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Abstract

Semi-analytical solutions for the reversible Selkov, or glycolytic oscillations model, are
considered. The model is coupled with feedback at the boundary and considered in one-
dimensional reaction-diffusion cell. This experimentally feasible scenario is analogous to
feedback scenarios in a continuously stirred tank reactor. The Galerkin method is applied,
which approximates the spatial structure of both the reactant and autocatalyst concentra-
tions. This approach is used to obtain a lower-order, ordinary differential equation model
for the system of governing equations. Steady-state solutions, bifurcation diagrams and
the region of parameter space, in which Hopf bifurcations occur, are all found. The ef-
fect of feedback strength and delay response on the parameter region in which oscillatory
solutions occur, is examined. It is found that varying the strength of the feedback re-
sponse can stabilize or destabilize the system while increasing the delay response usually
destabilizes the reaction-diffusion cell. The semi-analytical model is shown to be highly
accurate, in comparison with numerical solutions of the governing equations.

Keywords: semi-analytical solutions; reaction-diffusion equations; feedback delay; re-
versible Selkov model; Hopf bifurcations.

1 Introduction

Some chemical reactions, such as the Bray-Liebhafsky, Belousov-Zhabotinsky and Briggs-
Rausher systems, undergo periodic variations in concentrations which can be visualized via
changes in colour; see [1] for a review of these systems and other oscillatory phenomena. These
reactions have helped to motivate great interest, by both theoreticians and experimentalists,
in the study of oscillatory chemical systems. The most common chemical reactor scenario is
the continuous flow well-stirred tank reactor (CSTR). Usually, a system of ordinary differential
equations (odes) governs a CSTR, which can be analyzed by standard techniques. However
another important reactor scenario is the reaction-diffusion cell, which is governed by a system
of partial differential equations (pdes), and is not as easy to analyze.

[2] considered a simple mathematical model of a glycolytic system, which is based on
Selkov’s model [3], which exhibits periodic oscillations. This scheme, known as the reversible
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Selkov model [4], is

A
 S, S + 2P 
 3P, P 
 B, (1)

where S (the reactant) and P (the autocatalyst) are the concentrations of adenosine triphos-
phate (ATP) and adenosine diphosphate (ADP), respectively. ATP is a high energy molecule
with three phosphate groups that a cell uses to extract and store energy from other molecules
such as carbohydrates. ADP is a low-energy molecule that has one phosphate group less than
the ATP molecule. A and B represent controllable source and sinks, respectively; Glucose or
fructose are examples of the source inputs into this system.

[2] analyzed the reversible Selkov reaction (1) in a CSTR and found two types of steady-
state bifurcation diagrams, the unique and the breaking-wave patterns. In addition, they
found the region where Hopf bifurcations occur and discussed their stability. [4] analyzed the
symmetry-breaking instability in (1) and found the time periodic oscillations of the homoge-
neous model are subject to a symmetry-breaking instability, via Hopf-bifurcation, by coupling
with molecular diffusion in a distributed system. This instability generates sinusoidal hetero-
geneous waves of small wavelengths.

[5] considered semi-analytical solutions for the Gray & Scott model in a reaction-diffusion
cell. The Galerkin method was used to obtain an ode model, as an approximation to the
governing pdes system, and then the tools of combustion theory were used to analyze the
ode model. Steady-state solutions and bifurcation diagrams were obtained and the region
of parameter space, where Hopf bifurcations occur was also found. An excellent comparison
was found between the results of the semi-analytical method and the numerical solutions of
the governing pdes. Other papers to use this method of developing semi-analytical solutions
include [6], who considered cubic-autocatalysis with Michaelis-Menten decay, and [7], who
considered a class of generalized diffusive logistic delay equations.

Feedback control for chemical systems can stabilize both limit cycle solutions and unstable
steady states and also generate chaotic behaviour. [8] considered numerical and experimental
examination of the chlorine dioxide-iodine reaction in a CSTR, with separate feedback regu-
lation of the input flow rate for the two different chemical species. They found that feedback
control can lead to bursting, phenomena in which oscillations and uniform solutions alternate
in time. [9] performed theoretical and numerical examination of temperature feedback con-
trol for an exothermic chemical reaction, with the rate governed by the Arrhenius law. They
proved theorems related to the regions of parameter space free from oscillatory solutions and
also applied appropriate restrictions to the gain, or feedback parameter, in order to avoid
oscillatory solutions.

[10] considered a two-species chemotaxis model, comprising reaction-diffusion-advection
equations, for bacteria density and a chemical attractant. The system exhibits complex
pattern formation involving wave propagation and island formation. The cell is joined to a
reservoir of chemoattractant, with the flux between the reservoir and the cell varied according
to a control algorithm, in order to achieve a given bacteria profile. It was found that pattern
formation could be suppressed and steady-state profiles achieved by this algorithm. [11] con-
sidered the FitzHugh-Nagumo model with global feedback delay. This system is bistable and
the stationary front solution is subject to a bifurcation which destabilizes it. It is found that
the feedback control can alter the velocity and the bifurcation point at which the instability
occurs. [12] considered global feedback for the Gray & Scott model to control spatiotemporal
chaos. It was found that different control regimes could stabilize uniform steady-states or
generate bistability between the uniform state and a travelling wave.
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In this paper, the reversible Selkov model (1) with feedback delay at the boundary is
examined in a 1-D reaction-diffusion cell where the Galerkin method is used to develop semi-
analytical solutions. In §2 governing equations are presented and the Galerkin method is used
to obtain the odes which represent the semi-analytical model. In §3 the steady-state concen-
tration profiles and bifurcation patterns are presented and described in detail. In §4 a local
stability analysis of the semi-analytical model is performed. The Hopf points are found for
both feedback with and without delay; hence the parameter region in which Hopf bifurcations
occur is identified and the effect of feedback strength and delay are explored. Comparisons
are made throughout the paper between the semi-analytical results and numerical solutions
of the governing pdes.

2 The semi-analytical model

2.1 The governing equations

The reversible Selkov model, or glycolytic oscillations model (1) is considered in a 1-D
reaction-diffusion cell. The governing pdes and boundary conditions are

st = D1sxx − κs− sp2 +K2p
3, pt = D2pxx − p+ sp2 −K2p

3, (2)

sx = px = 0, at x = 0 s = s0, p = p0, at x = 1 and t = 0. (3)

The system (2) is in non-dimensional form with the scaled concentrations of the reactant, s and
autocatalyst, p. It is an open system; the reactor has a permeable boundary at x = 1, joined
to a reservoir which contains s and p at specified concentrations, s0 and p0, respectively. The
boundary condition at x = 0 is a zero-flux condition. The system has four other parameters; κ
and K2 represent the rates of the reversible reactions in the first and second steps of (1). The
parameter K2 is relatively uninteresting as it does not alter the qualitative behavior of the
system; we let K2 = 1. We also assume that the decay of the precursor chemical A→ S and
reversible reaction of the final product B → P are both very small and can be neglected. The
parameters D1 and D2 are the diffusion coefficients of the two species s and p. This system
has an unique steady-state solution and we let (ss, ps) be the steady-state concentrations at
x = 0.

We are interested in examining the effect of feedback on the reaction-diffusion cell (2) and
(3), so consider the following feedback algorithm

sx = px = 0, at x = 0, s = s0+H(s(0, t−τ)−ss), p = p0+H(p(0, t−τ)−ps) at x = 1, (4)

where the reservoir concentrations are altered, in response to the concentrations in the cell at
the impermeable boundary located at x = 0. Many studies have been undertaken of feedback
control for CSTR’s where the flow rate is altered in response to the concentrations in the
reactor; (4) represents an analogous form of feedback control for a reaction-diffusion cell. This
control mechanism could be implemented experimentally by measuring the concentrations
at the non-permeable boundary (x = 0) and then altering the reservoir concentrations in
response to those values. The feedback is proportional to the difference between the transient
concentrations and the steady-state value at x = 0, while H is the strength of the feedback
and τ is the delay response. The feedback (4) does not change the steady-state solutions of (3)
so we investigate the effect of this feedback control on the stability of the reaction-diffusion
cell.
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Numerical solutions of (2) are found using an explicit finite-difference scheme with accu-
racy of O(4t,4x2).

2.2 The Galerkin method

The Galerkin method assumes a spatial structure of the concentration profiles, which then
allows the governing pdes (2) and boundary conditions (4) to be approximated by a set of
lower-order odes. The expansion

s(x, t) = s0 +H(s1(t− τ) + s2(t− τ)− s1s − s2s) + s2(t) cos(
3

2
πx)

+ (s1(t)−H(s2(t− τ) + s1(t− τ)− s2s − s1s)) cos(
1

2
πx),

p(x, t) = p0 +H(p1(t− τ) + p2(t− τ)− p1s − p2s) + p2(t) cos(
3

2
πx) (5)

+ (p1(t)−H(p2(t− τ) + p1(t− τ)− p2s − p1s)) cos(
1

2
πx),

is used which represents a two-term method. Expansion (5) satisfies the boundary conditions
(4), but not the governing pdes. The form of basis functions (5) also has the property that
the concentrations at the impermeable boundary are s = s0 + s1 + s2 and p = p0 + p1 + p2,
which do not explicitly depend on H. The steady-state concentrations are ss = s0 + s1s + s2s
and ps = p0 + p1s + p2s. Note that the form of (5) is not unique; a more symmetric form
for could be chosen or quadratic expressions could be used, but the level of accuracy of the
method is usually independent of the forms of the basis functions used. The free parameters
in (5) are found by evaluating averaged versions of the governing equations, weighted by the
basis functions. This procedure gives the odes

ds1
dt

= −4κs0
π
− 4s0p

2
0

π
+

4K2p
3
0

π
− s1p20 −

3s1p
2
1

4
+

3K2p
3
1

4
− κs1 −

s2p
2
1

4
− s1p

2
2

2

− s1p1p2
2

+
3K2p1p

2
2

2
+

3K2p
2
1p2

4
− 2s0p0p1 −

D1s1π
2

4
+ 3K2p

2
0p1 −

72s0p
2
2

35π

− 8s0p
2
1

3π
− s2p1p2 +

16K2p0p1p2
5π

− 16s0p1p2
15π

− 16s1p0p2
15π

− 16s2p0p1
15π

+
8K2p0p

2
1

π
− 16s1p0p1

3π
− 144s2p0p2

35π
+

216K2p0p
2
2

35π
.

dp1
dt

= −p1 −
4p0
π

+
4s0p

2
0

π
− 4K2p

3
0

π
+ s1p

2
0 +

3s1p
2
1

4
− 3K2p

3
1

4
+
s2p

2
1

4
+
s1p

2
2

2
− D2p1π

2

4

+
s1p1p2

2
− 3K2p1p

2
2

2
− 3K2p

2
1p2

4
+ 2s0p0p1 − 3K2p

2
0p1 +

72s0p
2
2

35π
+

8s0p
2
1

3π
+ s2p1p2

− 16K2p0p1p2
5π

+
16s0p1p2

15π
+

16s1p0p2
15π

+
16s2p0p1

15π
− 8K2p0p

2
1

π
+

144s2p0p2
35π

− 216K2p0p
2
2

35π
.

ds2
dt

=
4κs0
3π
− κs2 −

9D1s2π
2

4
+

4s0p
2
0

3π
− 4K2p

3
0

3π
− 3s2p

2
2

4
− s2p20 +

3K2p
3
2

4
− s1p

2
1

4

+
K2p

3
1

4
− s2p

2
1

2
+ 3κp20p2 − 2s0p0p2 − s1p1p2 +

3K2p
2
1p2

2
+

8s0p
2
2

9π
− 8s0p

2
1

15π
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+
432K2p0p1p2

35π
− 144s0p1p2

35π
− 144s1p0p2

35π
− 144s2p0p2

35π
+

8K2p0p
2
1

5π
− 16s1p0p1

15π

+
16s2p0p2

9π
− 8K2p0p

2
2

3π
. (6)

dp2
dt

=
4p0
3π
− p2 −

9D2p2π
2

4
− 4s0p

2
0

3π
+

4K2p
3
0

3π
+

3s2p
2
2

4
+ s2p

2
0 −

3K2p
3
2

4
+
s1p

2
1

4

− K2p
3
1

4
+
s2p

2
1

2
− 3κp20p2 + 2s0p0p2 + s1p1p2 −

3K2p
2
1p2

2
− 8s0p

2
2

9π
+

8s0p
2
1

15π

− 432K2p0p1p2
35π

+
144s0p1p2

35π
+

144s1p0p2
35π

+
144s2p0p2

35π
− 8K2p0p

2
1

5π
+

16s1p0p1
15π

− 16s2p0p2
9π

+
8K2p0p

2
2

3π
.

The odes (6) are for the case of no feedback (H = 0) as the terms associated with the feedback
are excessively long to be presented here. It is found that a two-term method gives sufficient
accuracy without excessive expression swell. The one-term solution (when s2 = p2 = 0) is
also calculated, for accuracy comparison purposes.

3 Steady-state solutions

The steady-state of (6) where ds1
dt = ds2

dt = dp1
dt = dp2

dt = 0 represents a set of four transcen-
dental equations (fi = 0, i = 1 . . . 4), which are solved numerically using Maple. For the one
term case, s2 = p2 = 0, so in this case two transcendental equations are obtained.

Figures 1(a) and 1(b) show steady-state concentration profiles of s and p versus x, re-
spectively. The parameters are s0 = 4, κ = 0.01, D1 = D2 = 0.08, H = 0 and p0 = 0.4.
The one and two-term semi-analytical and numerical solutions of (2) and (3) are shown. For
this choice of parameters reactant and autocatalyst are both consumed in the reactor with a
trough occurring at x = 0. It can be clearly seen that the two-term expression gives a good
approximation when compared with the numerical solution of the governing pdes. At x = 0,
the errors are less than 1% for the s and p concentrations. For the one-term approximation,
the errors are slightly larger, but no greater than about 5%. The two-term solutions are
superior to the one-term profile as they model flat s-concentration profile more accurately.

Figures 2(a) and 2(b) show steady-state bifurcation diagrams, s and p versus κ, respec-
tively. The concentrations are shown at x = 0. This is an unique bifurcation pattern, with
the steady state concentrations decreasing as κ increases. The two-term solution is very close
to the numerical solution of the pdes. The error for the one-term solution becomes very large
as κ increases and the solution becomes negative (unphysical) at κ = 0.68. This is due to
the one-term solution not approximating flat concentration profiles very well, as κ becomes
large. At κ = 0.6 the numerical solutions are (s, p) = (0.51, 0.031) while the two-term semi-
analytical solutions are (s, p) = (0.59, 0.035). The errors between numerical and two-term
semi-analytical solutions are 16% and 13% for the s and p concentrations, at κ = 0.6.

4 Local stability and oscillatory solutions

Limit cycles and Hopf bifurcations points are known to occur for the system (1), in the
CSTR. The theory of Hopf bifurcations is explained in standard texts on bifurcation theory

5



and dynamical systems such as [13] or [14]. Here the stability of the semi-analytical model is
analyzed and used to explore the effects of feedback (4) in altering the stability of the system
(2) and (3). The Hopf degeneracy points are calculated to find a semi-analytical map in which
Hopf bifurcations occur and this prediction is compared with numerical results. Hopf points
are obtained by expanding in a Taylor series about the steady-state solution,

s1(t) = s1s + εge−λt, p1(t) = p1s + εg1e
−λt, (7)

s2(t) = s2s + εhe−λt, p2(t) = p2s + εh1e
−λt.

We then substitute (7) into the odes (6), and linearize around the steady state. The eigenval-
ues, λ, of the Jacobian matrix are found by solving the characteristic equation and describe
the evolution of small perturbations to the steady-state solution. For the case in which there
is no feedback delay, τ = 0, the characteristic equation is given by the equation,

λ4 + α1λ
3 + α2λ

2 + α3λ+ α4 = 0. (8)

Hopf bifurcations occur for this system when one pair of eigenvalues is purely imaginary,
which implies

q = α4α
2
1 + α2

3 − α1α2α3 = 0. (9)

Hence the degenerate Hopf points are given by

fi = q =
dq

dκ
= 0, i = 1 . . . 4. (10)

The Hopf bifurcation points are found by solving (10), which gives curves in the s0 − p0 and
D1 −D2 planes. Here, the degenerate curves represent both physical and non-physical solu-
tions (where the rate constant κ is negative). To obtain physically realistic Hopf bifurcations
(where κ > 0) we replace the condition dq

dκ = 0 by κ = 0. Hence we obtain

fi = q = κ = 0, i = 1 . . . 4, (11)

as an alternative condition to (10) for physically realistic Hopf points.
For the case in which the feedback delay τ 6= 0, the characteristic equation has a non-

polynomial form, so we set λ= iω in the characteristic equation and separate into real, q1, and
imaginary, q2, parts. The Hopf bifurcation points occur at points where λ is purely imaginary,
for more details see [15] and [16]. The Hopf bifurcation points are found by solving the system
of equations plus κ = 0 which gives

f1 = f2 = f3 = f4 = q1 = q2 = κ = 0, (12)

as an generalisation of (11), for the case where the feedback delay is non-zero. Note that
(11) and (12) are equivalent for the case of τ = 0. Also note that due to the characteristic
equation being of a non-polynomial form when the feedback delay is non-zero, expressions for
degenerate Hopf points (the equivalent of (10)) are not derived.

Figure 3 shows the regions in the s0-p0 plane in which Hopf bifurcation occur. Shown
are the solutions to both (10) and (11) plus numerical solutions. The other parameters are
D1 = D2 = 0.08, H = 0 and τ = 0. The degenerate curve, found by solving (10), breaks the
plane into upper and lower regions. Above this curve only stable solutions occur and there
are no Hopf bifurcation points while under the curve Hopf bifurcation points occur, both
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for physical and non-physical solutions. In addition, the looped curve encloses the region
in which physically realistic Hopf bifurcation points occur, which are given by solving the
conditions (11), so κ ≥ 0. For the looped region the maximum numerical values at which
Hopf bifurcations can occur are s0 = 5.60, p0 = 0.469 while the two-term semi-analytical
maximum values are s0 = 5.67 and p0 = 0.476. Also, the numerical region has minimum
values of s0 = 4.35 and p0 = 0.292 and s0 = 4.33 and p0 = 0.280, for two-term semi-
analytical solutions. The errors in these estimates are less than 4%. It can be clearly seen
that the two-term expression gives an excellent estimate of the region in which physically
realistic Hopf points occur.

Figure 4 shows regions in the D1-D2 plane in which Hopf bifurcation occur. Shown
are the solutions to both (10) and (11) and numerical solutions. The other parameters are
s0 = 5, p0 = 0.4, H = 0 and τ = 0. This figure represents an alternative view of the Hopf
bifurcation parameter space, compared that shown in figure 3. The curve, which cuts the plane
into two, was generated by solving the conditions (10), describes the full set of degenerate
Hopf bifurcation points. Above this curve only stable solutions occur and there are no Hopf
bifurcation points while under the curve Hopf bifurcation points occur. Again, inside the
looped curve physically realistic Hopf bifurcation points occur, which are given by solving
the conditions (11). For the looped region, the maximum numerical values are D1 = 0.092
and D2 = 0.150 while the two-term semi-analytical maximum values are D1 = 0.086 and
D2 = 0.146. The errors in these estimates are less than 7% and 3%, for the value of D1 and
D2 respectively. Furthermore, the minimum two-term semi-analytical values are D1 = 0.036
and D2 = 0.019, with minimum numerical values of D1 = 0.030 and D2 = 0.030. In this
region of the figure, the relative errors are quite large but the absolute errors are still quite
low, no greater than 0.011. Overall the semi-analytical looped region is a good approximation
to the numerically obtained regions.

Figure 5 shows the regions of the s0 − p0 plane in which Hopf bifurcations can occur,
for different values of the feedback strength H = 0, 0.1 and 0.2. The other parameters are
D1 = D2 = 0.08 and τ = 0. Increasing the feedback strength H leads to the degenerate
curve moving upwards and the looped region, in which physically realistic Hopf bifurcations
occur also expands. For example, the point (s0, p0)= (4.4, 0.49) is stable when H = 0 but, it is
unstable for both H = 0.1 and 0.2 while the point (s0, p0)=(4.3, 0.53) is stable for both H = 0
and 0.1 but is unstable when H = 0.2. Hence increasing the feedback strength H causes the
region of instability to increase in area. Figure 6 shows the regions of the D1 −D2 plane in
which Hopf bifurcations occur, for H = 0, 0.1 and 0.2. The other parameters are s0 = 5,
p0 = 0.4 and τ = 0. Increasing the feedback parameter H causes the region of instability to
increase in the D1 −D2 plane, a similar effect to that which occurs in the s0 − p0 plane. For
example, the point (D1, D2) = (0.09, 0.2) is stable with H = 0 but, it is unstable for both
H = 0.1 and H = 0.2. Moreover, the point (D1, D2)= (0.09, 0.16) is stable for both H = 0
and 0.1 while, it is unstable where H = 0.2.

Figure 5 shows the regions of the s0 − p0 plane in which Hopf bifurcations can occur,
for different values of feedback strength H = 0, −0.1 and −0.2. The other parameters are
D1 = D2 = 0.08 and τ = 0. The other parameters are the same as for figure 5 but here the
feedback strength H is negative. Decreasing H, to negative values with larger magnitude,
leads to the degenerate curve moving downwards and reductions in the area of the looped
region in which physically realistic Hopf bifurcations occur. Figure 8 shows the regions of
the D1 −D2 plane in which Hopf bifurcations occur, for H = 0, −0.1 and −0.2. The other
parameters are s0 = 5, p0 = 0.4 and τ = 0, the same as figure 6. Here we see that decreasing
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the feedback parameter H (to negative values with larger magnitude) leads to the looped
region of instability decreasing in the D1 − D2 plane. For example, the point (D1, D2)=
(0.08, 0.12) is unstable with H = 0 but, it is stable for both H = −0.1 and −0.2. Moreover,
the point (D1, D2)= (0.07, 0.1) is unstable for both H = 0 and −0.1 while, it is stable where
H = −0.2. In summary, larger values of H destabilize the system leading to growth in the
region in which Hopf bifurcations occur while smaller values of H stabilize the system, leading
the enclosed looped region to shrink.

Now the effect of including delay in the feedback response is considered. Figure 9 shows
the Hopf bifurcations regions in the s0 − p0 plane. The delay τ = 0, 1 and 2 while the other
parameters are D1 = D2 = 0.08 and H = 0.2. Here, for τ 6= 0 the solutions can be found by
solving condition (12). The line, representing the full set of degenerate Hopf points, is missing
for this figure as a theoretical expression to calculate it is unavailable. The figure shows that
the looped Hopf region increases in size as the delay parameter increases. For example, the
point (s0, p0)= (4.1, 0.54) is a stable point for τ = 0 but it is unstable for both τ = 1 and
τ = 2. Also, the point (s0, p0)= (3.9, 0.55) is a stable point for both τ = 0 and τ = 1 while it
is unstable for τ = 2. It can be seen that including information from the more distant past
(larger values of τ) destabilizes the system. Figure 10 shows that the Hopf bifurcation regions
in the D1 −D2 plane. The delay τ = 0, 1.5 and 2.2 while the other parameters are p0 = 0.4,
s0 = 5 and H = 0.2. For 0 < τ < 1.94, the Hopf bifurcation region in the D1 − D2 plane
reduces in size as τ increases, stabilizing the system but for τ ≥ 1.94 the Hopf bifurcation
region rebounds and expands in size. So the general trend is that larger values of the delay
parameter τ destabilize the system but these results show that this is not always a monotonic
effect.

Figure 11(a) shows a limit cycle solution in the s versus p phase plane, while 11(b) and
11(c) show the evolution of s and p versus t, respectively, at x = 0. The parameters are
p0 = 0.4, D1 = D2 = 0.08, H = 0.1, s0 = 5, κ = 0.003 and τ = 0. Shown are the two-term
semi-analytical solution and the numerical solution. For this choice of parameters a limit
cycle occurs. The numerical period of the limit cycle of the reactant and autocatalyst is 18.78
while, the amplitudes of the limit cycle are 2.29 and 0.83 for the reactant and autocatalyst
concentrations, respectively. The two-term semi-analytical period is 19.79 and the amplitudes
are 2.37 and 0.81 for the reactant and autocatalyst concentrations, respectively. The errors
in the two-term semi-analytical values, compared to numerical solutions of (2) and (4) are
less than 5%. Also the time evolution curves show that the locations of the first few peaks
and troughs of the semi-analytical solutions are close to the numerical values.

Figure 12(a) and (b) shows the evolution of s and p, versus t, at x = 0. The parameters are
p0 = 0.4, D1 = D2 = 0.08, H = 0.1 , s0 = 4 and κ = 0.05. Shown are two-term semi-analytical
solution and the numerical solution. For the time becomes large, the solution evolves to a
steady-state, with s ' 3.22 and p ' 0.09 for the two-term semi analytical solutions. For
numerical solutions, the solution evolves to a steady-state, with s ' 3.13 and p ' 0.10. The
errors between two-term semi-analytical solutions and numerical solutions are 3% and 10%
for the s and p concentrations. It can be seen that the two-term semi-analytical solution gives
a good approximation, when compared with the numerical solution of the governing pdes, of
the steady-state values and of the relaxation oscillations.
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5 Conclusion

Semi-analytical solutions have been developed for the reversible Selkov model with feedback
delay in a reaction-diffusion cell. Comparisons with numerical solutions show that the two-
term semi-analytical model is very accurate. The effect of feedback both with and without
delay has been considered, on the regions in which Hopf bifurcations occur. It is shown that
increasing the strength of the feedback destabilises the system while decreasing the strength,
through negative values, stabilizes the system. The effect of delay in the feedback response
is usually to destabilize the system but the results show this is not always a monotonic effect
and that small delays can sometimes have a stabilizing effect. Future work will apply the
method to a more complex version of the reversible Selkov model in a reaction-diffusion cell,
which includes the effects of a precursor chemical.
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Figure Captions

Figure 1 Steady-state reactant s, (a), and autocatalyst p, (b), concentration profiles versus
x. The parameters are s0 = 4, κ = 0.01, D1 = D2 = 0.08 and p0 = 0.4. The one-
term (black, dashed-dotted), two-term (blue, dashed) semi-analytical solution and the
numerical solution of (2) and (3)(red, dotted) are shown.

Figure 2 Steady-state bifurcation diagrams, reactant s, (a), and autocatalyst p, (b), versus
κ. The concentrations are shown at x = 0. The parameters are s0 = 4, D1 = D2 = 0.08
and p0 = 0.4. The one-term (green, solid), two-term (blue, dash-dotted) semi-analytical
solution and the numerical solution of (2) and (3) (red, dotted) are shown.

Figure 3 The regions of the s0-p0 plane in which Hopf bifurcation can occur. The two-
term (blue, dashes) region and numerical solutions (red, squares) are shown. The other
parameters are D1 = D2 = 0.08, H = 0 and τ = 0.

Figure 4 The regions of the D1-D2 plane in which Hopf bifurcation can occur. The two-
term (blue, dashes) region and numerical solutions (red, squares) are shown. The other
parameters are s0 = 5, p0 = 0.4, H = 0 and τ = 0.

Figure 5 Hopf bifurcation curves in the s0−p0 plane. Shown is the two-term semi-analytical
solutions with feedback strength H = 0 (black dash-dotted), H = 0.1 (green, solid) and
H = 0.2 (red, dotted). The other parameters are D1 = D2 = 0.08 and τ = 0.

Figure 6 Hopf bifurcation curves in the D1 - D2 plane. Shown is the two-term semi-
analytical solutions with feedback strength H = 0 (black dash-dotted), H = 0.1 (green,
short-dashed dotted) and H = 0.2 (red, dotted). The other parameters are s0 = 5,
p0 = 0.4 and τ = 0.

Figure 7 Hopf bifurcation curves in the s0−p0 plane. Shown is the two-term semi-analytical
solutions with feedback strength H = 0 (black, dash-dotted), H = −0.1 (green, solid)
and H = −0.2 (red, dotted). The other parameters are D1 = D2 = 0.08 and τ = 0.

Figure 8 Hopf bifurcation curves in the D1 - D2 plane. Shown is the two-term semi-
analytical solutions with feedback strength H = 0 (black dashed-dotted), H = −0.1
(green, short dash-dotted) and H = −0.2 (red, dotted). The other parameters are
s0 = 5, p0 = 0.4 and τ = 0.

Figure 9 The regions Hopf bifurcations occur in the s0 − p0 plane. The delay parameter
τ = 0 (black, dash-dotted), τ = 1 (green, solid) and τ = 2 (red, dotted) while the other
parameters are D1 = D2 = 0.08 and H = 0.2.

Figure 10 The regions Hopf bifurcations occur in the D1−D2 plane. The delay parameter
τ = 0 (black dash-dotted), τ = 1.5 (green, dashes) and τ = 2.2 (red, dotted) while the
other parameters are s0 = 5, p0 = 0.4 and H = 0.2.

Figure 11 The limit cycle curve s versus p, (a), and the evolution of s, (b), and p, (c), at
x = 0 versus t. The two-term semi-analytical solution (blue, dashes) and the numerical
solution (red, dotted) are shown. The parameters are p0 = 0.4, D1 = D2 = 0.08,
H = 0.1 , s0 = 5, κ = 0.003 and τ = 0.
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Figure 12 The evolution of s, (a), and p, (b), at x = 0 versus t. The two-term semi-analytical
solution (red, dotted) and the numerical solution (blue, dashes) are shown.The param-
eters are p0 = 0.4, D1 = D2 = 0.08, H = 0.1, s0 = 4 and κ = 0.05.
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