverse. It did not affect the results signifi-
cantly if measurements were commenced in the lens center or
the edge (data not shown). The nuclear value used for calcula-
tions of shear modulus was either the fourth or the fifth mea-
sure of stiffness across the lens, whichever was greater.

©2004 Molecular VisionMolecular Vision 2004; 10:956-63 <http://www.molvis.org/molvis/v10/a114>

Figure 1. Lens cutting device and sample holder.  A: Cutting device.
B: Hollow trephine. C: Spacer cutter/sample holding ring. D: Side
view of the top piece of the perspex sample holder. E: Top view of
the top plate of the perspex sample holder. F: Top view of the base
piece of the perspex sample holder.
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Each measurement took approximately 3 min to complete,
so three runs of eight measurements involved a total analysis
time of 90 min per lens. To alleviate any possible sample de-
hydration, a plastic housing containing a large piece of moist-
ened foam rubber was used to surround the probe.

Analysis of water content:  Measurements of lens nuclear
water content were performed using thermo-gravimetric analy-
sis (TGA) at the University of Technology, Sydney. The in-
strument used was an SDT 2960 (TA Instruments).

Whole lenses were partially thawed in a petri dish, and
then cored using a 4 mm trephine. The core had the top and
bottom ends (approximately 1 mm) removed leaving a cylin-
der 4 mm in diameter and approximately 4 mm in height. This
material was transferred to a platinum crucible, and immedi-
ately placed in the TGA for analysis.

TGA analysis involved heating from ambient tempera-
ture to 300 °C at 5 °C per minute. The loss in mass of the
sample was monitored over time, and the total water loss was
determined at the point where the derivative value of loss in
mass dropped to a value near to zero. Typically this was at
about 190 °C. The remaining mass was considered to repre-
sent protein.

RESULTS
 This study was undertaken with a view to determining the
stiffness profile across human lenses and to examine if there
were any consistent alterations with age. A DMA was chosen
as the instrument of choice. Since the cross sectional area of
human lenses is quite small, a probe with a narrow (0.4 mm
diameter) bore was designed and manufactured. A special base
plate was also designed to enable measurements at 1 mm in-
tervals across each lens, and a trephine constructed as shown
in Figure 1 to produce an equatorial section of tissue con-
strained within an 8.5 mm metal ring that was independent of

the original size of the lens. This apparatus allowed the mea-
surement of 8 readings across each lens (Figure 2). In most
cases three passes were made across the diameter of the lens
sections and the results at each point were averaged. In order
to measure the stiffness at each point, a protocol was adopted
in which the displacement of the probe was determined fol-
lowing ramping of the force from 0 to 3 mN at 1 mN per min.

The results were converted into values of shear modulus
using the equation:

©2004 Molecular VisionMolecular Vision 2004; 10:956-63 <http://www.molvis.org/molvis/v10/a114>

Figure 2. A schematic diagram showing the method used for mea-
surement of lens stiffness.  The equatorial section of a lens (A), ob-
tained as illustrated in Figure 1, was held in a metal ring (B) and the
lens section was moved across and underneath the DMA probe (C)
in 1 mm steps (see Figure 1). At each point a measurement of stiff-
ness was made.

Figure 3. The stiffness profile of regions in an old human lens.  Shear
modulus measurements taken 1 mm apart across the equatorial sec-
tion of a 64 year old lens (error bars represent standard deviations;
n=3).

where “P” is total load (N), “R” is radius of indentor (m),
“d” is maximal depth of penetration (m), “G” is shear modu-
lus (Pa), and “ν” is Poisson’s ratio for the material [28]. For
an elastic rubber like material, we assumed that ν=0.5 and
that we were using a perfectly rigid flat punch in frictionless
contact with a semi-infinite (large enough that edge effects
are not encountered), fully elastic material.

The results of a typical analysis of a 64 year old lens are
shown in Figure 3. It is clear that there is a substantial in-
crease in the stiffness of the lens as the probe is moved closer
to the lens center. As would be expected, the profile is roughly
symmetrical about the central point.

In contrast the results of an analysis of a 19 year old lens
are shown in Figure 4. The values for shear modulus were
lower in this case and the central region of the lens was less
stiff than the cortex. This was a surprising finding. Again the
profile was symmetrical about the central point. Since these
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two lenses gave stiffness profiles that were quite different in
appearance, we applied this DMA technique across an age
range from 14 to 76 years. A summary of the results is de-
picted in Figure 5. Because the changes in lens stiffness were
of such magnitude, it was only possible to compare them us-
ing log scales. These illustrate clearly that there is a consistent
age dependent increase in stiffness in both the cortex and the
nucleus of human lenses.

The magnitude of these changes in the two regions was,
however, quite different. In the cortex there was, on average,
an approximately 20 fold increase in lens stiffness over the
age range from 14 to 76 (Figure 5 and Table 1). The lowest
cortical value (48.5 Pa) was determined in a 14 year old lens
and the highest (2,577 Pa) in a 76 year old lens. This corre-
sponds to a 53 fold change. In the nucleus this increase in lens
stiffness was much more pronounced, amounting to, on aver-
age, 450 fold in the space of just over 50 years (Figure 5). The
values ranged from the softest nuclear value (25.7 Pa) mea-
sured in a 20 year old lens, to the hardest (23,954 Pa) in a 73
year old lens, a 930 fold increase.

The nuclear values of lens stiffness in younger lenses were
consistently lower than those of the cortex. For the age group
younger than 30 years, of which there were 6 individuals, the
mean shear modulus value for the nucleus was 39.0±13.8 Pa,
compared to 98.3±64.5 Pa for the cortex. Analysis of these
results with a paired Student’s t-test showed that this was sta-
tistically significant (p<0.05). In lenses older than 60 years,
the mean value for the nucleus was 17,400±4,900 Pa, and
2,040±710 Pa for the cortex. Analysis of these results with a
paired Student’s t-test showed that this was also statistically
significant (p<0.02). Since the nuclear values increase at a
more rapid rate than those of the cortex, there must be a cross-
over point. As is illustrated in Figure 5, this crossover occurred
at approximately age 30-35. Although more lenses need to be
analyzed to confirm this trend, the largest changes seem to be
observed in lenses between the ages of 20 and 60.

In order to confirm that the shear modulus values mea-
sured with the custom made probe were correct, the shear
modulus values of a hydrogel of similar stiffness were also
determined. The elastic modulus (E) of the dimethylacrylamide
based hydrogel had previously been measured by compres-
sion testing on the DMA and was found to be 20±5 kPa. The
hydrogel was tested using the custom made indentation probe
in the same manner as the lenses, and a shear modulus of 6.29
kPa was determined. When this was converted to elastic modu-
lus by the standard expression

©2004 Molecular VisionMolecular Vision 2004; 10:956-63 <http://www.molvis.org/molvis/v10/a114>

Figure 4. The stiffness profile of regions in a young human lens.
Shear modulus measurements taken 1 mm apart across the equato-
rial section of a 19 year old lens (error bars represent standard devia-
tions; n=3).

Figure 5. Stiffness values of cortex and nucleus as a function of lens
age.  Nuclear and cortical shear modulus values plotted on a log scale
as a function of age for individual lenses. Nuclear values are shown
in blue and cortical values in red. The curves were fitted using
SigmaPlot (Systat Software Inc., Richmond, CA), these curves were
nonlinear regressions using a Hill 4 parameter sigmoidal function:

giving an elastic modulus value of 18.9 kPa. This is in
very good agreement with the results found by compression
testing.

These are remarkable changes in physical properties of
the human lens. The reasons for these are not yet known, but
some features can be ruled out. There was, for example, no
evidence for lens compaction. If lens compaction were taking
place with age, the percentage of protein in the nucleus should

  For the curve of nuclear data, R2=0.9215 with standard error of
mean=0.3436. For the curve of cortical data, R2=0.8364 with stan-
dard error of mean=0.2617. Mean and standard errors of coefficients
are listed in Table 1.
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increase. As shown in Figure 6, no significant change in the
percentage of protein was noted over the whole age range. It
should be noted that the lenses used for analysis of stiffness
were, in several cases, the contralateral lenses of those used
for the determination of nuclear hydration. These are indicated
on the graph (Figure 6).

The finding of no apparent change in percentage protein
with age in the human lens is in agreement with that of van
Heyningen [19]. Others have found variable results on water
content with age [29,30], in this regard human lenses are clearly
different from those of common experimental animals. Rats
[19], rabbits [19,20], and cattle [19] all show a clear increase
in lens protein content as the animals age.

DISCUSSION
 In this study large changes in the biophysical properties of
normal human lenses as a function of age have been demon-
strated. The observed increase in stiffness was much more
evident in the center of the lens.

Although nuclear compaction does not appear to be asso-
ciated with the huge changes in stiffness that we documented,

there is not yet a clear picture of the molecular changes that
are responsible. It is clear, however, that there is a marked
parallel between the findings of increased lens stiffness de-
scribed here, and the well known age dependent alterations in
accommodation [1,3,4,26,31]. This is illustrated in Figure 5
and Figure 7. In addition, the maximal change in lens power
clearly shows a marked change from teenage years, such that
by age 60 human lenses show essentially no change in focal
length with stretching [26]. As has been summarized in recent
articles by Croft, Glasser and Kaufman [31,32], the basis for
presbyopia remains unclear but has been largely ascribed to
two possible causes involving either the ciliary muscle or the
lens. Other theories have also been advanced. These include a
geometric theory based on the age dependent alteration in the
sites of attachment of the zonules [10,33] coupled with lens
growth and multifactorial [34] postulates. The vitreous has
also been suggested to play a part in facilitating asymmetric
alterations in lens dimensions and forward movement of the
lens during accommodation [11]. It is well established that
the consistency of the vitreous alters with age [35].

It is clear that our results support changes to the proper-
ties of the lens as being implicated. As documented by Koretz
and coworkers [16] and others [14,15] normal accommoda-
tion in humans involves changes to the shape of the lens
nucleus. If the nucleus becomes progressively stiffer with age,
it is not surprising that the lens becomes much more difficult
to deform. This is especially true if the change in stiffness
involves nearly 3 orders of magnitude.

Of considerable interest is the fact that these results re-
veal changes in lens hardness starting from the teenage years

©2004 Molecular VisionMolecular Vision 2004; 10:956-63 <http://www.molvis.org/molvis/v10/a114>

Figure 6. Protein content in the nuclei of individual lenses.  Protein,
expressed as a percentage of lens wet weight was calculated by mea-
suring water content and is plotted as a function of lens age. Values
in red indicate the contralateral lenses of those used for determina-
tion of shear modulus.

Figure 7. Change in accommodative power (diopters) as a function
of age.  Accommodative power of human subjects expressed as a
function of age. The data points on the graph represent a summary of
four separate studies on human accommodation as indicated by the
following references. Data were taken from [49] for curve 1 (blue
diamond), from [50] for curve 2 (red square), from [51] for curve 3
(green triangle), and from [52] for curve 4 (open circle). This in-
cludes the regression of a straight line as modified from Pierscionek
and Weale [53].

TABLE 1. COEFFICIENTS FOR CURVES FITTED TO NUCLEUS AND CORTEX

DATA

                              Standard
    Parameter   Coefficient    error        t         p
    ---------   -----------   --------   -------   -------
Nucleus
        a          3.3715      0.9355     3.6041    0.0029
        b          3.8748      1.7377     2.2299    0.0426
        c         46.4359      6.1631     7.5345   <0.0001
       y0          1.4744      0.2428     6.0725   <0.0001

Cortex
        a          1.5646      0.5292     2.9566    0.0104
        b          4.6281      2.8053     1.6498    0.1212
        c         46.0387      7.1049     6.4799   <0.0001
       y0          1.9175      0.1499    12.792    <0.0001

Mean (coefficient), standard error, and probability (t is the Student’s
t-test statistic) values of the nonlinear regression fitted to the data
sets in Figure 5. In the “Parameter” column, y0 is y

0
.
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and continuing into old age. These are most dramatic in the
nucleus. The shortest attainable focal length of the human lens
increases almost linearly as a function of age [31]. The recent
in vitro demonstration that accommodation can be restored to
human lenses by implanting intraocular lenses made from a
flexible polymer [13] also supports a key role for the lens in
presbyopia.

Quite remarkably, DMA analysis of the younger lenses
showed that the nuclear region was softer than the cortex in
lenses younger than age 30. This is in contrast to those lenses
aged over 30. This finding is in agreement with those of Fisher
[9] but at variance with those of Pau and Kranz [17], although
these authors did not show separate data for cortex and nucleus.

It should be noted that while this study was underway,
Weeber and Eckert in the Netherlands were conducting a simi-
lar investigation also using DMA analysis [36]. Although their
methodology was slightly different from ours, the results that
they obtained seem to mirror those obtained here. For example,
they reported, using a smaller number of lenses, an approxi-
mately 10,000 fold increase in shear modulus in the nucleus
over a similar age range, and in their abstract describe that the
nuclear values for stiffness in young lenses were less than the
cortical values.

All lenses used in this study had been stored frozen. It is
possible that fresh lenses may behave differently and this will
be investigated in a future study. Analysis of fresh lenses is
more difficult technically due to their “stickiness” making
coring and lens sectioning more difficult.

While our results demonstrating increased hardness of iso-
lated human lenses mirror those found by others for decreased
accommodative power measured in the eyes of volunteers of
different ages, several caveats should be noted. First, the pro-
cess of accommodation involves stretching, rather than the
compressive forces that were used for DMA analysis. Sec-
ond, we cannot discount a contribution from proteolysis. Pro-
teases may become active after we section the lenses prior to
DMA measurements, although it would be expected that lev-
els of endogenous proteases in the nucleus will be low, espe-
cially in older lenses. In addition as noted above, freezing may
affect the results and our calculations of lens stiffness in the
nuclei of the youngest lenses may be an overestimate due to
the limitations of the current methodology.

It is conceivable that the physical changes we have mea-
sured in these lenses are part of a spectrum of age related ocu-
lar alterations, all of which may contribute to presbyopia. The
huge increases in stiffness could also be the result of some
other factors that over time may affect lens biochemical pro-
cesses. For example, lens transport [37,38] could be influenced
by the regular lens deformation associated with accommoda-
tion and, if this process is compromised could, in turn, affect
the biophysical properties of the lens.

It is not understood what factors determine lens stiffness
and why these should change with age. In very young lenses
this could be a reflection of the initial difference in protein
composition in the nucleus compared with the cortex [39,40].
For example, γ-crystallins are concentrated in the nucleus since
they are predominately synthesized prenatally. It is clear how-

ever that both cortex and nucleus show similar alterations over
time, although the magnitudes are quite different.

A quite unexpected finding was that the nuclei of young
lenses (prior to age 30), were less stiff than those of the corti-
ces. Given the requirement for substantial nuclear deforma-
tion during accommodation, one is tempted to suggest that
such a difference may be present to facilitate the process of
lenticular shape change.

Protein oxidation can also be ruled out as the reason for
the large increase in human lens hardness with age. Analysis
of protein sulfhydryl (data not shown, [41]) and protein me-
thionine sulfoxide contents [42] have revealed no significant
oxidation of human lens proteins past age 60. Once again,
laboratory animals such as rodents appear to be poor models
for aging of the human lens since in these animals there is
evidence of considerable protein oxidation with age [43,44].

Progressive losses in soluble α-crystallin with age [45,46]
could be implicated in the physical changes noted, since this
protein is a molecular chaperone and has been proposed to
play an important role in maintaining optical clarity by bind-
ing to, and sequestering, other lens proteins as they denature
over time. This may also contribute to the activities of other
key proteins, for example channel proteins such as connexins
and aquaporin 0. Since protein aggregation within the cell may
also lead to changes in the relative amounts of free and bound
water, this factor may also be implicated. Age dependent
changes in the composition of fiber cell membranes [47] could
also influence lens stiffness. These factors are to be investi-
gated in the next phase of this study. This work is to be re-
peated with a higher sampling frequency so as to correlate the
size of the zone of stiffness with the barrier to diffusion that
also develops at middle age. This barrier appears responsible
for the later onset of age related nuclear cataract [48].
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