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The Toeplitz Algebra of a Hilbert Bimodule

NEAL J. FOWLER & IAIN RAEBURN

ABSTRACT. Suppose a C*-algebra A acts by adjointable operators
on a Hilbert A-module X. Pimsner constructed a C*-algebra Ox
which includes, for particular choices of X, crossed products of A
by Z, the Cuntz algebras O, and the Cuntz-Krieger algebras Op.
Here we analyse the representations of the corresponding Toeplitz
algebra. One consequence is a uniqueness theorem for the Toeplitz-
Cuntz-Krieger algebras of directed graphs, which includes Cuntz’s
uniqueness theorem for Q.

A Hilbert bimodule X over a C*-algebra A is a right Hilbert A-module with
aleft action of A by adjointable operators. The motivating example comes from
an automorphism «a of A: take X4 = A,, and define the left action of A by
@b := afa)b. In (23], Pimsner constructed a C*-algebra Oy from a Hilbert
bimodule X in such a way that the Ox corresponding to an automorphism « is
the crossed product A x, Z. He also produced interesting examples of bimodules
Which do not arise from automorphisms or endomorphisms, including bimodules
over finite-dimensional commutative C*-algebras for which the corresponding
Ox are the Cuntz-Krieger algebras. The Cuntz algebra O,, is Ox when ¢X¢ is
a Hilbert space of dimension n and the left action of C is by multiples of the
identity.

Here we use methods developed in [18, 9] for analysing semigroup crossed
Products to study Pimsner’s algebras. These methods seem to apply more di-
Tectly to Pimsner’s analoguc of the Toeplitz-Cuntz algebras rather than his ana-
logue Ox of the Cuntz algebras. Nevertheless, our results yield new information
about the Cuntz-Krieger algebras of some infinite graphs, giving a whole class
of these algebras which behave like O,

The uniqueness theorems for C*-algebras generated by algebraic systems of
isometries say, roughly speaking, that all examples of a given system in which the
Isometries are non-unitary gencrate isomorphic C*-algebras. We can approach
Such a theorem by introducing a C*-algebra which is universal for systems of
the given type, and then characterising its faithful representations. Here the
Systems consist of representations ¢ of X and 7 of A on the same Hilbert space
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156 N. J. FOWLER & 1. RAEBURN

which convert the module actions and the inner product to operator multipli-
cation; we call these Toeplitz representations of X. (The partial isometries and
isometries appearing in more conventional systems are obtained by applying ¥
to the elements of a basis for X.) In Section 1, we discuss these Toeplitz repre-
sentations, show that there is a universal C*-algebra Ty generated by a Toeplitz
representation, and prove some general results relating these representations to
the induced representations of Rieffel.

Our first theorem is very much in the spirit of other theorems about C*-
algebras generated by systems of isometries: it gives a condition on a Toeplitz
representation (¢, w) which implies that the corresponding representation v x m of
Tx is faithful (Theorem 2.1). In broad terms, this condition says that the ranges
of all the operators 9(x) should leave enough room for A to act faithfully. The
proof follows standard lines: we use a canonical gauge action ~y to construct an
expectation onto a core T, and then show that both the core and the expectation
are implemented faithfully in the given Toeplitz representation.

When the bimodule ¢X¢ is an infinite-dimensional Hilbert space, Theo-
rem 2.1 says that a family {S; : ¢ € N} of isometries on H with orthogonal
ranges generates a faithful representation of O, if the ranges S;4 do not span
#H. However, more is true: Cuntz proved that every family of isometries with
orthogonal ranges generates a faithful representation of Q4. Our main theorem
is an improvement of Theorem 2.1 which gives the full strength of Cuntz’s result
(Theorem 3.1): we assume that X has a direct-sum decomposition X = N X*,
but only ask that A acts faithfully on (@, . ¢(X*)H)* for every finite subset
F of indices. For ¢Xc, the decomposition is parametrised by a basis of X, and
the hypothesis asks that )71 | 8387 < 1 for all finite n, which is trivially true if
there are infinitely many S;. To prove Theorem 3.1, we use the direct-sum de-
composition to go further into the core; we need the special case in Theorem 2.1
to construct the expectation which does this.

The new applications of our theorem involve the C*-algebras of directed
graphs. For a locally finite graph F, the C*-algebra C*(E) is by definition univer-
sal for Cuntz-Krieger E-families: families {S;} of partial isometries, parametrised
by the edge set E* of the graph, and satisfying in particular

SiSe= > 857,
{f:5(0)=r(e)}

where r,s : E! - E° send edges to their range and source vertices [17, 16].
The graph algebra C*(E) can be realised in a very natural way as the Cuntz-
Pimsner algebra Ox of a bimodule X over the algebra A = co(E°) (see [24, 14]
and Example 1.2 below). For graphs in which vertices can emit infinitely many
edges, the Cuntz-Krieger relations involve infinite sums which do not make sense
in a C*-algebra, and it is not clear how to best define a useful notion of graph C*-
algebra. We show that this problem disappears if all vertices emit infinitely many
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edges: all families satisfying S*S, > Z{f:s(f):r(e)} S¢S} generate isomorphic
C~-algebras (Theorem 4.1). If the graph is also transitive, this C*-algebra is
simple (Corollary 4.5).

Since Hilbert bimodules are a relatively new field of study, and since they
arise in so many different ways, the precise axioms are not yet standard. Thus
different authors have assumed that ¢ : 4 — £(X) is injective, that A acts by
Compact operators on X, that A acts nondegenerately on X, or that X is full. We
have been careful to avoid such assumptions, and in our final section we illustrate
using the bimodules of graphs why we believe this to be helpful. We also give a
couple of new applications involving other classes of Hilbert bimodules.

1. TOEPLITZ REPRESENTATIONS AND THE TOEPLITZ ALGEBRA

By a Hilbert bimodule over a C*-algebra A we shall mean a right Hilbert
A-module X together with an action of A by adjointable operators on X. The
left action gives a homomorphism of A into the C*-algebra £{X) of adjointable
Operators, which we denote by ¢.

A Toeplitz representation (¢, ) of a Hilbert bimodule X in a C*-algebra B
Consists of a linear map ¢ : X — B and a homomorphism 7 : A — B such that

(L1) Wz - a) = Y(x)m(a),
(1.2) $(@)"(y) = n((w,y)4), and
(1.3) la- ) = r(a)p(z)

for z, y € X and a € A. When B = B(%) for some Hilbert space , we call
(¥, 7) a Toeplitz representation of X on .

Remark 1.1. In fact Condition (1.2) implies that ¢ is linear, as in [1, p.8).
1t also implies that + is bounded: for z € X we have

[ (@)l* = () (@)l = lln (@, 2)a)ll < (2, 2) all = [|z])2.
If 7 is injective, then we have equality throughout, and v is isometric.

While many important examples of Hilbert bimodules are given in (23, Sec-
tion 1], [21, Example 22] and [20, Section 3], the examples of most interest to
us are associated to an infinite directed graph. These are not entirely new: it
is shown in (23, p.193] how to build a bimodule from a finite {0, 1}-matrix A,
and that bimodule can be obtained by applying the following construction to the
finite graph with incidence matrix A. However, the simplicity of the formulas
in the next Example suggests that it may be more natural to think in terms of
graphs rather than {0, 1}-matrices.

Example 1.2 (The Cuntz-Krieger bimodule). Suppose E = (E° E! r,s)
is a directed graph with vertex set E°, edge set E', and r, s : E! — EO describing
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the range and source of edges. Let X = X(FE) be the vector space of functions
x : E' - C for which the function

vEE s 3 ja(f)P
{fEELw(f)=v}

belongs to A := ¢o(E?). Then with the operations

(z-a)(f) :=z(f)alr(f)) for f e E",

(Z,9)a(v) := Z z(y(f) forve EY, and
{feRLir(f)=v}

(@-2)(f) = a(s(f)z(f) for f € B,

X is a Hilbert bimodule over A.
Both the module X and the algebra A are spanned in an appropriate sense
by point masses d¢, §,, and we have

driey ife=f
(8e,0f) A :{ ©

0 otherwise;

the elements §, are a family of mutually orthogonal projections in the C*-algebra
A. If (4, 7) is a Toeplitz representation of this Hilbert bimodule X on ‘H, then
the operators P, := w(d,) are mutually orthogonal projections on H, and (1.2)
implies that the operators Sy := 9(6;) are partial isometries with initial projec-
tion P.(s) and mutually orthogonal range projections; (1.3) implies that these
range projections satisfy

(1.4) Z S;S; < P, forve E°.
{feEL:s(f)=v}

We say that {Sy, Py} is a Toeplitz- Cuntz-Krieger family for the graph E. Con-
versely, given any such family on #, we can define a representation 7 : A — B (H)
by m(a) := >, a(v)Py, and a linear map ¢ : C.(E') —» B(H) by ¥(z) =
> 2(f)Sy; routine calculations show that 4 is isometric for the A-norm on
C.(E") C X and hence extends to a linear map on all of X, and that (1, ) is a
Toeplitz representation of X.

Proposition 1.3. Let X be a Hilbert bimodule over A. Then there is a
C*-algebra Tx and a Toeplitz representation (ix,i4): X — Tx such that
(a) for every Toeplitz representation (y, ) of X, there is a homomorphism
Y xm of Tx such that (¥ x T)oix =1 and (¥ x 7)oiy = 7; and
(b) Tx is generated as a C*-algebra by ix(X) Ui (A).
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The triple (Tx,ix,i4) is unique: if (B,i’,%y) has similar properties, there is
an isomorphism 6 : Tx — B such that foix = i' and §oiy =1y. Both maps
ix and ia are injective. There is a strongly continuous action v : T — Aut Tx
Such that v,(ia(a)) = ia(a) and v,(ix(z¢)) = zix(z) forac A, z € X.

We call Tx the Toeplitz algebra of X and v the gauge action. To prove
the existence of Tx, we need to know that the bimodule has lots of nontrivial
Tepresentations. Here the fundamental example is a modification of Fock space,
due essentially to Pimsner [23].

Example 1.4 (The Fock representation). For n > 1, the n-fold internal
tensor product X®" := X @4 --- ®4 X is naturally a right Hilbert A-module,
and A acts on the left by

a'($1®A"'®AfEn) =(a-T1) @4 Q4 Tn;

If we need a name for the operator we call it pla) ®4 1!, and we continue
to write z for a typical element of X®". For n = 0, we take X®0 to be
the Hilbert module A with left action @ - b := ab. Then the Hilbert-module
direct sum F(X) := @°°, X®" carries a diagonal left action of A in which
- (@y) = (a-z,). We can induce a representation mp : A — B() to a repre-
Sentation £(X) —Indﬁ(p(x>> mp of L(F(X)) on F(X)®4 H, which restricts to a
representation 7 := F(X)-Ind4 7, of A.
For each z € X, we can define a creation operator T(z) on F(X) by

Ty ifye X® =4
T(m)y“—‘{

z®ay if y € X®" for some n > 1;

Troutine calculations show that T'(x) is adjointable with

0 ifze X®0 = 4
T(x)*z =
(T, 21)ay f2=2,@4y€X Q4 X® 1 = XOn,

If we now define ¥ : X — B(F(X) ®4 H) by

¥(z) i= F(X)-Ind5F 0(T(2)),
then (¢, 7) is a Toeplitz representation of X, called the Fock representation
induced from my. Note that, since A acts faithfully on X®° = A and the repre-

sentation F'(X) —Indﬁ(p(x)) mo is faithful whenever 7y is, the representation  is
faithful whenever mg is; by Remark 1.1, so is 9.
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Remark 1.5. If we denote by ¢, the diagonal emnbedding of A in L(F (X)),
then (T, p ) is a Toeplitz representation of X in the C*-algebra L(F(X)). Pim-
sner’s Toeplitz algebra of X is by definition the C*-subalgebra of L(F(X)) gen-
erated by T(X) U poo(A) [23, Definition 1.1}, which is precisely the image of
Tx under T X ¢o. In Corollary 2.2, we will show that our Tocplitz algebra is
isomorphic to his by proving that T X ¢ is faithful.

Proof of Proposition 1.3. Say that a (Toeplitz) representation (¢, 7) of X
on a Hilbert space H is nondegenerate (resp. cyclic) if the C*-algebra C* (¢, 7)
generated by 9(X) U m(A) acts nondegenerately (resp. cyclicallyj. For an ar-
bitrary representation (¢, 7) of X, let P be the orthogonal projection onto the
essential subspace K := C* (¢, m)H; then (P, Pr) is a nondegenerate represen-
tation of X on PH, and (({ ~ P)¢, (I — P)w) is the zero representation. By the
usual Zorn’s lemma argument, X decomposes as a direct sum of subspaces on
which C*(¢,m) acts cyclically. Hence every representation is the direct sum of
a zero representation and a collection of cyclic representations.

Let S be a set of cyclic representations of X such that every cyclic represen-
tation of X is unitarily equivalent to an element of S. (It can be shown that such
a set S exists by fixing a Hilbert space H of sufficiently large dimension, and
considering only cyclic representations on subspaces of H. The set S is nonempty
because the Fock representations must have nonzero cyclic summands.) Let

H = @ Hypny, ix = @ ¥, and i4:= @ T

(p,m)eS (v,m)es (y,m)eS

(the direct sum defining ix makes sense because every v is contractive). Then
(ix,%4) is arepresentation of X in Tx := C*(ix,i4); (b) is satisfied by definition,
and (a) can be routinely verified.

The uniqueness follows by a standard argument, and the maps ix and iz
are injective because the Fock representations factor through (ix,i4) by (a). To
establish the existence of the gauge automorphism +,, just note that (Tx, zix, i)
is also universal, and invoke the uniqueness. The continuity of the gauge action
follows from a straightforward €/3-argument. m]

Whenever a C*-algebra C acts by adjointable operators on a Hilbert A-
module, one can use the module to induce representations of A to representations
of C. If the representation 7 of A is half of a Toeplitz representation, we can
realise the induced representation on the Hilbert space of :

Proposition 1.6. Let X be a right Hilbert A-module, and suppose (¥, 7)
is a representation of X on H; that is, ¢ : X — B(H) is linear, 7 : A — B(H)
is a representation, and (1.1) and (1.2) hold.
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(1) There is a unique representation p = p¥™ of L(X) on H with essential
subspace Y(X )M := spani{y(z)h:z € X,h € H} such that
PV (S)(W(x)h) = Y(Sz)h for S € L(X), z € X, and h € H,

and we then have p(O ) = ¥(z)(y)*.
(2) If K is a subspace of H which is invariant for w, then the subspace M =

| Y(X)K is invariant for p. If w|x is faithful, so is plm.

Proof.

(1) The map (z,h) ~ w(z)h is bilinear, and hence there is a linear map
U:X ®H — M such that U(z ® h) = ¥(z)h. Since

Ulz®h) | Uly @ k)) = (p(2)h | 9(y)k) = (h | $(2)*¢(y)k)
= (k| 7m({z,y)a)k) = (z@h |y k),

U extends to an isometry from X ®4 7 to # such that U(z ®4 h) = ¥(z)h. For
S € L(X) we have

Ulnd 7(S)U* (¢ (z)h) = U Ind 7r(S)(:L' R4 h) = U(Sx ®a k) = ¢Y(Sz)h,

80 we can define p := AdU o Ind 7.
Ifx,y, 2 € X, then

P(O2)¥(2) = Y(x - (y, 2)a) = Y(2)7((y, 2)a) = Y (2)b(y) ¥(2),

50 p(O,,y) and (z)y(y)* agree on Y(X)H. If k is orthogonal to 1(X)H, then
PO, )k = 0, so we must show that Y(x)yY(y)*k = 0. But this follows from
(W(@)i(y)"k | B) = (k | $(y)¥(z)*h) = 0.

(2) The subspace M is invariant for p because p(S)(1(x)k) = Y(Sz)k. The
restriction of U to X ® 4 K implements a unitary equivalence between Ind 7 X@ 4K
and p|aq; since the first of these is equivalent to Ind(w|x), it is faithful if 7|k is,
and hence so is p|aq. |

i Remark 1.7. The formula P(©,.4) = ¥(z)¥(y)* implies that the represen-

. tation p is the canonical extension to M(K(X)) = L(X) of the map Pimsner

~ would call 7(1); see [23, page 202]. (We have avoided the notation 7)) because

. the map depends on both v and m.) For a representation (v, 7) of X in a C*-

| algebra B, we can represent B on a Hilbert space and apply the Proposition to
obtain a homomorphism p¥'™ : K(X) — B, but it need not extend canonically
to L{X).

Proposition 1.8. Let A and B be C*-algebras, let X and Y be Hilbert
bimodules over A, and suppose that m: A — B is a homomorphism which forms
part of Toeplitz representations (y,7) and (i, 7) of X and Y in B.
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(1) There is a linear map ¥ @4 p of the internal tensor product X ® 4 Y into
B which satisfies

(1.5) Y@aple®ay) =¢(z)u(y), zeX, yey,

and (Y ®4 u,m) is a Toeplitz representation of X @4 Y.

(2) Suppose B = B(H). Denote by S — S®41 the canonical homomorphism
of L(X) into L{X ®aY) given by the left action of L{X) on X, and
let Pyg .. be the projection of H onto Y ®a4 p(X ®4 Y)(H). Then the
representations p¥'™ and p¥EAR™ of Proposition 1.6 are related by

pY@amm (S®a1) =p¥"(S)Pygau for S € L(X).

Proof. Since (z,y) — ¥(z)u(y) is bilinear, it induces a linear map ¥ ® p on
the algebraic tensor product X @Y. For any z, 2 € X and y, w € Y we have

(1.6) wY) V(@) Y(2)p(w) = py)w((z, 2)a)m(w)
= w@y) pwlz, 2)a-w)
= m((y,(z,2)a w)a)
= w((w@Ay,z@)Aw A).

Thus forv=>_,z; ®y; € X ©Y we have

2

lwosml = [¥ouw) v am)] = |3 uw) v wuw,)|

(S mamms oan), )
|3 (e oavems @ans) | = ol

so 1) ® u induces a contractive linear map ¥® 411 on X®4Y . Routine calculations
on elementary tensors show that (¥ ®4 p,7) is a Toeplitz representation of
X®aY.

For part (2), note that the vectors ¥ ®4 pu(x ®4 y)h = (z)u(y)h span a
dense subspace of the essential subspace ¥ ®4 u(X ®4 Y)H of p¥®4#™. Thus
the calculation

PO (S ® 4 1) ($(a)(y)h) = ¥ a4 p((S®a 1) (z B4 y))h
= %(Sz)u(y)h
= p*"(S)((z)p(y)h)

i

IA

implies the result. O
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2. FAITHFUL REPRESENTATIONS

If (4, 7) is a Toeplitz representation of a Hilbert bimodule X over A on a
Hilbert space #, then the subspace

Y(X)H :=span{y(z)h:z € X, h € H}

is invariant for 7 m(a)(4(z)h) = ¥(a - z)h. Thus the complement ((X)H)t
Is also invariant for 7. Our first main theorem says that if 7 is faithful on this
complement, then 1 x 7 is faithful.

Theorem 2.1. Let X be a Hilbert bimodule over a C* -algebra A, and let
(¥, 7) be a Toeplitz representation of X on a Hilbert space H. If A acts faithfully
on (W(X)YH)*, then ¥ x is a faithful representation of Tx . If the homomorphism
¢ A= L(X) describing the left action of A on X has range in K(X) and if
Y x 7 is faithful, then A acts faithfully on (b(X)H):.

Before we prove this theorem we deduce from it that our Toeplitz algebra is
isomorphic to Pimsner’s. This implies in particular that his algebra is universal
for Toeplitz representations {23, Theorem 3.4].

Corollary 2.2. The Fock representation T x @ of Tx is faithful.
Proof. Let my be a faithful representation of A on ‘H, and consider
(¥, 7) := (F(X)-Ind{" X 70) o T (F(X) -Ind5F ) 10) 0 000 ),

which is a Toeplitz representation because (T, o) is. For each n > 0 and
Yy € X®", we have ¥(z)(y ®4 h) = (z ®4 y) ®4 h; thus

) 0 ) = (DX") @ > (X" 04 H)

n=1

has complement X®® 4 H = A®4H = M. The restriction of 7 to this subspace
is just A-Indﬁ my = mo, which is faithful. Thus Theorem 2.1 says that ¢ x 7 =

(F(X)-Ind5" ) 1) o (T x o) is faithful, and hence T x goo is too. O

Averaging over the gauge action gives an expectation E of Tx onto the
fixed-point algebra T

E(b) := /%,(b) dw forbe Tx.
T

The map FE is a positive linear idempotent of norm one, and is faithful on positive
elements in the sense that E(b*b) = 0 => b = 0. The main step in the proof of
Theorem 2.1 is to show that the expectation E is spatially implemented: there
is a compatible expectation Ey, » of ¥ x 7(Tx) onto ¢ x m(Ty).
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Proposition 2.3. Let (1, ) be a Toeplitz representation of X such that ©
is faithful on (Y(X)H)*.
(1) There is a norm-decreasing map Ey . on ¢ x 7(Tx) such that

Epro( xm)=(¢p x m)o E;
(2) ¥ x 7 is faithful on the fized-point algebra T .

Before we try to construct Ey.» we need to understand what E does, and
for this we need a description of a dense subalgebra of Ty.

Suppose (¢, 7) is a Toeplitz representation of X in a C*-algebra B. For
n 2 1, Proposition 1.8 gives us a representation (¥®", ) of the tensor power
X® = X ®4---®4 X such that PO (1) @4 @4 Tp) = P(z1) - Y(x,). We
define ¥®° := 7. When m > 1, X®™ @4 X®" = X®min) for every n > 0,
and Y@ @ 4 YO = ®(min) There is a slight subtlety for m = 0: the natural
map a ®4 = + a -z identifies X®' @4 X® = A ®4 X®" with the essential
submodule A - X® of X®" and then $®° ® 4 ¥®" is the restriction of ®" to
this submodule.

Lemma 2.4. With the above notation, we have
Tx =3span{ig" (z)i$™(y)* i m,n >0, z € X®™, ye X%}
The expectation F is given by

‘Qm -®n P _
BGE i (0)") = {;x ()i ) i e
iarm .

Proof. The algebra Tx is spanned by products of elements ix (x), 1.4 (a) and
ix(y)"; given a word in these generators, we can usually absorb i4(a)’s into
ix(z)’s, and use ix(y)*ix(x) = ta((y,x)4) to cancel any ix(y)* appearing to
the left of an ix{(z). (This is [23, Lemma 3.1].) Since 'yz(i?}m(m)i?}”(y)*) =
2™ (2)i%" (y)*, the second assertion is easy. 0

Lemma 2.4 implies that the image ¢ x n(Tx) is spanned by elements
Y@ (2)y®"(y)* and that Ey . must satisfy

{Wm(w)w@"(y)* if m = n,

om ®n *) =
(2.1) Eyn (97" (@)% ()") if m # n.

We shall show that the formal linear extension E, , of the map defined by (2.1)
is norm-decreasing, and hence extends to a well-defined norm-decreasing map
on ¢ x w(Tx). We analyse the norm of an element E, ,(S) by showing that the
subspaces ¢®"(X®")H form a decreasing chain of reducing subspaces, in which
the differences are large enough to see operators in each £(X®") faithfully.
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Lemma 2.5. Suppose that (1, 7) is a Toeplitz representation of X on H.
Forn > 1, let P, denote the projection of H onto p®"(X®")YH, and let Py = 1.
Write p,, for the representation p¥®" ™ of L(X®™) (so that py is the extension
of m on its essential subspace).

(1) We have P, > P,,; for alln > 0, s0 Qr, := Py — P, 1 is also a projection
formn > 0.
(2) For everyn >0, k>0, and z, y € X®" we have

(2.2) VO ()P = P x®™(z), and
(2.3) Pepy® ()P (y)* = =" (2)p®" (y)" Py

(3) If w is faithful on (Y(X)H)L, then each p, restricts to a faithful repre-
sentation of L(X®") on Q,(H).

Proof. For part (1), observe that the vectors $®™(2)¢(w)h = p®n+D (2@ 4
w)h span the range of P, 1, and are clearly in the range of P,.

Equation (2.2) is trivially true for k = 0 and/or n = 0. If k > 1, n > 1, and
w € X% then

YO (@) Bp®* (w) = & (2)yp @ (w) = P, 4 x1b®" (@)% (w),

80 Y& (2) P and P10 (z) agree on Py(H). If [ € Po(H)*, then for any
z2e X9 we X®F and h € H we have

(W (@) | & (2)9p® (w)h) = (£ | m((x, 2) A)0®* (w)h)
= (f | 9®*((z,2)a - w)h) =0,
which implies P, 19®"(z)f = 0 because the vectors
PO (2)yp PR (w)h = @ tk) (z®aw)h
span the range of Py, 4. This gives (2.2). When k < n, both sides of (2.3) reduce
to ¥ ()" (y)*; for k > n, (2.3) follows from two applications of (2.2).

Part (3) is trivial for n = 0. For n > 1, we apply Proposition 1.6(2): since
Tl(;-pyn 18 faithful, p, is a faithful representation of L(X®") on

YO (XEY(1 — P)H.

But this space is precisely Q,(H), because (2.2) implics that P (2)(1 - P)) =
(Pn, - Prl»Fl)z/)Gﬁ“ (‘L) 0
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Proof of Proposition 2.3.

(1) We have to prove that for every finite sum
® *
s *le (z5) an] (¥)

we have ||y x 7(E(S))]| < ||[¢ x n(S)|}; equivalently, we have to prove

|30 wem@wem )

{5:m;=n;}

w@’"” B (y,)* |l

We know from (2.3) that the projections @, commute with every summand in
¥ x w(E(S)). If m > k, we have Qxv®™(z) = QxPnyp®™(z) =0, and if m < k
and n <k, (2.2) gives

QuY®™ (@)Y (y)* Qk = Y& (2) Qk—m Qr—n®" ()",

which is 0 unless m = n. Let K := max n;. Then px (T ®a 157 ) = p,(T)Px
by Proposition 1.8(2), so we have

(2.4) Pk (¢ x n(E(S))) = prK( S 6., 04 1;(—"]);

{3mj=n;}
because Qk px is faithful on £L(X®X) by the previous lemma, it follows that

1Pk (b x w(E(S) = 1Qx (v x w(B(S)))]I-

Since Qo + -+ + Qr—1 + Pk =1, this gives

¥ x m(E(S) = sup{[|Qk (v x n(E(S)))|: 0 < k < K}
= sup{[|Qx (v x 7(E(S)))Qxll : 0 < k < K}
= sup{[|Qx (¥ x 7(S))Qk : 0 < k < K}
<l x 7w (S)].

Thus Ey  extends to a norm-decreasing map on ¢ x 7(7x), giving (1).
Next let R:= 31 ®"J 13)1?2"’ (y;)* be a typical finite sum in the core TY;
such sums are dense because E is continuous and maps finite sums to finite sums.

For k < K := maxn,, Proposition 1.8(2) implies that

Quw x T(R) = Qupi( Y. Ouy, @4 187),

{jin; <k}
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and hence

lQu@ x T <|| D On,y, @15

{dn; <k}

There is a similar formula for || Pk (¢ x w(R)| (see (2.4)), so

(2.5) [l x w(R)]| = max {|| Pk (% x n(R)]; |Qx(w x 7(R))|| : 0 < k < K}
gmax{” D Oy, @415 :ogkgK}

{7:n; <k}

for every Toeplitz representation (¥, m). Applying this to a faithful representa-
tion shows that (2.5) is an upper bound for || R|l.

When 7 is faithful on (¢(X)H)*, the representations Qrpr and px are
faithful too, so we actually have

(2.6) v x ©(R)|| = max{” Z O,y ®alF ™| 0< k< K}.

{jin; <k}

In particular, this implies that ||R]] is at least (2.5); since we have already seen
that ||R|| is at most (2.5), we deduce that [|R]| = (2.5), and (2.6) implies that
% x 7 is isometric on the core. O

Proof of Theorem 2.1. Suppose 7 is faithful on (y(X)H)L and S € ker ) x
7. Then by Proposition 2.3(1) we have ¢ x m(E(S*S)) = E, (¥ x 7(8*S)) = 0,
which by Proposition 2.3(2) implies that E(S*S) = 0. Because E is faithful, this
forces $*S =0 and S = 0.

Now suppose that ¢(A) C K(X). Proposition 1.6 gives a homomorphism
p*xia 1 K(X) — Tx (see Remark 1.7), and we claim that, for any Toeplitz
representation (i, 7),

(2'7) P x W(iA(a) - piX’iA (Qo(a))) = 7r(a)(l - Pl) = ”(a)l(qp(xm)r
For any rank-one operator ©, , we have
Y X m(p M (O4)) = ¢ x m(ix (2)ix (y)") = Y(@)P(y)* = p¥"(O,,),

and hence (¢ x m) 0 p'X+*4 = p¥7 on K(X). On the other hand, since p¥:" (i (a))
agrees with 7(a) on ¥(X)H, we have p¥'™(¢(a)) = n(a)P;. These two observa-
tions give the claim (2.7).

Since there are Toeplitz representations (v, 7) in which 7 is faithful on
(W(X)H)* (for example, the Fock representation induced from a faithful repre-
sentation of A) and 9 x 7 is then faithful, (2.7) implies that a : a — i4(a) —
p** 14 (p(a)) is an injective homomorphism of A into Tx. (Warning: it is crucial
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here that p(A) C K(X).) Thus if ¥ x 7 is faithful, so is the composition with «,
and (2.7) gives the result. a

3. DIRECT SUMS OF HILBERT BIMODULES

If {X*: X € A} is a family of Hilbert bimodules over the same C*-algebra A,
then the algebraic direct sum Xj is a pre-Hilbert A-module with (zx)a:= (x5 a)
and ((zx), (ya))a == X, {@x,yr)a. We can therefore complete Xo to obtain a
Hilbert A-module X, which we denote by @Drcr X (see (25, Lemma 2.16]).
There is a left action of A on X, defined by a - (zx) := (a- zy), which we claim
extends to an action of A by adjointable operators on P A*. To see this, note
that the left action of A on each X* satisfies (a - zx,a - zr)a < llal|*(zx, z2) 4,
and since the sum of positive elements is positive, we deduce that

(a- @)se (@a))a < al* (D (@ama)a) = lalP (@), (wa))a.

A

Thus the map (z)) — a - (z)) is bounded for the norm on Xg induced by
{*y-)4, and extends to a map on all of X, which is adjointable with adjoint
(zA) = a* - (), as claimed. We have now shown that X = @Dicp X isitself a
Hilbert bimodule over A, which we call the direct sum of the Hilbert bimodules
X

Theorem 3.1. Let {X* : X\ € A} be a family of Hilbert bimodules over a
C”-algebra A, let X := @4 X, and let (v, 7) be a Toeplitz representation
of X on a Hilbert space H. If A acts faithfully on (W(B,.p X )H)L for every
finite subset F' of A, then ¢ x  is faithful on Tx. If A acts by compact operators
on the left of each X* and if ¥ x 7 4s faithful, then m acts faithfully on every

(W Brer XM

The proof of this Theorem exploits a grading of 7x by the free group Fu
on A: picking off the e-graded piece gives an expectation EA which goes further
into the core Ty than the expectation E used in Section 2. Such gradings are
usually formalised in terms of a coaction of Fj on 7Ty, but because F, is not
amenable, it would not be obvious from such a formalisation that the associated
expectation E* is faithful (see, for example, [18, Section 4]). Here we shall
construct the expectation directly using the Fock representation of 7, which
we know is faithful by Corollary 2.2.

First we need some notation. Let F} be the subsemigroup of F, generated
by A and the identity e. For s, t € F}, we write s < ¢ if ¢ has the form sr for
some r € F}, and we define
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t if s <,
sVit:=¢s ift<s,and

oo otherwise.

(The pair (Fa,F}) is an example of a quasi-lattice ordered group ([22, 18]): the
Subsemigroup defines a left-invariant partial order on Fj in which s < ¢ if and
only if st e F X, and, loosely speaking, every finite bounded subset has a least
upper bound.)

For a reduced word s = A;--- A, in F} \ {e}, we write |s| := n. We
can identify the tensor power X¢ := X* @4 --- ®4 X** with a submodule of
X® If (¢, ) is a Toeplitz representation of X, we can define ¥* := 1| y» and
Y= M ®4 - @4 ¥, and then (¥°,7) is a Toeplitz representation of X
by Proposition 1.8. The associativity of &) , gives an isomorphism of X* ®4 X*
onto X* which carries ¥° ® 4 ¢ into ¥, and that ¥° agrees with the restriction
of y®lsl to X* C XOls!,

Proposition 3.2. Let (¢, 7) be a Toeplitz representation of X in a C*-
algebra.
(1) Suppose s, t € FY and s <t. Then for every z, y1 € X% and ys € X't
-1

we have Y (2)* Y (y1 @ay2) = ¥° {z,11) 4 - yo).

(2) Suppose s, t € Fy and sVt = oco. Then for every x € X* andy € X! we
have ¥*(x)* ' (y) = 0.

(8) ¥ x m(Tx) = span{y*(z)y*(y)* :x € X*, y € X!, 5, t € F{}.

(4) There is a norm-decreasing linear map E® on Tx which satisfies

BN @5 ()i (4)°) = {Z&(m)i&(y)* ife=tinFf,

0 otherwise,
and which is faithful on positive elements.

Proof.

Part (1) is a straightforward computation.

For (2), let r be the longest common initial segment in s and ¢, so that
s =rds; and t = ruty forr, 5, t; € IFX and A #Z u € A. Then X™ and X"
are orthogonal submodules of X@(rl+1) " Since vectors of the form z ® 4 y €
X ®,4 X span X* and similarly for X!, the calculation

V(e © Y)W e 2) = 4 (1) wO D (@) gl D )yt (2)
=4 ()" ({2, w)a v () = 0
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implies (2).

For (3), we show that C := span{y®(z)y!(y)*} is a C*-subalgebra of ¥ x
m(Tx) which contains (X) and m(A). It is clearly closed under taking ad-
joints. To see that it is a subalgebra, consider ¥*(z)y*(y)* and ¥*(2)y*(w)*.
Part (2) implies that ¥'(y)*¥*(z) = 0 if ¢ Vu = co. Otherwise, (1) implies
that ¥*(y)*¥*(2) has the form ¢! “(z') (if t < u) or YTy (G u < t).
Absorbing this element into either ¢*(z) or 9*(w)* shows that the product
¥ ()9 ()" (2)9° (w)* belongs to C.

Since X is essential as a right A-module, every element has the form v - a
for y € X and a € A. Approximating y by a finite sum of the form > ya shows
that ¥(y - a) = ¥(y)7(a) ~ 3, ¥ (ya)¥e(a*)* belongs to C. Similarly, writing
an arbitary element of A as bc* shows that 7(bc*) = ¢(b)y°(c)* € C.

(4) Part (2) implies that the subspaces X *® of X®" corresponding to different
words of length n are orthogonal; thus the natural map is an isomorphism of the
Fock bimodule @seﬁ X* onto F(X). Forr € F{, let R, be the orthogonal pro-
jection of F(X) onto X”. Then for each S € L{F(X)), the sum ZrerFx R,.SR,

converges *-strongly to an adjointable operator ®(S); the resulting linear map-
ping ® on L(F(X)) is idempotent, norm-decreasing, and faithful on positive
operators. Let T' x ¢, be the Fock representation of Tx, which is faithful by
Corollary 2.2. We want to define E* := (T X o)™} 0 @ 0 (T X @q); before we
can do this, we need to know that @ leaves the range of T X 4, invariant. Both
this and the formula in (4) will follow if we can show that

T°(x)T(y)* if s =t in F},

0 otherwise.

(3.1) B(T*(2)T (y)*) = {

Let z € X° and y € X*, and note that X7 is spanned by vectors of the form
T7(z)a, where a € A = X®° If t V1 = oo, then (2) gives T*(z)T"(y)*T" (z)a =
0. If r < t, then (1) implies that T*(y)*T"(z)a = T 't(y')*a for some y' €
X7 't and this vanishes because T™ "t(y)* kills A = X®0 ¢ F(X). Ift <,
then Tt (y)*T7(z) = T' '7(2) for some 2z’ € X* '", and T ()T Hy)*T" (2)a =
T“_lr(m ®z2')a € X', Thus

T*(z)T (y)*R, ifs=tinF},
R,T*()T"(y)" R = { !

0 otherwise,

and summing over r € F} gives (3.1). O

Now suppose that (i, ) is a Toeplitz representation of X on H. As in
the previous section, we aim to show that if 7 satisfies the hypothesis of The-
orem 3.1, then the expectation E* is spatially implemented. The analogues of
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the projections P, are the projections P, onto the subspaces ¥*(X*)H, and in
the next Lemma we write down some of their properties. The analogues of the
Projections Q, = P, — P, are the projections QSF described in Lemma 3.4,
which is based on [18, Lemma 1.4]; in Lemma 3.5 we show that QF is large
enough to see £(X*) faithfully.
Lemma 3.3. Let (¢, ) be a Toeplitz representation of X on H. For s €

FX, denote by p, the representation p¥" " : L(X®) = B(H), and let P, be the
brojection of H onto ¥*(X5)H; take P, = 1 and Py, = 0.

(1) We have P,P; = P,y fors, t ¢ Ft.

(2) Fors, teF} andz, y € X%, we have

(3.2) Y*(z)P, = Pyy®(z), and
(3.3) Pop®(2)y°(y)" = ¥°(2)¥° (y)* P

The proofs are like those of Part (2) of Lemma 2.5; the orthogonality of P,
and Py when s V t = oo follows from Proposition 3.2(2).

Lemma 3.4. Let F be a finite subset of Ff such thate € F. For s € F,
let

of =r( II « - R)).

{teF:s<t}

Then1=3, Q7.

Proof. We proceed by induction on |F|. If |F| = 1, then F = {e}, and
RQF =P, =1.1If |[F| > 2, we remove a maximal element ¢ from F, and apply
the inductive hypothesis to G := F \ {c}. There is a unique longest word b € G
such that b < ¢. We claim that only the summand QF in the decomposition
1 = 3 .5 QF is changed by adding ¢ to G; in other words, we claim that
QY = QF for s # b. Suppose s € G\ {b}. Then QF and QF have the same
factors except for an extra 1 — P, in QF when s < c. But s < ¢ implies s < b,
because b is the longest word in G with b < ¢, and P,P, = P, by Lemma 3.3(1);
thus 1 — P, = (1 — B,)(1 — P.) and QF = Q%, as claimed.

We now have 3=, . n Qf = 3. by @5 + @F +QF, and it suffices to show
that QY = QF + QF. If t € G and b < ¢, the maximality of b implies that
¢Vt = o0, and hence P.P, = 0 by Lemma 3.3(1). Thus

QF=ra-r)( I a-r)+mr( [ a-r)

{teG:b<t} {teG:b<t}
=A( I a-R)+nP
{teF:b<t)
=Qy +P=@Qy +Qf,
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as required. O

Lemma 3.5. Suppose (i, m) is a Toeplitz representation such that A acts
faithfully on (W(@\cp X*)H)* for every finite subset F of A.

(1) Let G be a finite subset of IFP\L \{e}, and let s € Ff. Then p, := p¥" 7 is
a faithful representation of L(X*) on Py [],.o(1 — Py)H.

(2) If F is a finite subset of F} with e € F, then for each s € F, Ps 15 @
faithful representation of L(X*) on QF'H

Proof.

(1) Each t € G has a unique decomposition ¢t = A\;r with A, € A and r € lF
write G’ 1= {); : t € G}. Lemma 3.3(1 ) implies that the projections Py for \ € A
are mutually orthogonal, so ¥(@ycq X )H = @, PAH, and our hypothesis
says that 7 is faithful on the range of 1 — Z/\EG, Py = H,\e(/ — P,). But
Py < Py, for each t, s0 [[, (1~ P) > [Isce (1 — Py), and = is also faithful on
[l;cq(l — P)H. Now Proposition 1.6(2) implies that p, is faithful on

M, :zm{g/)s(z)(n(l - Pt)h) rxe X, he 'H},
teG

which by (3.2) is precisely [[,c(1 — Py )PsH, at least for s # e. When s = e,
M. is a subspace of [[,c(1 — P)H, and the result follows.
(2) Apply (1) with G := {s™t:t € F, s < t}. O

We can now construct our spatial implementation of the expectation E*.

Proposition 3.6. Suppose (¢, 7r) isa Toeplztz representation of @ X* such
that A acts faithfully on (Y(Prcp X )H)L for every finite subset F of A.

(1) There is a norm-decreasing linear map EJ)  on 1 x n(Tx) such that
E,i\’ﬂ,o(zﬁxw):(z/)xw)oEA;
(2) ¥ x 7 is faithful on EMNTx).

Proof. (1) We show that for each finite sum § := 2 iy (xj)it)}(yj)*, we have

Hway

{j:si=t;}

83

VY (y;)*

)

then the map EA!,r cp x w(S) = 9 x T(EM(S)) extends to a well-defined norm-
decreasing map on ¥ x w(7Tx) with the required properties.




The Toeplitz Algebra of a Hilbert Bimodule 173

Let F := {e} U {s;} U {t;}. Equation (3.3) implies that the projections
F; and QF commute with every summand in ¥ x n(EA(S)); it follows from
Lemma 3.4 that there exists ¢ € F such that

o x w(EX SN = 1QE (b x w(BMNSNH)-

Ift € F with ¢ < ¢, then Q¢! (z) = QF(1 — P,)Pupt(x) = 0, and if ¢ V t = o0,
then QI (x) = QF P.Ppt(2) = 0; thus compressing by QF kills all summands
in ¢ x w(S) except possibly those for which s; < cand t; <c. Asin the proof
of Proposition 2.3, it follows from Proposition 1.8(2) that

QF (v x W(EA(S))) = prc( Z Oz, .y, Da 13;1c)’

{g:ss=t;<c}
and from Lemma 3.5(2) that
-1
[ xa B =] 3 Oup @a1 .
{jisy=t;<c}

The idea now is to replace QF by a smaller projection Q, in such a way that
compressing by @ kills the remaining off-diagonal terms of QF (v x n(S))QF but
still preserves the norm of ¢ x n(E®(S)).

For cach s, t € F such that s # ¢, s, t < cand s 'c Vit ¢ < oo, we define
dyy € Ff as in (18, Lemma 3.2):

J (s7te) Yt te) ifsle<t e
EN
(t7le)y M(s7te) iftTle < s e,
noting in particular that d,, is never the identity in IFX Let
Gi={c't:teF c<t}U{ds,},

and define Q := P.[],c(I — P.). Notice that we have added factors to the
formula for QF, so Q < QF.

To sce that @ has the required properties, fix s, t € F satisfying s # ¢,
s < ¢, and t < ¢. Then from (3.2) we have

QY™ (@)Y (¥)*Q = QP ()" (y)" P.Q = Qv () Py1 . Pr ' ()" Q,

which certainly vanishes if s7'cVt7lc = co. But if s ¢Vt le < oo, then
Q S Pc - })(:d_q,,’ 50

(21/}5("1)1/){(1/)*@ = Q(R - Rt((,,,,)1/13(51:)1/)11(?])*(Pc - Rtrlﬁy,)Q
= Q(/)q(‘t)(Ps le — Ps"’(.‘(i,‘_f)(Pt"I(: - Pt’ Ledy )U"(Z/)*Qs
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which vanishes because either s~'cd;; = t~!c or t7leds; = s~ le. We deduce
that

Quxa(NQ=Qo( D Oa, @415,

{j:s5=t;<c}

Since Qp. is faithful by Lemma 3.5(1), we have

o< B SN =] 3 Ou, @ati
{jis;j=t;<c} .
=er( Y e @ari)|
{d:sj=t;<c}
= Q¥ x 7(5)Q|
<l x (),
giving (1).
Applying the argument of Proposition 2.3(2) to the partition {Qf'} of 1
gives (2). a

Proof of Theorem 3.1. The first part follows from Proposition 3.6 just as
Theorem 2.1 follows from Proposition 2.3. Suppose A acts by compact operators
on each summand X*. Then A acts by compact operators on Brecr X A for any
finite set F' of indices, giving maps ¢r : A — K(X). An argument like that in
the proof of Theorem 2.1 shows that

P x w(iala) — pX "4 (pp(a))) = ﬂ-(a)’(l-z,\eppx)%.

Applying this with (¢, w) satisfying the hypothesis of the first part implies that
ap : a > ia(a) — p'¥“4(pp(a)) is an injection of A in Tx. If now (1, ) is
a Toeplitz representation for which ¢ x 7 is faithful, then composing with ap
shows that the hypothesis is necessary. 0

4. THE TOEPLITZ ALGEBRA OF A DIRECTED GRAPH

Let E = (E° E',r,s) be a directed graph and X(E) the Hilbert bimodule
over A = ¢o(EP) discussed in Example 1.2. Recall that X (F) consists of functions
on the edge set E', and that X (E) and A are spanned by point masses {J; : f €
E'} and {4, : v € EV}, respectively.

Theorem 4.1. The Toeplitz algebra Tx gy is generated by a Toeplitz-Cuntz-
Krieger E-family {ix(07), ia(6s) : f € E', v € E%}. It is universal for such
families: if {S¢, P,} is a Toeplitz-Cuntz-Krieger E-family on o Hilbert space H,
there is a representation 757 : Tx(py — B(H) such that m5F (ix(§;)) = Sy and
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WS’P(iA (6)) = P,. The representation 7% is faithful if and only if every P, is
nonzero (and hence every Sy is nonzero), and

P> N 8485
{feEL:s(f)=v}

for every vertex v which emits at most finitely many edges.

Proof. Write X := X (FE). We proved in Example 1.2 that {4(d;),7(d,)}
is a Toeplitz-Cuntz-Krieger E-family for any Toeplitz representation (¢, ), and
this applies in particular to the canonical representation (ix,i4) in Tx. The
family generates Ty because ix(X) and i4(A) do, because d; and §, span dense
Subspaces of X and A, and because ix and i4 are isometric. We saw in Exam-
Ple 1.2 how the family {Sy, P,} generates a Toeplitz representation (¢, ®) with
¥(éf) = Sy and 7(8,) = P,, so 75 := ¢y x 7 has the required property.

For the final statement, we apply Theorem 3.1. For each f € E', we let
X¢ be the bimodule C in which a - z = a(s(f))z, 2 - a = za(r(f)) and (z,w)s =
Zwd (s, and note that (z5) — 3, 285 induces an isomorphism of Drem Xr
onto X. (It is easy to check on the algebraic direct sum that the map is a
bimodule homomorphism which preserves the inner products.) Since K(Xyf) =
L(Xy) for each f, A acts by compact operators on each X ¢, and Theorem 3.1
says that 75 is faithful if and only if A acts faithfully on each (Bjer He)t,
where H; = 7% (ix(85)H) = SyH. The action of A = ¢y(£°) on any space is
faithful iff every d, acts nontrivially, so A acts faithfully on (Der M 7)1 if and
only if

0 # Pv<1 - Zsfs;) =P,— 3 s
feF {fEF:s(f)=v}

If each P,, is nonzero and v emits infinitely many edges, this holds since P, >
Z{feEl_,s(f):U} S¢8%, so the result follows. D

Corollary 4.2. Let E be a directed graph, and suppose that {Sf, P,} and
{Ty,Q.} are Toeplitz-Cuntz-Krieger E-families such that each P, and Q. is
nonzero, and such that

P, > Z S¢S} and @, > Z TyTy
{feE :s(f)=v} {feELs(f)=v}

for every vertex v which emits at most finitely many edges. Then there is an
isomorphism 6 of C*(Sy, P,) onto C*(Ty, Q) such that 6(Sy) = Ty for all f €
E' and (P,) = Q,, for allv € E°.

Proof. Take 0 := 17'Q o (#5F)~1, O
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Corollary 4.3. Let E be q directed graph with at least one edge. Then
Tx (k) is simple if and only if every vertex emits infinitely many edges and every
pair of vertices are joined by a finite path.

Proof. First we show that the hypotheses imply simplicity. Suppose 8 is a
representation of Ty gy with a nontrivial kernel, and let Sy := 0(s¢) and P, :=
8(p.). Since each vertex emits infinitely many edges, Theorem 4.1 implies that
Py = 0 for some v. Ifs(f) = v, then S; = P,S¢ =0, and hence Py = 5185 =0
as well. Since every pair of vertices are joined by a finite path, it follows that
P, = 0 for every w € E° But then S = SfS}Sf = SfPT(f) = 0 for every
feE, and 6 = 0.

Conversely, suppose Tx(g) is simple. We prove that we can reach every
vertex from a given vertex v by considering the ideal (pv) generated by p,,
which is all of Tx(E) by simplicity. As usual, we write s, := s, - - sy, for a finite
path u = f ... . define Sw 1= py for each vertex w, and verify that Txg) =
span{s,s;}. The ideal (pv) is spanned by products of the form S48 PuSsSE,
which satisfy

Susersy i s(v)=s(0)=vand o = vo',
* .
SuSuPvSesT = ( 8,8%,8% if s(v) = s(c) =v and v = 0/, and
0 otherwise.

On the other hand, if 7(1) = r(7) can be reached from v, say by «, then S,8% =
$u8a8aST = S$.58DySaSk belongs to (p,). Thus

(po) = 8pan{sus; : r(p) = r(r) € H(v)},

where H(v) is the set of vertices w for which there is a path from v to w.

We want to prove that H(v) is all of EO. Suppose there exists w ¢ E°\H(v).
We shall show that [|p,, —b|| > 1 for all b € (py), which contradicts (Dy) = Tx(E)-
Suppose b = 2 Aisu, s is a typical finite sum in (p,). Let F be the (finite)
set of edges which start at w and are the initial edge of some y;. Theorem 4.1
implies that the projection ¢ := Pw — ZfeF sfs; is nonzero. But PwSy, = 0
unless s(y;) = w, and then §§87Su, = 8, for the one f which starts 4;. Thus

gb = Z AiPw Sy, 55 ~ Z /\i<§: sfs})sms:i =0,
B i

ferF

and [p,, — bl > [lg(pw — b)I| = ||g|| = 1, as required.

The transitivity we have Just proved implies that each vertex v emits at least
one edge. If v emits only finitely many edges, then q := p, — Z{f:s(f):v} 558}
is nonzero by Theorem 4.1. However, one can easily construct Toeplitz-Cuntz-
Krieger E-families on Hilbert space such that P, = Z{f:s(f):v} SfS}‘, and then
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¢ would be in the kernel of the corresponding representation of Tx (gy. Thus each
vertex must emit infinitely many edges. ]

In passing from the Toeplitz algebra Ty to the Cuntz-Pimsner algebra Oy,
an important role is played by the ideal J := ¢~1(KX(X)); the theory simplifies
when this ideal is either {0} or A4, and authors have often imposed hypotheses
which force J = A. (This is done, for example, in [20] and [13].) For the
bimodules of graphs, one can identify the ideal J explicitly.

Proposition 4.4. Let X(FE) be the Hilbert bimodule of a directed graph E,
and let p : A — L(X(E)) be the homomorphism describing the left action of
A = co(E®). Then

¢ HK(X(E))) = span{é, : v emits at most finitely many edges}.

Proof. Write X := X (F). Since K(X) is an ideal in £(X), J := ¢~ }(K(X))
is an ideal in A = ¢o(EY), and hence has the form

{a€A:a(w)=0 forw¢ F} =38pan{d,:ve F}

for some subset F of the discrete space E°. So it suffices to see that ©(6,)
belongs to X(X) iff v emits finitely many edges. If v emits finitely many edges,
then ¢(4,) = Z{f:s(f):v} Os, s, is compact.

Suppose now that v emits infinitely many edges. Since span{d;} is dense in
X and (z,y) — ©,,, is continuous, we can approximate any compact operator
on X by a finite linear combination of the form K := }°_ cp Ac s©s,,5,. But
for any such combination K, we can find an edge g ¢ F such that s(g) = v, and
then ©;, 5,(84) = b - (85,0404 = 0 for all e, f € F. Thus

le(8y) — K| = sup{li((é,) — K) ()] : llxlla <1}
2 [l9(8:)(85) — K(dy)ll
= |16 = Ol = 1,

and hence ¢(4,) is not compact. O

Corollary 4.5. If E is a directed graph in which every vertexr emits in-
finitely many edges, then the Cuntz-Pimsner algebra Ox gy coincides with the
Toeplitz algebra Tx gy, and is simple if and only if E is transitive.

Remark 4.6. Since (at least in the absence of sources and sinks) the Cuntz-
Pimsner algebra Ox (g is generated by a Cuntz-Krieger family for the edge ma-
trix B of F, one might guess that Ox gy is isomorphic to the Cuntz-Krieger al-
gebra Op of (8], and that this last Corollary follows from (8, Theorcm 14.1]. This
guess is correct, but the connection is nontrivial; since it concerns Cuntz-Pimsner
algebras rather than Toeplitz algebras, we shall present the details elsewhere. We
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note also that our Toeplitz algebra Tx () is not the Toeplitz—Cuntz-Krieger alge-
bra TOpg discussed in [8]: their relations do not imply that the initial pro jections
P, are mutually orthogonal.

5. CONCLUDING REMARKS

To see why we have avoided placing additional hypotheses on our bimodules,
consider the Cuntz-Krieger bimodules of graphs. We want to allow graphs with
infinite valency, so Proposition 4.4 shows that A will not always act by compact
operators. We also want to consider graphs with sinks (vertices which emit no
edges) and sources (vertices which receive no edges). Since v € E° is a sink
i &, € ¢o(E) acts trivially on the left of X(E), p: A — L£{X) may not be
injective; since v is a source iff d, is not in the ideal span{(z,y)a}, X need not
be full as a right Hilbert module.

Every Cuntz-Krieger bimodule X = X(E) is essential, in the sense that
span A- X = X, because Ss¢f) “0f = &5 for every f € E1, However, the following
non-essential submodules arise in analysing the ideal structure of Tx(E)- Suppose
V' C E° is hereditary in the sense that r(f) € V whenever s(f) € V. Then
I':= co(V) is an ideal in ¢o(E°) such that T - X(E) C X(E) 1,50 X(E)-Tis
a Hilbert 7-bimodule. However, if there is an edge f such that s(f) ¢ V and
r(f) € V, then 87 € X(E) - I but a-6f=0forallac].

Because our modules may not be essential, we cannot require that the rep-
resentations m in our Toeplitz representations (¢, 7) are nondegenerate: in the

Fock representation induced from g nondegenerate representation of A, 7 is non-
degenerate if and only if X is essential. Moreover, the essential subspace of 7
need not be invariant under 1, so it is not in general possible to reduce to the
nondegenerate case as one typically does when dealing with representations of
a x-algebra. The following Corollary illustrates an extreme case: when the left
action is trivial, ¢ and 7 have orthogonal ranges. In general, we believe the
correct notion of nondegeneracy for a Toeplitz representation (1, 7) is that the
C*-algebra generated by ¥(X) U n(A4) acts nondegenerately; see the proof of
Proposition 1.3.

Corollary 5.1, Suppose the left action of A on X is trivial,

(1) ¥ x 7 is faithful if and only if m is faithful. If A is simple, so is Ty .
(2) Tx s canonically isomorphic to the algebra

L(X) = K(X & A) = (’C%X) j) ;

if Xa ds full, L(X) is the linking algebra of the imprimitivity bimodule
k(x)Xa (see [25, Section 3.2]).
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Proof.

(1) If ¢ x 7 is faithful, so is (¢ x 7) 0i4 = 7. On the other hand, for a € A
and ¢ € X we have 7(a)y(z) = ¢(a-z) = 0, so 7 acts trivially on ¥(X)H. Thus
if 7 is faithful it must be faithful on (¢(X)H)*, and ¢ x 7 is faithful by the
Theorem.

(2) The formulas 1(z) := (§&) and n(a) := (§2) define a Toeplitz repre-
Sentation of X in L(X) such that 7 is faithful and ¥(X)Un(A) generates L(X).
Now use (1). 0

Our next application is a different extension of Cuntz’s result on the sim-
plicity of Oy: to recover it, take each X* = ¢Cg.

Corollary 5.2. Let X be a Hilbert bimodule over a simple C*-algebra A.
If X = @P,cp X and the left action of A is nontrivial on infinitely many sum-
mands, then the Toeplitz algebra Tx is simple.

Proof. If 1 X 7 is a nonzero representation of 7x on #, then the simplicity
of A implies that m and 1 are faithful. Since the summands in X are mutually
orthogonal, this implies that the action of 7 in each (Y(@,cr X*)H)* is nonzero
and hence faithful. Thus the result follows from Theorem 3.1. 0

Our final application is motivated by Pimsner’s realisation of crossed prod-
ucts by endomorphisms as Oy for suitable X. Let 7 denote the forward-shift
endomorphism on the C*-algebra ¢ of bounded sequences, and let X := 7(1)c be
the Hilbert bimodule over ¢ in which z-a := za, {z,y). := z*y and a-z := 7(a)z.
Since the identity operator on X is compact, Theorem 2.1 applies, and we re-
cover a theorem of Conway, Duncan and Paterson [2] (see also {11, Theorem 1.3]).
Recall that an element v in a C*-algebra is a power partial isometry if v™ is a
partial isometry for every n > 1.

Proposition 5.3. Tx is unital, v :=ix(7(1))* is a power partial isometry,
and Tx = C*(1,v). The pair (Tx,v) has the following universal property: if B
is a unital C*-algebra and V € B is a power partial isometry, there is a unital
homomorphism Tx — B which maps v to V.

Proof. i.(1) is an identity for Tx, and the calculation
ie(T(a)) = ix(7(1))"ix (7(a)) = vix(a- 7(1)) = vic(a)*

shows that v"v*" = i.(7™(1)) is a projection. These projections and the identity
generate i.(c); this and ix (z) = v*i.(x) show that Tx = C*(1,v).

Suppose V € B is a power partial isometry. Since V"V *® > yntly*(ntl)
there is a unital homomorphism 7y : ¢ — B which satisfies my (77(1)) = V"V *".
Define ¢y (z) := V*my (z). We claim that (v, my) is a Toeplitz representation.
Conditions (1.1) and (1.2) for a Toeplitz representation are easy. For (1.3) notice
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that 7y (7(a)) = Vry(a)V*, and recall from [10] that the initial and range
projections of the powers of |/ form a commuting family, so that V*V ¢ m(c)’;
thus

Yv(a-z) = Yy (r(a)x) = Vv (r(a)my (z) = V*Vay(a)V*ry (z)
=M (V' VV*ry(z) = v (a)V*my (x) = v (a)y (z),

as required. Since vy, x v (1.(1)) = Ty (1) =1 and oy x v (v) = Yy (r(1)* =
T (T(1))V = VV*Y — V., ¥y X 1y is the desired map. )

Corollary 5.4, [et Jn denote the truncated shift on C™ (with J, = 0).
Then C*(1, &Jn) is the universal unital C*-algebra generated by a power partial
tsometry.

Proof. If V = €D J», then Theorem 2.1 implies that ¢y, x 7y is faithful. O
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