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Large amplitude nematicon propagation in a liquid crystal with local response

Abstract

The evolution of polarized light in a nematic liquid crystal whose directors have a local response to
reorienta-tion by the light is analyzed for arbitrary input light power. Approximate equations describing
this evolution are derived based on a suitable trial function in a Lagrangian formulation of the basic
equations governing the electric fields involved. It is shown that the nonlinearity of the material response
is responsible for the forma-tion of solitons, so-called nematicons, by saturating the nonlinearity of the
governing nonlinear Schrodinger equation. Therefore in the local material response limit, solitons are
formed due to the nonlinear saturation behavior. It is finally shown that the solutions of the derived
approximate equations for nematicon evolution are in excellent agreement with numerical solutions of
the full nematicon equations in the local regime.
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1. INTRODUCTION
In the present work, the propaga
ent polarized light, so-called nematicons,
uid crystals with a local or Kerr response t
is considered. The propagation of light in liguid crystals
with local response has been considered by Khoo' in sev-
eral contexts. In particular, the nonlinear Schrodinger
equation, which is valid for local response of a medium,
has been derived for 5CB-type liquid crystals.z Also, equa-
tions for stimulated orientational scattering in liquid
crystals with local response have been derived by Sarkis-
sian et wl.* Finally, the theoretical existence of nematicons
in liquid crystals with a Kerr response 18 pointed out by
Conti et al.," these nematicons are denoted as T solitons.
In Garcia Reimbert et al.’® the propagation_of nemati-
cons in a nematic with a local or Kerr response was stud-
ied in the limit of a low power input optical field using 2
nonlinear Schrodinger (NLS) equation modified by 2
higher-order nonlinearity. Modulation equations for the
evolution of a nematicon, which included the effect of
shed dispersive radiation, were derived and their solu-
tions were found to be in good agreement with full nu-
merical solutions of the governing nematicon equations.
However, as the power of the input optical field was in-
creased, the modulation equations lost accuracy. There-
fore a description of nematicon evolution in 2 Kerr-like
nematic is nceded that is valid for arbitrary optical power.
This is the subject of the present work. In detail, a satu-

tion of solitons of coher-
in nematic lig-
0 reorientation

()74()-3224/06/122551-8/$1 5.00

rable NLS equation is studied b i

n'umerically. To enable the appro;?xfi};tzsr}rllrggé?;ﬁgny and
mon“s for. the nematicon evolution to be derived, th ¥ squa-
an equlvglent Gaussian” is introduced This, Sivale o
Gaus§1an is needed in order to evaluate ;che satiqu:'lalent
fgcts in an averaged Lagrangian. The resultin ra l(:in Tf-
tion equations are found to have solutions ing o 1u o
agx;};e.ment wx.th numerical solutions. excellent

is paper is organized as : i

in detail the. nematicon equag)ifsw :ns Z(iigrr;i formulatgs
ous result§ in this area. Section 3 develops tfllzes e,
tion equatl.ons using an averaged Lagrang?an edml?ldma“
of: the gqulvalent Gaussian. This section als " f tes o
discussion of the modification of the modulati o oo ud?s .
due to shed dispersive radiation. Section 410n cauations
sults, and we present our conclusions in Sect?sssgnts I'e'

2. NEMATICON EQU
RESPONSE QUATIONS FOR LOCAL

Let us consider coherent : .
through a nematicﬁliQuid-crgsgifllez(:) :sg }:rtl grop'agatin%
ar.ld Assanto et al.” The basic configuration ,ODE et al..
F}g. 1: The a?ces are orientated such that th is shown in
d‘lrectlon of light propagation, with the x ax'e z axis is the
tion of the electric field of the light. The nels in t}.le direc-
to be anchored at the cell walls and the cellnll.a t1c is taken
e VL. The director angle ¢ of the nematic mol
Ol-

© 2006 Optical Society of America
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Fig. 1. (Color online) Schematic of a liquid-crystal cell with propagating polarized light beam.

ecule is measured from the z axis in the x,z plane. To
overcome the Freédericksz threshold, a static electric field
is applied parallel to the x axis in order to pretilt the nem-
atic. In this manner low power light can self-focus since
the total electric field will be above the Freédericksz

threshold. A typical distribution of the pretilt angle b is
shown in Fig. 1. Note that the director is horizontal at the
boundary, which is not illustrated. In the absence of the
optical field, = 0.

As in Conti ef al.* and Assanto et al., the slowly vary-
ing envelope E of the electric field satisfies the Foch—
Leontovich equation ~

oE 1
iE H -2—V2E - cos(2¢)E =0. (1)

The equation for the optical axis ¢ is obtained from the
extremization of the free energy of the nematic. This free
energy contains the elastic energy and dipole energy due
to the interaction between the molecules and the electric
fields. This equation is given in Conti et al.* and in non-
dimensional form is

w2 + 2p sin(2¢) + 2|E|? sin(2¢) = 0, (2)

with ¢=0 at the boundaries of the cell. The parameter p is
related to the strength of the external static electric field.
While the nematicon equations (1) and (2) could now be
solved to study the propagation of a nematicon, a further
simplification can be made by explicitly invoking the
pretilt background.

When the optical field E=0, the director angle satisfies

™

Po
Mot 2p sin(2¢) =0, ¢(L)=¢(-L)=0. (3)

Depending on the external field 2p, the profile of the

pretilt angle 6 can be adjusted.*” Moreover it is possible
to adjust p so that ¢>7/4 in the central region of the cell
since for large p the director axis away from the bound-
aries is aligned with the field with ¢=7/ 2.7 In the center
of the cell the director angle is then decomposed as ¢

=0(x)+6(x,y), so that the director equation (2) takes the
exact form

W20+ vV20 + 2p sin(26)cos(26) + 2p cos(20)sin(26)
+2|E|? sin(20)cos(20) + 2|E[* cos(20)sin(26) = 0. (4)

The external electric field is now adjusted to have a

pretilt @(x) above 7/4, but close to it, in order to maximize
the self-focusing response. In this case 6 can be taken to
be small, so that the director equation (4) becomes

W26 + 2p cos(20)sin(20) + 2|E[? sin(26)cos(26) = 0. (5)

The slowly varying functions cos(2 @) and sin(2é) are Now
replaced by typical values in the center of the cell. It

should be noted that it is important that cos(2 8) <0 since

the external field is chosen to result in 6> /4, but close
to 7/4, in the center of the cell.
After rescaling the director equation (5) takes the form

vV20 - q sin(26) + 2|E|? cos(26) = 0. (6)

In a similar manner, the Foch-Leontovich equation (1)
takes the form

) o
— + —V?E + sin(: =0.
i = + Z +sin(20)E =0 (7)

It is noted that after another rescaling and linearization,
the nematicon equations (6) and (7) are the equations
studied by Conti et al.* and Assanto and co-workers.®
The nematicon equations (6) and (7) describe the full
range of behavior of a liquid crystal from Kerr-like with
»—0 to nonlocal crystals with v— o, In the local, Kerr
limit, nonlinearity plays the dominant role in preventing
the collapse of a nematicon, as mentioned in Conti et alt

Moreover, since ¢ is related to c0s(26), which is small,
large nonlinear effects are expected, even for moderate

“values of the power |E|? of the input light.

Therefore taking » small, we obtain to leading order

2|EP
tan 260 =

(8)
q

Then eliminating @ from the electric field Equation (7), we
have
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assuming radially symmetric nematicons. The solitary
wave solutions of this saturating NLS equation are ?he T
solitons of Conti et al.? In this work the evolution of input
beams into 7T solitons will be studied.

3. MODULATION EQUATIONS AND
RADIATION EFFECTS

Approximate solutions of the saturating NLS equation 'for
a nematicon will now be obtained usingrthe Lagrangian
based method of Garcia Reimbert et al.’ and Kath aqd
Smyth.8 The initial condition used in the present work 18
for a solitonlike pulse at z=0, so that

.
E(r,0) = A sech W (10)

The saturating NLS equation (9) has the Lagrangian
L=irE'E,-EE) -rlE,[*+rlg*+ 4Ef 2 -rg, AD

where the superscript ' denotes the complex COI'IJugat.e
and it has been assumed that the electric field £ 1s radi-
ally symmetric. .

To obtain approximate equations describing the evolug
tion of a nematicon, the method of Garcia Reimbert ?t al.
and Kath and Smyth® will be used, whereby 2 suitable
trial function for E will be substituted into the Lag’fang(i
jan |[Eq. (1D} and the Lagrangian will then be aveyage
by integrating in » from 0 to >=. It was found in Gareia Re-
imbert ef al.” that a trial function with a sech proﬁle ga"g
approximate equations whose solutions were in go0
agreement with full numerical solutions for low power op-
tical fields. For this reason, a suitable trial function for
the electric field E is

(12)

o .
E =a sech —e¢'" +ige"’.
w

The second term in this trial function accounts for the low
wavenumber, low phase-speed radiation shed by thl‘;
evolving pulse, which forms a circular shelf (or pedesta
under it.” This shelf is assumed to form in the circular ré-
gion r<1.

In principle the trial function
tuted into the Lagrangian {(Eq. {
aged by integrating in r from 0 to = to obtain tbe ?Veragﬁd
Lagrangian,™® from which variational equations for (tife
nematicon parameters can be obtained. Therehls one ;l-
ficulty which arises in this averaging, which is that the
integral

. ” 4r|E*
. 2 4E4_ )d.=f %
f() r(yg*+4lE|* —q)dr - \:q2+4]E\4

[Eq. (12)] 1s now substi-
11)] and the result aver-

dr, (13)
(

cannot be evaluated exactly. In principle, this integral
could be evaluated numerically, but this would defeat th.e
purpose of using a trial function to obtain simple app'r_OXl'
mate equations describing the evolution of the ngmamcon
as the integral is not a fixed number, but a function of a.

Vol. 23, No. 12/December 2006/J. Opt. Soc. Am. B 2553

One simple way around this difficulty is to replace the
sech function in this integral by an equivalent Gaussian,
which is meant to replace

r
E =asech — (14)
w

by
E = age™ /" (15)

in the integral. The scaling parameters « and 8 are then
chosen by requiring that the resulting variational equa-
tions are the same of those of Garcia Reimbert et al’ in
the small E limit considered in that work. It is noted that
there are other possible ways in which to determine the
scaling parameters. The method used here has the benefit
that it gives an averaged Lagrangian that, in the small
amplitude limit, is the same as that of Garcia Riembert et
al. ,5 which gave excellent agreement with numerical so-
lutions for small amplitude initial conditions. Further-
more this choice of parameters gives very good agreement
with numerical solutions for arbitrary amplitude initial
conditions. Other matchings, such as to total power and
the second moment, could be used, giving different values
of @ and B. However, due to good agreement with numeri-
cal solutions, we shall match to the low amplitude La-
grangian. The use of a Gaussian to evaluate the integral
(13) suggests that a Gaussian rather than a sech should
be used for the trial function. However if a Gaussian ini-
tial condition is used in numerical solutions of the nem-
aticon equations (7) and (6), or even the reduced equation
(9), it is found that the initial condition breaks up into
multiple nematicons for the O(1) amplitudes used in the
present work and that there is a small initial amplitude
window in which only a single nematicon is formed. We
therefore study initial conditions of the form (10) that do
not readily split into multiple nematicons for the wide
range of initial parameters used in the present work.

Upon substituting the trial function [Eq. (12)] into the
Lagrangian {Eq. (11)] and averaging by integrating in r
from 0 to =, the averaged Lagrangian

£ =-2@%w >+ Agh)o’ - 2aw?lg' + 2gwlia’ + dawgl,w’
S S 40a?
_a1+1qﬂw 1+7—1

1 2,2 2

1+ 1+

is obtained upon using the approximation (15) for the in-
tegral (13). Here

1 )
A= 2'l ) (17
and the integrals I, Iy, and I, are

’ 2 2 1 1
I=| xsech®xtanh®xdx=-1n2+ —, (18)
0 3 6
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11=J x sech xdx = 2C, . (19)
0

Izzf x sech®xdx =In 2, (20)
0

where C is the Catalan constant C=0.915965594.. Lo

To obtain the scaling parameters @ and f3, the averaged
Lagrangian |[Eq. (16)] is linearized for small electric field
amplitude a, to give

L = - 2(a2w?l, + AgDo’ - 2aw’lg’ + 2gw?la’ + 4awgl w’
a432a4w2 a8ﬁ2a8w2

-a?l + - Fa— (21)
4q 8q'

Now the averaged Lagrangian of Garcia Reimbert et al®
was derived in the limit of small electric field amplitude
and was

L= - 20w, + Ag)o’ - 2aw?lg’ + 28w la’ + 4dawglw’

2 2
-l + —La'w? - <la’w?, (22)
. g
where
z 2 1
I,= | xsechxdx=—=-In2--, (23)
. 3776
” 16 19
Ig= | xsech®xdx=—In2-—. (24)
. 35 105

Matching these averaged Lagrangians then gives

oI, o4l
a*=— and p*=—. (25)
14 18 N

The amplitude scaling parameter =0.9794..., while the
width scaling parameter 8=1.6027.... So the amplitude of
the equivalent Gaussian [Eq. (15)] is basically the same
as that of the original sech [Eq. (14)], while there is a sig-
nificant difference in width between these two profiles.
The large change in the width to the equivalent Gaussian
is the reason for the ready formation of multiple nemati-
cons if a Gaussian initial condition were used.

The approximate equations describing the evolution of
the nematicon can now be obtained as variational equa-
tions of this averaged Lagrangian. These variational

equations are N

d
a—z—(azwzlz +AgH =0, (26)

d
a-(awzl,) = Aga’, (27)
v4

dg Ia qﬁz 2
;+—1In

L—=5-3 A
dz 2w 8a 4uo'a
1+ /14—
q*

(28)

Garcia Reimbert et al.

do I qgp 2
12_’" = "“2‘ "‘z’ 1§
dz 8a 4ata’
1+ /1+—5
q-
ot Boa?
+ . {29)

data?
291 1+ 1+ 5
q

The first of these variational equations [Eq. (26)] is the so-
called mass conservation equation, as it describes mass
conservation in the application of the NLS equation to
fluid mechanics.' In addition to this mass conservation
equation, there is also an energy conservation equation
that arises from Néther’s theorem as the Lagrangian {Eq.
(11)} is invariant under shifts of the timelike variable z.
Néther’s theorem gives that the integrated energy conser-
vation equation is

dH _d (7 (B - g%+ AEF
—=—1 rlE " - \¢*+4|E|* +q]dr=0. {30
&), = \q* + 4E|* + q]dr
Again using the approximation (15) for the second inte-
gral in the energy, the conserved energy is

2

JE S 4o'tat
H =a?l - —qB*w? 1+ -1
4 q

2

1
-—qpwin ———————.
4 4a'a?
1+ 1+ 5
q

The energy conservation equation is, of course, not inde-
pendent of the variational equations [Egs. (26)-(29)] and
can be obtained from a suitable manipulation of these
equations.

The final parameter to be determined for the approxi-
mate equations is the radius / of the shelf of radiation sit-
ting under the evolving nematicon. As was originally done
by Kath and Smyth® for the one space dimensional NLS
equation and followed in Garcia Reimbert ef al.’® for the
nematicon equations in the small amplitude limit, this
parameter is determined by linearizing the approximate
equations around their fixed point. The fixed point of the
approximate equations [Eqs. (26)-(29)] is given by g=0

(31)

with
. 4Ia? 2 |
w2 =- — | In - , (32)
qp 1+8
da I o' gra?
==~ —— 4 ——— (33)

dz 2uw* 2(1{1+S),

with the amplitude at the fixed point ¢ determined from
the initial conditions via the conserved energy [Eq. (3D}

Here

(34)
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Let us now linearize the variational equations [Egs.
(27)—(29)] plus the conserved energy [Eq. 31 ar.ound the
fixed point given by Eq. (32) using the expansions a=d
+ay, w=w+w,, and g=81; with Ja}<1, wyf <1, an'd 1]
< 1. After some algebra, it is found that the approximate
equations reduce to the simple harmonic oscillator equa-

tion
2 ~t ¢ 40262
il ;‘L[ﬁ_ il }gﬁo. (35)

—
: Y
dz? Lo

w* qS (1+85)

- 8
As in Garcia Reimbert et al.” and Kath and Smyth,” the
frequency of this linear oscillator is now matc.hedAt,O the
nematicon oscillation frequency at the fixed point o, 81V~
ing

o A LI )

(]I‘lzs(]. +S)lU o (36)

- .
2q1S(1+8S) - o BE70

That the frequency of the shelf oscillation is egual- to the
soliton frequency was shown by Yang'? by considering the
eigenfunctions for the equation governing & Sn}_)all pertur-
bation from a soliton. In Garcia Reimbert et al. and Kat.h
and Smyth® it was assumed that this expression for Als
valid when the initial condition is not close to th? fixed
point value. In the present work, the variations 10 the

pulse amplitude will be found to be Jarge, so that keep ing

///

v2l, j
o=—
32eRA J, 1

1 . .
R%= K[Iza%u2 - La%? + Ag*l. (40)

The variable R measures the difference between th'e mass
of the nematicon at z and its mass at the fixed po}nt

The full set of approximate equations describing the
evolution of a nematicon is then Eqgs. (27), (29), (31)., and
(38). Solutions of these approximate equations Wll, be
compared with full numerical solutions of the nematicon
equations (7) and (6) in the next section.

4. RESULTS

In this section, full numerical soluti !
equations (7) and (6) will be compared with numerical s0-
lutions of the approximate equations 27, (29), BL), and
(38). The mass equation (26) has been replaced by t.he en-
ergy equation (31) since, to leading order, energy 18 con-
served by the evolving nematicon, while mass is lost. The
electric field equation (7) was solved using 2 psel_ldospe(l::;
tral method based on that of Fornberg and Whitham.

The main difference with the scheme of Fornbgrg and
Whitham'? was that the stepping in the 2 direction Was
performed in Fourier space using a

ons of the nematicon

fourth-order Runge—

2 2
[— In({z —z’)/A)} + 3772/16} + Iz - 2 )A)16
4
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A fixed at the fixed-point value is not adequate and does
not give good agreement with numerical solutions at large
amplitudes. To overcome this, A is evaluated at the local

values of @, w, and o', except for S, which is kept at its
fixed point value, as otherwise A was found to go nega-
tive, which is unphysical as this implies that the nemati-
con is unstable. Hence the expression for A used in the
present work is

qI?S(l +Swto’
A=—7 " . (87
2qIS(1 + 8) - o p2a’w?

The approximate equations are not as yet complete as
the effect of the dispersive radiation shed by the evolving
pulse has not been included. As the effect of this shed lin-
ear radiation was determined in Garcia Reimbert et al.,’
only the final result of the analysis will be given heré.
This work found that when the effect of the shed disper-
sive radiation is added, the only equation changed is that
for g, Eq. (28), which becomes

| % Ia gp | 2
—_——= 4+ —_——— —
le 2w2 8a n 461/4 7 - 25g: (38)

1+ 1+ ——

where the loss coefficient & is

#R(z)in((z -2 )/A) &’

(Z—Z')’ (39)

——
Kutta method, rather than in physical space using a sec-
ond order method. The r derivatives were calculated us-
ing fast Fourier transforms. To numerically solve the
Poisson equation (6), it was rewritten in the form

Po vae .
e R 2q6=q sin(26) - 2q 6~ 2|E|? cos(26).

(41)

The derivatives were then calculated using standard
second-order finite differences, resulting in a tridiagonal
system when the boundary conditions 6,=0 at r=0 and
§—0 as r—% were implemented. This nonlinear bound-
ary value problem was then solved using a Picard itera-
tion with the right-hand side of Eq. (41) being evaluated
at the previous iteration. The director equation (6) was re-
written in the form of Eq. (41) as this re-expressed equa-
tion was found to have better convergence properties. The
value v=0.01 has been used for the numerical solutio;ls in
this section. For this small value of v, the solution of the
full nematicon equations (7) and (6) is the same to graphi-
cal accuracy as the numerical solution of the reduced
saturating NLS equation (9), obtained using the same
pseu.;iospectral method as for the NLS equation (7).
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Figure 2 shows a comparison between the amplitude of
the nematicon as given by the full solution of the nemati-
con equations (7) and (6) and the solution of the approxi-
mate equations for the initial amplitude A=0.3 and initial
width W=4.0 for ¢g=2. Also shown is the amplitude as
given by the solution of the approximate equations of
Garcia Reimbert et al.’> The one difference between this
example and the following ones is that A had to be kept
fixed at the value (38) as the varying value (37) was found
to go negative initially, which is unphysical. It can be seen
that the approximate equations of the present work give
results in excellent agreement with the numerical solu-
tion, both in amplitude and period. It can be further seen
that the radiation loss analysis of Section 3 gives a decay
rate onto the steady state in excellent agreement with the
numerical rate. The amplitude oscillations shown in Fig.
2 are large, with the maximum amplitude of the oscilla-
tions being nearly triple the initial pulse amplitude. This
is a manifestation of the instability of solitons for the
standard two space dimensional NLS equation

E 1 ‘
i— +~V2E +|E]E =0, (42)
2

for which, above a critical threshold, a pulse initial condi-
tion will blow up in amplitude in finite z. The initial pulse
in Fig. 2 is then starting to blow up and reaches a rela-
tively large amplitude before the saturation stops the am-
plitude increase and reverses it. We remark that since g
=2, |E|?/q is relatively small, so that it is expecied that
the small amplitude theory of Garcia Reimbert ef al.” will
be in good agreement with the numerical solution, as
shown in Fig. 2. Even though the amplitude rises to near
1, the small amplitude analysis of Garcia Reimbert ef al.”
remains valid as g=2. Let us now consider results for ¢
=1, in which case the small amplitude approximation is
not valid.

Figure 3 shows a similar amplitude comparison for the
initial amplitude A=0.4 and initial width W=2.5 for
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Fig. 2. Amplitude a of the nematicon as a function of z for the

initial conditions A=0.3, W=4 with ¢=2. Solid curve, numerical

solution of governing equations (7) and (6) with #v=0.01, dashed

curve, solution of modulation equations (27), (29), (31), and (38);

short-dashed curve, solution of modulation equations of Ref. 5.
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Fig. 3. Amplitude a of the nematicon as a function of z for the
initial conditions A=0.4, W=2.5 with ¢=1. Solid curve, numeri-
cal solution of governing equations (7) and (6) with r=0.01;
dashed curve, solution of modulation equations (27), (29), (31),
and (38); short-dashed curve, solution of modulation equations of
Ref. 5.

g=1.1It can be seen that reducing ¢ to 1 has had a major
effect on the agreement between the numerical solution
and the solution of the approximate equations of Garcia
Reimbert et al.,” with the amplitude, mean, and period of
the solution of these approximate equations not being in
accord with the numerical solution. However, the mean of
the solution of the present approximate equations, which
can be obtained from the conserved energy [Eq. (31)], is in
excellent agreement with the mean of the numerical solu-
tion. This agreement is remarkable in that the pulse has
nearly doubled in amplitude over that of the initial condi-
tion. The numerical and approximate solutions are then
tending to the same steady nematicon amplitude. The
amplitude decay of the approximate equations is slightly
greater than that of the numerical solution, resulting ina
disagreement with the numerical amplitude at large val-
ues of z. This is because the radiation analysis of Section
3 and Garcia Reimbert et al.” is based on the asymptotic
evaluation of the inversion of an integral for large 2, so
that small errors compound over large z. As the approxi-
mate equations (27), (29), (31), and (38) form a nonlinear
oscillator, there is also a period difference due to the am-
plitude difference for large z.

Figure 4 shows a comparison between the amplitude of
the nematicon as given by the full numerical solution and
the solution of the approximate equations for the higher
initial amplitude A=0.5 with the same initial width W
=2.5 and ¢ =1. The solution of the approximate equations
of Gareia Reimbert ez al.” is not shown as these equations
fail for the high amplitudes of this figure. Again there is
good agreement in the mean of the amplitude oscillation,
so that the approximate equations give the same ampli-
tude of the final steady nematicon as the numerical solu-
tion. However, for this example, the decay rate of the 0s-
cillations of the approximate solution is initially
significantly lower than that of the numerical solution,
which results in the large z disagreement in the ampli-
tude, even though the decay rates are in broad agreement
for large z.

Figure 5 shows the amplitude comparison for the low
initial amplitude A=0.35 with W=2.5 and ¢ =1 as before.
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Fig. 4. Amplitude a of the nematicon as a function of z for th.e
initial conditions A=0.5, W=2.5 with g=1. Solid curve, nume(;';
cal solution of governing equations (7) and (6) with V=0~31)y
dashed curve, solution of modulation equations (27), (29), (31),
and (38).
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Fig. 5. Amplitude « of the nematicon as & functio

n of z for the
initial conditions A=0.35, W=2.5 with g=1. Solid cur¥®, e
cal solution of governing equations (7) an.d (6) Wlt(zg‘))- (31)7
dashed curve, solution of modulation equations .(27), ti’ons 0»
and (38); short-dashed curve, solution of modulation equa

Ref. 5.

It can be seen that in this case there is again gOOd agree”
ment in the mean between the numerical sglutlon and the
solution of the present approximate equations and those
of Garcia Reimbert ef al.,” but that the approximate deca.y
rates of the amplitude oscillations are much tpo fast. This
is because the initial amplitude A=0.35 is near the
threshold for soliton formation for the initial width W
=925 with g=1, which lies at approximately A:0‘3,3' _Be'
low this value, the initial pulse decays into radiation.
Good agreement is not expected close to a threshold.

5. CONCLUSIONS

The formation and propagation of large-amplitude D€t
aticons in the local or Kerr regime has been studied }JSIHQ
modulation theory coupled with an analysis of th_e dlsper-
sive radiation shed as the nematicons evolve. This reglmt?
is complementary to that studied ex_perimentally by C(?n !
et al.* and Assanto and co—workers.("7 In this Kerr re.glmi.
the reorientation of the crystal is confined to the waist 0
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the optical beam. It was then shown that in the Kerr re-
gime the evolution of a nematicon is governed by a satu-
rable NLS equation. While previous work® studied the
small amplitude limit, the present analysis is valid for an
arbitrary amplitude. The results of the present work stem
from the use of an equivalent Gaussian to calculate cer-
tain integrals involved in the averaging of the saturating
nonlinearity. The use of this equivalent function gives a
closed form for the averaged Lagrangian. The resulting
modulation equations were found to give solutions in very
good agreement with full numerical solutions.

The analytical results of this work demonstrate the
possibility of nematicon propagation in liquid crystals for
which the local or Kerr regime is the relevant one. This
could be tested experimentally in liquid crystals which
have a local or Kerr response, such as 5CRB.?
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