
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part A 

Faculty of Engineering and Information 
Sciences 

2002 

A classification of intersection type systems A classification of intersection type systems 

Martin W. Bunder 
University of Wollongong, mbunder@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/eispapers 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Bunder, Martin W., "A classification of intersection type systems" (2002). Faculty of Engineering and 
Information Sciences - Papers: Part A. 2650. 
https://ro.uow.edu.au/eispapers/2650 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F2650&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F2650&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F2650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/2650?utm_source=ro.uow.edu.au%2Feispapers%2F2650&utm_medium=PDF&utm_campaign=PDFCoverPages


A classification of intersection type systems A classification of intersection type systems 

Abstract Abstract 
The first system of intersection types. Coppo and Dezani [3], extended simple types to include 
intersections and added intersection introduction and elimination rules ((ΛI ) and (ΛE) ) to the type 
assignment system. The major advantage of these new types was that they were invariant under 
β-equality, later work by Barendregt, Coppo and Dezani [1], extended this to include an (η) rule which gave 
types invariant under βη-reduction. 

Urzyczyn proved in [6] that for both these systems it is undecidable whether a given intersection type is 
empty. Kurata and Takahashi however have shown in [5] that this emptiness problem is decidable for the 
sytem including (η). but without (ΛI). 

The aim of this paper is to classify intersection type systems lacking some of (ΛI), (ΛE) and (η), into 
equivalence classes according to their strength in typing λ-terms and also according to their strength in 
possessing inhabitants. 

This classification is used in a later paper to extend the above (un)decidability results to two of the five 
inhabitation-equivalence classes. This later paper also shows that the systems in two more of these 
classes have decidable inhabitation problems and develops algorithms to find such inhabitants. 

Keywords Keywords 
systems, type, classification, intersection 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Bunder, M. W. (2002). A classification of intersection type systems. Journal of Symbolic Logic, 67 (1), 
353-368. 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/2650 

https://ro.uow.edu.au/eispapers/2650


THE JOURNAL OF SYMBOLIC LOGIC 

Volume 67, Number I, March 2002 

A CLASSIFICATION OF INTERSECTION TYPE SYSTEMS 

M. W BUNDER 

In honour of Roger Hindley on his 60th birthday. 

Abstract. The first system of intersection types, Coppo and Dezani [3], extended simple types to 

include intersections and added intersection introduction and elimination rules ((AI) and (AE)) to the 

type assignment system. The major advantage of these new types was that they were invariant under 

f-equality, later work by Barendregt, Coppo and Dezani [1], extended this to include an (q) rule which 

gave types invariant under fl>-reduction. 

Urzyczyn proved in [6] that for both these systems it is undecidable whether a given intersection type is 

empty. Kurata and Takahashi however have shown in [5] that this emptiness problem is decidable for the 

sytem including (q), but without (AI). 

The aim of this paper is to classify intersection type systems lacking some of (AI), (AE) and (q), into 

equivalence classes according to their strength in typing A-terms and also according to their strength in 

possessing inhabitants. 

This classification is used in a later paper to extend the above (un)decidability results to two of the five 

inhabitation-equivalence classes. This later paper also shows that the systems in two more of these classes 

have decidable inhabitation problems and develops algorithms to find such inhabitants. 

?1. The system AA and subsystems. 

1.1. DEFINITION (Types). 

(i) Type variables a, b, c, . . ., and c, the universal type, are types. 
(ii) If a and /3 are types so are (a -* /3) and (a A /3). 

1.2. DEFINITION (TA (type assignment) statements). If a is a type and M a A- 
term, M: a is a TA-statement. 

1.3. DEFINITION (TA-judgements). If A1 = xl : al, . . Xn : an } is a set of TA- 
statements and AlI: a is a TA-statement then A F- M: a is a TA-judgement. 

1.4. DEFINITION (The type assignment system TAA(A, co) or A A co). 

Axiom scheme (co) F- M : co 

(Var) ifx:alEA, AI-x:a 
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354 M. W BUNDER 

(E) At A-M: a -# A N: a 
A - MN: # 

A,x: a l N: / x FV(A) 
A F) Ax.N:a-*/ 

(FV(z) is the set of free variables of A.) 

lA-M:a AI-M:/ 
(AI) hA-M:aA/3 

A -M: a A AI - M: a A 

(AE) hA M:a AI-M: # 
Al- Ax.Mx: a x X FV(M) 

('1) SA M: a 

1.5. DEFINITION (The systems A(... . )). The system A A co, without co as a type and 
without rule (co) is called AA. 

AA without rules (AE), (C) and (Al) we will call A( ). A( ) with (Al) is called 
A(AI), with (Al) and (q), A(AI, i), etc. 

We will be, in this paper, dealing only with AA and its subsystems that include 
A( ). Van Bakel has shown in [7]: 

1.6. LEMMA. If M is in normal form and J and a are co-free then 

A KHAR M: a X A KA M: a. 

Similar results hold for the subsystems of A A co and AA. 
Some formulations of AA use a partial order < over types. This is defined as 

follows: 

1.7. DEFINITION (?). 

(1) a < a (5) af < l&f < y X a < y. 
(2) aA A < a (6) a < &a? < => a < A'31. 
(3) aA A/ < (7) la < & a1' < => a1 < al / 
(4) (a -/ l) A (a --y) ?< a A y. 

Note that the standard formulation of this has instead of (6): 

(8) a<aAaand 
(9) a<? &a1/<#=z>aAa1</3Afl1. 

(9) can easily be derived using (2), (3), (5) and (6). (8) follows from (1) and (6). 
Conversely (6) follows from (9), (8) and (5). 

The following rule is then valid in AA: 

1.8. RULE (<). 
Ak-M:a a?< 

A F- M : #i 

In fact Hindley [4, Lemma 3.3.4] shows that (Q) in AA is equivalent to (<). 
By 1.7(3) and (4), (AE) also follows from (<). 

For each of the weaker type systems A we will find a weaker form of (<) (called 
(<A)) replacing (C) and/or (AE). Each A determines a subset of the clauses 
(1) to (9). 
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A CLASSIFICATION OF INTERSECTION TYPE SYSTEMS 355 

1.9. DEFINITION. If i1, . . .ik E {1, 2,.. }, 7}, Ak denotes a weaker form of 

< defined by postulates (i1), . (ik). 

<jl?.17-k 
is <il?.1k if {1i .. ik' i1. .1. , j7-k} = {1,2. , 7}. 

For each of the ?i1..k we postulate: 

1.10. RULE (?<i.ik)- 

J z M: a a? <.lk/3 

J F- M: # 

Each of the systems A will be associated with a < ... as follows. 

1.11. DEFINITION (<A). If A is: 

A( ) <A is - ()<-A iS < -46,7 

A(AI, AE) <A iS <-47 A(C) <A is <1,5,7 

A(AI,rC) <A iS <1, 5,6,7 A(AE,)) <A iS <-4,6 

A(Al) <A is <1,5,6 A(AI, AE, C), or 1(AI, <) <A iS <- 

We need one lemma before we can show that each system A satisfies "Rule (<A)" 

1. 12. LEMMA. If A is a type system and x 1 FV(zl) then 

(a) Ji -AM: a 

implies 
z,5X : 3 F-AM : a. 

PROOF. By an easy induction on the derivation of (a). A 

1.13. LEMMA (<A)- If A is type system, a ?A /3 and 

(b) J1 WA M: af 

then 

(c) J WA M:/. 

PROOF. By induction on the derivation of a <A /3. The cases below are numbered 

according to the last clause used in this derivation. 
Case (1). /3 a. Obvious. 
Cases (2) and (3). a /-, A y or y A /3 for some y. As (2) and (3) are included in the 

definition of <A, A includes (AE) so (b) gives (c). 
Case (4). In this case 

a - (al - I) A (al -3 yi) 

and 
a, --* /I A yl. 

As (4) is included in the definition of <A, A has (<) or (AE), (C) and (Al) from 

which (<) is derivable, so in each case (c) can be derived from (b). 
Case (5). If a <A /3 comes from a <A y and y <A /3, both of these have shorter 

derivations, so by the induction hypothesis first: 

J H-A M: y 

and then (c). 

This content downloaded from 130.130.37.84 on Mon, 4 Aug 2014 22:54:05 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


356 M. W BUNDER 

Case (6). In this case a <A y, a <A 3, again with shorter derivations, and/_ y A3. 
As (6) is included in the definition of <A, A has (<) or (Al). The former case is 

obvious, in the latter case we have, by the induction hypothesis: 

A X : M 

and 
A V_ M: : 

and (c) follows by (Al). 
Case (7). In this case 

a y - 

where, by shorter derivations, <?A y and 3 ?A -. 

As (7) is included in the definition of <A, A has (<) or (j). The former case is 
obvious, in the latter case we have using Lemma 1.12: 

A,x : 4 VAAM : y -*3 

By 4 <A y and the induction hypothesis: 

Ax: A XAX: , 

so by (-* E) 
A,x : 4 VA MX :3. 

By 3 <A C and the induction hypothesis 

A, x VA MX :, 

so by (--I1) and (q) we get (c). 

?2. Relations between subsystems of AA. 

2.1. DEFINITION. If A and B are type systems then 

A -B (VA,M,a)((A VAM : a --* A VBBM :a) 

A 2 B -(VA, a) (("M)A VA M) a 3 ( M)A VB M: a) 

A Us -A --s B & B --s A (i = 1, 2) 

A HiB _A HB & P1.A Us lB (i = 1, 2) 
A -<1,2 B -A -Hi B &A <2 B. 

The I equivalence is the standard one, and C the weaker than relation between 
type systems. Systems are r2 equivalent if they have equivalent emptiness problems, 
-<2 is the corresponding "weaker than". 

The lemma below follows from Definition 2.1. 

2.2. LEMMA. If A, B, and C are type systems 

(i) A -- B - A H2 B 
(ii) A I B - A r2 B 

(iii) A <2 B HA I B 
(iv) A H B & -PA r2 B -3 A <1,2 B 

(v A B ->A C ( , 2\ 
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A CLASSIFICATION OF INTERSECTION TYPE SYSTEMS 357 

AA 

A (AE, i) A(AI, AE) 
A 
A(Al, 1) 

A(AE A(Al) 

A) 

FIGURE 1. 

We will see below that it is possible to have A <i B and A r2 B (i.e., -A -<2 B) 
as well as A <2 B and -A iii B. 

In Section 6 below we will prove the following equivalences: 

2.3. THEOREM. 

(i) AA- (AI, AE, J) 1I A(AI, <) (iv) AA 2 A(AI, AE) 

(ii) i(<5) 1al A(AE, q, <) (v) A (A E, Cj) r12 A(AE) 
(iii) AO ) Ai5 (Vi) A(Al) r12 A (Al, i). 

Note that by Lemma 2.2(ii) there are further r2 equivalences. 
Theorems 7.1 and 7.2 below imply the inequivalence results given in the next two 

theorems. 

2.4. THEOREM. Type systems are related as given in Figure 1 where a downward 
line from a system B to a system A represents A < B. Unconnected systems are 
independent. 

2.5. THEOREM. Type systems are related as in Figure 2 where a downward line 
represents A -2 B. Unconnected systems are independent. 

A later paper will show that the inhabitation problem for systems -2 equivalent 
to AA is undecidable and decidable for systems r2 to A(<). This follows from the 
2 equivalences in Theorem 2.3 and the work of Urzyczyn [6] and Kurata and 

Takahashi [5]. New work will show that the systems -2 equivalent to A( ) and 
A(AE) also have a decidable inhabitation problem. Algorithms will be supplied to 
find such inhabitants. We suspect, but have not yet proved, that the inhabitation 
problem for systems r2 equivalent to A(AI) is also decidable. 

2.6. NOTE. In AA we have: 

A I M : a A A FM :3A a 

and 
A F- M: a A (/ A y) A A F M: (a A fl) A y, 

so that all bracketings and orderings of the aoi's in al A ... A al, are equal. 
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358 M. W BUNDER 

)HA 

A(AE) A(AI) 

AO) 

FIGURE 2. 

In systems that do not have both (AI) and (AE) the commutative and associative 
laws do not hold. In these systems expressions such as A F- M: a I A ... A an, M: 
al A ... A an C A, or y- a, A ... A an will be interpreted as having a particular 
bracketing and ordering of a,,... , an, which will be clear from the context. 

Before we can examine the relations between the various systems we need a large 
number of preliminary results. 

?3. Condensing and replacement lemmas. 
3.1. CONDENSING LEMMA. If A is any type system 

(d) A,x: aF -A M::3 

and x V FV(M), then, by a derivation no longer than that of (d) 

A HA M: /3. 

PROOF. By an easy induction on the derivation of (d). 
3.2. LEMMA. If A is any type theory and 

(e) AF-A N:/ 

then 

(i) y e FV(N) y eFV(J) 
(ii) y e BV(N) y FV(A) 

(BV(N) is the set of bound variables of N). 
PROOF. By induction on the derivation of (e). A 
3.3. THE REPLACEMENT LEMMA. If A is a type system and 

(f) A,x: a -AM: 

and 
A HA N: a 

then 

(g) A4 HA [N/x]M /. 

This content downloaded from 130.130.37.84 on Mon, 4 Aug 2014 22:54:05 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


A CLASSIFICATION OF INTERSECTION TYPE SYSTEMS 359 

PROOF. By induction on the derivation of (f). Most cases are simple (the (Var) 

case uses Lemma 3.1). We will consider the cases where (f) is obtained by (- I) 

and (q). 
Case (-> I). (f) comes by (-* I) from: 

l, X a, y: y FA PK 

where _y - 3 and M -y.P. 

By the induction hypothesis 

(h) , Y y y-A [N/x]P 6. 

By Lemma 3.2 applied to (f), y , FV(zl) and so y V FV(N) and Ay.[N/x]P- 

[Nlx]Ay.P. 
By (-) I), therefore, (g) follows from (h). 

Case (q). (f) comes by (q) from 

zl,x : a F-A Ay.My : / 

where y V FV(M). 
Again by Lemma 3.2, y V FV(N) and so 

A F-A [N/x]Ay.My: /, 

obtained by the induction hypothesis, is 

A F-A Ay.([N/x]M)y: / 

which gives (g) by (q). 

?4. Lemmas concerning < ... Lemma 13 of [2] gives us: 

4.1. LEMMA. a < # /4 Oa is some conjunction of a I ..a. ., an - (al y)* ... (am 

Yin), is some conjunction of bl . ... bk, (3I -* i), ... . . 
where: 

{b15... 5bk} C {ai,... an} 

and 

(Vi)(1 < i <? * (EIi. IrC, * G{1. ,m}) 

ail A ... A ajr > ?i & yjl A ... A Yir < ai). 

Here we need some special cases of this. 

4.2. LEMMA. 

(i) aA <? 3--y, 

a = a, A *.. A ap A (al - yl) A ..A (aq - Yq) 

&* = ap+1 A ... A an A (aq+l 3-*yq+l) A ... A (am 3r Ynm) 

& (3j,. ., 5ji{1. . . ,m})j1 A ... A aijr 
> ? & yjl A ... A yj, < ). 

(ii) a -) t ?< - )< <al &/3 <y. 

We require some similar results for weaker forms of <. 

4.3. LEMMA. 
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360 M W BUNDER 

(iii) a ?1,5,6,7p )y X a =_ a ) T & T <1,5,6,7 Y & f ?1,5,6,7 a 

(iv) a _<1,5,6 A a A .*. A a. 
MV af _<-4,6,7 AX(geyl ... ry,)a=_ yj A ... A fl A * A ~n. 

(vi) ) <_f4,7 y a y &/,-. 
(Vii) af <_ 4,7 Y a USX af l A ... A (y I A * * A an- 

PROOF. [Xz] By induction on the derivation of a < /3. [. ] Obvious. -1 

?5. Cut elimination theorems and generation lemmas. 

5.1. DEFINITION (Cuts and cut formulas). A cut is a sequence of proof steps con- 
sisting of a (Al) or (-* I) step, zero or more (<A) or (C) steps and a (AE) or (-* E) 
step. The type to which the elimination rule is applied is called the cut formula. Cuts 

are called -* or A cuts if they have no (<A) or (C) steps otherwise they are A<A, 

A<-, --<A, -< -*)"*, or AqA cuts, etc., depending on the rules involved. 

The longest cut formula in a derivation is called a maximal cut formula and the 

cut that contains it a maximal cut. 

5.2. CUT ELIMINATION THEOREM. If A is a type theory with (Var), (-3 E), (-3 I) 

any of (AI), (AE) and (/) and 

(i) A k-AM:a 

then there is a derivation with no cut formulas of 

A FA M1: a 

where M = M1. 

PROOF. Consider the derivations of (i) that have the shortest maximal cut formu- 

las. Of these consider the ones that have the fewest maximal cut formulas and of 

these consider the shortest derivations. 

Now consider the first maximal cut (if any) in a shortest derivation. 

Case 1. The derivation has a maximal -* cut of the form: 

Di 

D2 A,x:/3VAP:Y 
A FA N A V A Ax.P: Y - 

(-E) A-AN/ (-) 
A VWA (Ax.P)N: y 

This can be replaced, by the Replacement Lemma (3.3) by a derivation which 

replaces each use of (Var) of the form: 

A,X: /3 VAX: /3 

by 

D2 

A VA N: /3, 
removes all x : /3's from the left of the VA and replaces each x to the right of the HA, 

by N giving a new D', replacing D1 and: 

DA 

A HA [Nlx]P : W. 
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A CLASSIFICATION OF INTERSECTION TYPE SYSTEMS 361 

Note that y may now have become a cut formula and also /3 above, but these are 
shorter than the eliminated maximal cut formula /3 -- a. 

Thus either the only maximal cut formula is reduced in length or the number of 
cut formulas of maximal length has been reduced by one. This is impossible, so 
none of the maximal cuts can be -* cuts. 
Case 2. The derivation has a maximal At - cut of the form: 

Di 

A , X: A A (AXI.(AX2 ... (Axn.Qxn) . )xi))x: y 

X4 FA AX. (AX1 .(AX1 .(AX2( ...* (AX, * QXn ) ... ) X1) )X Y33 

(E1) 4-AVAN:/ A AQ/-y 
A F-A QN : y 

where x,x , . , FV(Q). 
This can be replaced exactly as in Case 1 giving 

DI 

X A KX *(AX2*(... (xX. Qx,) .. )xl))N y 

where AXI (X2*(' - (Ax, *Qx,) ... )x1))N = QN. 
Again there can be no such maximal cut. 

Case 3. The derivation has a maximal A A - (or if n = 0, a A-) cut of the form: 

I FA iAX * * * xn.QxI ... Xn: a XF-A AXI...Xn.QX1 ... X:3 

(AI)l( )X * **A A xl...XnfQxl -xfn :a A/ 

(AE) A -A Q a A 
A4 F-A Q : a 

(or A F- Q: /). This can be replaced by: 

X 4 FA AXI .. *n * xQX1 . .. Xn : a 
AFHAQ: a 

(or /3). a may now be a cut formula, but a larger maximal cut has been eliminated, 
which, as is shown above, is impossible. 

Hence the derivation described has no cuts at all. 

5.3. GENERATION LEMMA FOR SYSTEMS WITHOUT AI. If A is a type system that has 
at least (Var), (--> I) and (- E) but not (AI) and 

dI) iF-AM:a 

then one of: 

(i M - X, (::]#)X: ,G e & ,# <A ax. 
(ii) M _ PQ, (OA Y) W-A P : y - ,A, F-A Q: y &/3 <A a where the derivations 

together are shorter than that of (j) . 
(iii) M -Ax.N, ('/3, y)A, x: /3 FA N : y & /3 -y -<A a where the derivation is 

shorter than that of (j). 
PROOF. By induction on the derivation of (j). 

Case 1. (j) comes by (Var). Then a / 3t, so by (1) /3 <A a, i.e., (i) holds. 
Case 2. (j) comes by (- E) from A F-A P: y -* a and A F-A Q : y, so (ii) holds. 
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Case 3. (j) comes by (- I) from A, x / F-A N : y where al y, then 
(iii) holds. 
Case 4. () comes by (AE) from A F-A M: a A u or A F-A M: u A a, for some u. 
By Definition 1.11, <A includes (2) and (3) so u A a <A a and a A u <A a. (i), 
(ii) or (iii) now holds, depending on the form of M by the induction hypothesis 
and (5). 
Case 5. (1) comes by (q) from A F-A Ax.Mx: a and x X FV(M). Then by the 
induction hypothesis (iii), 

AX : F-A Mx: 

where 4 - < ?A a, and by induction hypothesis (ii) and (i): 

(k) A,x:VA M:- *z 

and 
A, X: VA X: C, 

where the derivations, together, are shorter than that of (g), <?A a and - ?A - 

By Definition 1.11 as A has (q), <A has (5) and (7) so a - - ?A - - <?A a. As 
x V FV(M) by (k) we have 

(1) A FA M: a - T 

by a derivation no longer than that of (k). By the induction hypothesis applied 
to (1), (i), (ii) or (iii) now holds depending on the form of M. - 

Note that by Lemma 1.13 (Rule (<A)) (i), (ii) and (iii) also imply (j). 

5.4. COROLLARY. If A is a type system that has (Var), (-* I), ( E) and (r/), but 
not (AI) and 

A VA Xx.Mx a 

where x , FV(M), then by a deduction that is shorter, 

A4 VA M u --*>T 

where a ?cA -a. 
Also.A VA M : a. 
PROOF. Case 5 of the proof of Lemma 5.3 and Lemma 1.13. - 

5.5. COROLLARY. A VA M a X A V2(<?A) M : a. 

PROOF. [m] By Lemma 1.13. [=X] By induction on the derivation of (j). 
Each case is trivial except the one where the last step in the derivation of (I) is 

by (q). In this case we have by a derivation shorter than that of (j): 

A VA Ax.Mx : a 

and so by Corollary 5.4 (as in the proof of Case 5 of Lemma 5.3) by a derivation 
that is not longer we have: 

A VA M u T 

where a -- -c <A a. Now by the induction hypothesis we have 

'A V(< M uM:g -- 

and so by (<A) 

:A V (<A) M: . a 
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5.6. GENERATION LEMMA FOR SYSTEMS CONTAINING A(AI). If A is a type 
system that has at least (Var), (-* I), (-> E) and (AI) and 

(m) A VA M : ac 

then one of: 

(i) M=_x&(3,Bl)x :,BEAS&fl<aa 
(ii) M -- PQ & (]/hyi,./. &,yM)(Vi)(1 < i < n -* A VA P /i -3 i, 

A VAQ: /i) by shorter derivations than that of (m), and 

Y1 A AYn -<A a- 

(iii) M _ Ax.N & (/3, y1, .. . finYn)(ViNOl < i < n -3 A,x: /i VANN: yi) bya 
shorter derivation than that of (m) and 

(/#I )-- yj) A ..A (fln 3-- Yn) <_A a - 

PROOF. As for Lemma 5.3 except for [=X] Cases 5 and an additional Case 7 for 
AI. <A is <1,5,6, <-4,7, <1,5,6,7 or <. 
Case 5. (m) comes by (i) from y , FV(M) and 

A F-A Ay.My a. 

In this case we note that ?A is <1,567 or <, so each <A has at least (1), (5), 

(6) and (7). 
Then, by the induction hypothesis (iii) by a shorter derivation, 

(3d1, C1, , k,Nk)(Vi)(I < i < k 

(n) A, Y : di FA My : Ci 

& (4j --> CI) A ..A (4k - S) A a)- 

By (n) and the induction hypothesis (ii) and (i) we have for each i (1 < i < n): 

(0ioi1 , til 1 . aimiTimi)(V})(1 <? < m 

(o) A,y: i _A M: 9ij - Tij 

A, : ji VA Y: vij) 

by shorter deductions than that of (n), where ril A ... A* *im. <A Si and for each j, 
Xi <A 9ij- 

By Lemma 3.1 we have, by a deduction no longer than that of (o): 

(p) A FA M : 9ij --- -Cij- 

Case 5 (i). If M x, there is, by the induction hypothesis (i), a /I such that x / A 
and/I <A 9ij -Tij- 

If <A is <1,5,6,7 by Lemma 4.3(iii) we have /I --B /I2, /I2 <A Tij and ij <?A /i, 

for each i and j. By (6) we obtain /2 <A -ril A ... A Tim. <A (i and by (5) Xi <A /I. 

So by (7) /Ii -,2 </ A Xi -( Ci and by (6) I-I '/ - /2 <A (4j -3 C) A * ...* (4 k 

Sk) <A a - 
If <A is <, we have by (7) /3 <A Uij 3Tij -<A A ----* -3ij. By (6) / ?A (4 3 

cil) A .. A (i -> jii) and by (4), (5) and (9) I <?A ji -> Tji A ... A n. Now 
by (7) # <-A pi --- Ci and by (6) # -<A (4i 3-- CI) A ..A (4k 3-- Sk <_ - 
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Case 5(ii). If M -PQ, there are, by the induction hypothesis (ii) for each i and j 
flI1,yi... . Yn such that 

A VA P / p -y 

A Q: Q p 

by derivations shorter than that of (p) and 

Y1A A .. Yn -A 9ij 3 TiI- 

If <A is <1,5,6,7 by Lemma 4.3(ii) and (iii) this requires n -1 and yj= #I-> ,B2 and 
we obtain, as in Case 5 (i), 

Y1 A A. Yn Y1 P -1 ' /J2 <-A a- 

Similarly for <. 
Case 5(iii). If M -Ax.N, there are, by the induction hypothesis (iii) PIu, y,.... 
f3n, Yn such that for each i and j and each p, 1 < p < n, 

A,x : VAp FAN: yp 
where (#i- Yl) A .A (/Bn --> Yn) ?A c9ij -' Tij. As before if <A iS <1,5,6,7 this 
requires n 1 and 

(/1 ' y1)A A. A (fln Yn) =I ---i YI <A a. 

Similarly for <. 
Case 7. If (m) comes by (AI) from 

(q) A VM:M 

and 

(r) A FA M: 

where a o- A . 

Case 7(i). If M x, x E A, /# <A 4 and ?<A C so by (6) (which is in each A), 

#i <-A 4 C =- a. 
Case 7(ii). If M = PQ we have /I, yj...m.y, Ym. , ,Bp, yp suchthatfor 1 < i < p 

A VA P: Pi - Yi 

and 
A VA Q: Pi 

by derivations shorter than that of (q) and/or (r) y A .. A y,, ?A 4, and Ym+l A 
*A A yp <A - 

If A includes (AE), <A has (6) and (9) and we have 

y1A.. Ayp A AA -a. 

If A includes (q), but not (AE), <A is <1,5,6,7 then by Lemma 4.3(ii), if m > 1 

= - (y, A.. A\ Ym) /\ ...\ (Y1 A\ A Ym). 

If p > m + 1 

-(ymnl A A yp) A A A (Ym+l A .. A yp). 

Thus (y, A .. Ym) A /\ (Y1 /\ A Ym) A (Ym+l A \ yp) A .. (Ym+l A .. yp)- 
ae <A a.- If there are r (Yi A ... A ym)'s and s (ym+l A.. A yp)'s, the n in part (ii) of 
the lemma is rm + sp. 
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If m = I we have y1 <A X, and so by (7) #I > Y?A /h-i Xand by Lemma 1. 13, 

zl WA P: IA - 

Similarly if m + 1 = p we have: 

A K : P 3 -, 

so in these cases we have (ii), but with 4 replacing yl, C replacing y, or both. 
If A has neither (i) nor (AE), <A is <1,5,6 and we have (even if m 1 or 

m + 1 = p), by Lemma 4.3(iv), 4 and C as in the m > 1 case for A with ( We 
again have (ii) with n = rm + sp. 
Case 7(iii). If M -Ax.N we have pI,, . /.. , . . . f.. , yn such that for 1 < 
i <n 

X,x : pi NN:y 

by derivations shorter than that of (q) and/or (r), 

(PIt yj) A ..A (Alm 3-- ym) <A4 C 
(flm+r 3 Ym+i) A ... A (fin > yn) <A 4Y 

We have as above: 

(#I - AY1) A A (I n -- n) <A C-A 

5.7. COROLLARY. A WA M :a X A V X(AI, <A)M: a- 

PROOF. As for Corollary 5.5. A 

?6. Proof of the equivalence theorems (Theorem 2.3). Each of (i) to (iii) fol- 
lows from Definition 1.11 and either Corollary 5.5 or 5.7 and in the case of (i) 
Lemma 4.3(i). (A(AI, AE, A) 1 L(AI, AE, <) was first proved in Hindley [4, 
Lemma 3.3.4].) 
(v) and (vi). We show that for an arbitrary system A, A 2 A + (C). 

We prove, by induction on the proof of: 

(s) a FA+(?() N a 

that 

(t) (]M)A VA M a 

and M >c N. 
Each case is simple. We show the (-* E) and (%) cases. 
If (s) is obtained by (-* E) from 

A 
FA+(q) 

P: /- a 

and 

A VA+(,) Q / 

where N -PQ, we have by the induction hypothesis a P' and Q1, such that: 

A VA PI : P -* a 
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and 

A AQ1: Q 

and P'Q' >17 PQ. 

We then have (t) with M _ P1 Q1. 
If (s) is obtained by (q) from: 

A 
VA+(q) )X.Nx: a and x a FV(N) 

we have (t) by the induction hypothesis, where M >, Ax.Nx >, N. 
(iv). By (iii) and Lemma 2.2(ii) we have A(AI, AE, C )2 A(AI, <). The result then 
follows from (v). 

?7. Inequivalences of systems. 
7.1. THEOREM. 

(i) A (AI) --1 I A(AI,) (vi) A (AI,) H1,2 A(AI, <) 
(ii) A(AI, AE) ---< A(AI, <) (vii) A(AE) ---1,2 A(AI, AE) 

(iii) A (AE) H<1 IA(AE, 1) (viii) A(AE, 7) -<1,2 A(<) 
(iv) A(AI) ---1,2 A(AI, AE) (ix AO ) H<1,2 A(AI) 
(V) A( ) <1,2 A(AE) (X) A(<) -1,2 A(AI, <). 
PROOF. In each of (i) to (iii) A -1 B is obvious. We show each A 61 B by giving 

a judgement that clearly holds for B but not for A by Generation Lemma 5.3 or 5.6 
and the appropriate part of Lemma 4.3. 

(i) x : a a -b F-x : a b. 
(ii) x: (a -* b) A (a -* c) x : a -* b Ac. 

(iii) x: b - c A d V x: a A b - c. 

In each case of (iv) to (x) A H1,2 B is obvious. By Lemma 2.2(iv) it is enough to 
prove - (A /2 B) and for this it is enough to give an example of an M such that 
A KB M: a and to prove (EM)J VA M: a. 
(iv)-(v). 

x : a A b KB X a 

where B is A(AI, AE), or A(AE). 
Consider a derivation of 

x : a A b VA M a, 

where A is A(AI) or A( ), that has no cuts and that is of minimal length. The last 
steps in the derivation must be in the form: 

( E) x:aAbVAPl:al x:aAbVAN: la I af --*a 
x: a Ab VANPI: a2 - . a, - a 

x: a A b VA P:n : 

(-,E) x:aAbVANPl P,:a 

whereNPI...P-M and where x: a A b N: a (a 1 n --->a) is 
not obtained by (- E). 

If this is obtained by (Var), a A b-a1 ' a a,, - a, which is impossible. 
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If this is obtained by (AI) from x: a A b VA N: / and x: a A b A N: y, we 
have a /- A y, which is also impossible, so x : a A b PA M: a cannot be derived. 
(vi)-(viii). 

x :a A b -B x : b A a 

where B is A(AI, <), A(<), or A(AI, AE). 
As above 

x : a A b VA M : b A a 
must have a cut free proof where A is A(AI, j), A(AE) or A(AE, . This means 
( E) and (AE) steps from a judgement: 

x : a A b VA N a 

where this comes by (Var). 
This requires a A b- a which is impossible. 

(ix)-(x) . 
VB1x.x (a -a) A (b b), 

where B is A(AI), or A(AI, <). If 

HA AX.X (a a) A (b b), 

where A is A( ) or A(<), by Generation Lemma 5.3(iii) we have a ,B and y such that: 

X: ,B VA X:Y 

and 
/3 y <A (a -* a) A (b -> b). 

If A is A( ), <A is-, so this is impossible. 
If A is A(<), <A is <, so we have: 

, y < a )a 

and 
/ y < b ,b. 

Now by Lemma 4.2(ii), a < /B, y < a, b < /B and y < b. As we also have/, < y by 
Lemma 5.3(i), we obtain a < b which is impossible by Lemma 4.1. - 

7.2. THEOREM. 

(i) A(<), A(AE, ) A(AI, AE), A(AI, il), A(AI ) 
(ii) A(AI, il) 731 A(AI, AE) . 
(iii) A(\I ), A(AI, <) i~2 A(<), A(AE). 
(iv) A(AE), A(<), A(AI, <) i2 )(AI). 
(v) A(AI ) i~2 A(<-) 

(vi) X(AE), A(<) Z2 {(AI ). 
PROOF. As for Theorem 7.1. 

(i) x : a -* c x : a A b - c holds for A(<) and A(AE, q), but not for A(AI, AE) 
or A(AI, '), (and hence not for the other weaker systems) by Generation Lemma 5.6 
and Lemma 4.3 (iii) and (vi). 

(ii) x: a -* b P x : a A b -> b holds for A(AI, 1), but not for A(AI, AE) by 
Lemma 4.3(vi). 

(iii) As for Theorem 7.1 (ix)-(x). 
(iv) As for Theorem 7.1 (iv)-(v). 
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368 M. W BUNDER 

(v) As for Theorem 7.1 (ix)-(x). 
(vi) As for Theorem 7.1 (iv)-(v). 
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