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Seria Matematică–Informatică

Maple+GrTensorII libraries for cosmology

Presented at 6rd Int. Symposium on Symbolic and Numerica

Algorithms for Scientific Computing

Dumitru N. Vulcanov, Valentina D. Vulcanov

Abstract.

The article mainly presents some results in using MAPLE platform for com-

puter algebra (CA) and GrTensorII package in doing calculations for theoretical

and numerical cosmology.

Key words: computer algebra, general relativity, cosmology

AMS Subject Classification: 68W30, 83C05, 85A40

1. Introduction Modern cosmology is based on general relativity (GR)

and Einstein equations. GR requires lengthy (or cumbersome) calcula-

tions which could be solved by computer algebra methods. During the

years, a plethora of CA platforms was used for GR purposes, as REDUCE

(with EXCALC package), SHEEP or MAXIMA (see for example in (Hehl

et.al. 1996), (Grabmeier et.al. 2001) or (Vulcanov 2001)). Although some

advantages as flexibility and speed were obvious, recently, platforms as

MAPLE or MATHEMATICA are preferred by those working in the field,

due to their more advanced graphical facilities - for a comparison between

MAPLE and REDUCE see (Vulcanov 2003).

In the last years, an increased interest in theoretical cosmology is vis-

ible because of the new facts revealed by the experimental astrophysics,

mainly in the sense that the universe is actually in an accelerated expansion

period - the so called “cosmic acceleration” (see (Perlmutter et.al 1999))

. In order to fit these new facts with the standard model of the Universe

some new mechanisms are proposed, based on dark-matter, dark-energy

and/or cosmological constant hypothesis. New models are proposed in the

literature practically on a daily basis demanding new specific tools and li-

braries from the computational science, including CA applications specially
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designed for theoretical cosmology. Thus we concentrate here in symbolic

manipulation of Einstein equations with MAPLE and GrTensorII pack-

age (see at http://grtensor.org). We packed our procedures in a specific

library, containing all the necessary ingredients for theoretical cosmology

- Friedmann equations, a scalar field minimally coupled with gravity and

other matter fields terms to be used specifically.

The article is organized as follows : next section 2 introduces shortly

GrTensorII package and his main facilities. Then section 3 presents how

we implemented non-vacuum Einstein equations in a specific form for cos-

mology (based on Friedmann-Robertson-Walker - FRW metric) with the

stress-energy tensor components designed for interacting with gravity mat-

ter and one real scalar field separately added. The last section is dedicated

to some new results we obtained with our MAPLE libraries in the so called

“reverse-technology” (Ellis et.al. 2004) method for treating inflation and

cosmic expansion triggered by a real scalar field.

Our library, called Cosmo, can be provided by request to the authors.

We mainly used MAPLE 7 and MAPLE9 versions but as far as we know

the library can be used with other MAPLE environments starting with

MAPLE V.

2. Some words about GrTensorII package GrTensorII is a free pack-

age from http://grtensor.org for the calculation and manipulation of com-

ponents of tensors and related objects, embedded in MAPLE. Rather than

focus upon a specific type or method of calculation, the package has been

designed to operate efficiently for a wide range of applications and allows

the use of a number of different mathematical formalisms. Algorithms are

optimized for the individual formalisms and transformations between for-

malisms has been made simple and intuitive. Additionally, the package

allows for customization and expansion with the ability to define new ob-

jects, user-defined algorithms, and add-on libraries.

The geometrical environment for which GrTensorII is designed is a

Riemannian manifold with connection compatible with the riemannian

metric. Thus there are special commands and routines for introducing and

calculating geometrical objects as the metric, Christoffel symbols, curva-

ture (Ricci tensor and scalar) and the Einstein tensor - as for a couple of

examples. Manipulating with indices and extracting tensor components are

easy to do from some special commands and conventions. GrTensorII has

a powerful facility for defining new tensors, using their natural definitions.
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As for an example, for calculating the Bianchi identities

Gi
j;i = 0 (1)

(where Gij = Rij −
1
2
gijR is the Einstein tensor defined with the Ricci

tensor Rij and the Ricci scalar R, gij is the metric and we denoted with the

semicolon ; the covariant derivative of the metric compatible connection)

we can use a short sequence of GrTensorII commands for calculating the

left side of eq. 1 :

> grtw();

> qload(rob_sons);

> grdef(‘bia{ ^i }:=G{ ^i ^j ;j }‘);

> grcalc(bia(up)); grdisplay(bia(up));

Actually above, the first two commands are for starting the GrTensorII

package and loading the FRW metric (previously constructed and stored

in a special directory - GrTensorII provides also an entire collection of

predefined metrics, but the user can also define his owns using a gmake(...)

command). The last line contains two commands, for effectively calculating

the new bia(up) tensor and for displaying the results. If the metric in

discussion is compatible with the connection the bia() tensor must have

all components vanishing.

The central point of any calculation with GrTensorII is grcalc() com-

mand. Often large terms result in individual tensor components which

need to be simplified. For this gralter() and grmap() commands are pro-

vided equiped with several simplifying options, mainly coming from the

simplifying commands of MAPLE and some specific to GrTensorII. Actu-

ally the user is free to choose his own simplification strategy inside these

commands.

Special libraries are also available for doing calculation in different

frames or basis and in Newman-Penrose formalism.

3. The Cosmo library As we mentioned earlier, in modern cosmology

we are using the Friedmann-Robertson-Walker metric (FRW), having the

line element in spherical coordinates

ds2 = −c2dt2 + R(t)2
[

dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]

(2)

as a generic metric for describing the dynamics of the universe. Here k is a

constant with arbitrary value, positive (for closed universes), negative (for
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open universe) and zero for flat universes. Usually, this constant is taken

1, −1 or 0 respectively. R(t) is called scale factor, and is only function of

time, due to the homogeneity and isotropy of space as in standard model of

the universe is presumed. The dynamic equations are obtained introducing

(2) in the non-vacuum Einstein equations, namely

Gij = Rij −
1

2
gijR + λgij =

8πG

c4
Tij (3)

where λ is the cosmological constant, Tij the stress-energy tensor, G the

gravitational constant, c the speed of light and i, j = 0, 1, 2, 3. The matter

content of the universe is given by the stress-energy tensor T ij which we

shall use as :

T ij = T ij
φ + T ij

m (4)

where the stress-energy tensor of a scalar field minimally coupled with

gravity and the stress-energy tensor of the matter (other than the scalar

field) have the form of a perfect fluid, namely :

T ij
φ = (pφ + ρφ)uiuj + pφgij (5)

T ij
m = (p + ρ)uiuj + pgij (6)

Above the scalar field pressure and density are

pφ = −
1

2
∂i∂iφ −

1

2
V (φ) (7)

ρφ = −
1

2
∂i∂iφ +

1

2
V (φ) (8)

Here we used the 4-velocities ui obviously having uiui = −1.

Introducing all these in (3) and defining the Hubble function (usually

called Hubble constant) and the deceleration factor as

H(t) =
Ṙ(t)

R0

; Q(t) = −
R̈(t)

2H(t)2R(t)
(9)

where a dot means time derivative and R0 is the initial (actual) scale fac-

tor, we should obtain the dynamical equations describing the behavior of

the universe, the so called Friedmann equations. The whole package will

contain also the conservation laws equations and the Klein-Gordon equa-

tion for the scalar field, separately. We composed a sequence of GrTensorII



Maple+GrTensorII libraries for cosmology 185

commands for this purpose. First, defining the 4-velocities, the scalar field

functions and the Einstein equations, we have

> restart;grtw();qload(rob_sons);

> grdef(‘u{ i } := -c*kdelta{ i $t}‘);

> grdef(‘Scal := Phi(t)‘);

> grdef(‘T1{ i j } := Scal{ ,i }*Scal{ ,j } -

g{ i j }*(g{ ^a ^b }*Scal{ ,a }*Scal{ ,b }+

V(t))/2‘);

> grdef(‘TT1{ i j } :=(epsilonphi(t)+

pphi(t))*u{ i }*u{ j } +

pphi(t)*g{ i j }‘);

> pphi(t):=diff(Phi(t),t)^2/2/c^2-V(t)/2;

> epsilonphi(t):=diff(Phi(t),t)^2/2/c^2+V(t)/2;

> grdef(‘test{ i j }:=T1{ i j }- TT1{ i j }‘);

> grcalc(test(dn,dn)); grdisplay(test(dn,dn));

> grdef(‘T2{ i j } := (epsilon(t) + p(t))*u{ i }*u{ j } +

p(t)*g{ i j}‘);

> grdef(‘T{ i j } :=T1{ i j } + T2{ i j }‘);

> grdef(‘cons{ i }:= T{ i ^j ;j }‘); grcalc(cons(dn));

> EcuKG:=grcomponent(Box[Scal],[]) -DV(t)/2;

> grdef(‘Ein{ i j } := G{ i j } - 8*Pi*G*T{ i j }/c^4‘);

> grcalc(Ein(dn,dn)); gralter(Ein(dn,dn),expand);

Here we defined twice the stress-energy components for the scalar field,

due to the possibility of a direct definition (T1()) and through the cor-

responding density and pressure (TT1()). Because we are working in a

coordinate frame, these must have equal components and we can check it

through test(dn,dn) tensor as having vanishing components. Finally the

total stress-energy tensor and the Einstein equations are defined, as it

is obvious. Separately we defined the conservation law-equation (cons())

as the contracted covariant derivative of the stress-energy tensor and the

Klein-Gordon equation for the scalar field - as the unique component of

the d’Alembertian and adding a special function of the derivative of the

potential in terms of the scalar field DV(t). We shall treat this as an extra

variable to be extracted solving the equations.

Next step is to extract, one by one the components of Ein(dn,dn) as the

final form of (3) through a sequence of grcomponent commands followed

by certain simplifications and rearrangements of terms. As some of the

equations are identical we shall restrict only to two of them, coupled with
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conservation and Klein-Gordon equations. As a result we denoted with

Ecunr1 and Ecunr2 the independent Einstein equations and with Ecunr3

the conservation law equation (EcuKG remains as it is). We also provided

a separate equation (Ecnur22) for one of the above terms written with the

acceleration factor Q(t). Then comes a series of substitution commands for

casting the equations in terms of the Hubble function, deceleration factor

and geometrical factor defined as K(t) = k/R(t)2 :

> Ecunr1:=expand(simplify(subs(k=K(t)*RR(t)^2,Ecunr1)));

> Ecunr2:=expand(simplify(subs(k=K(t)*RR(t)^2,Ecunr2)));

> Ecunr1:=subs(diff(RR(t),t)=H(t)*RR(t),Ecunr1);

> Ecunr22:=subs(diff(RR(t),t,t)=-2*H(t)^2*RR(t)*Q(t),

Ecunr2);

> Ecunr22:=subs(diff(RR(t),t)=H(t)*RR(t),Ecunr22);

> Ecunr2:=subs(diff(RR(t),t)=H(t)*RR(t),Ecunr2);

> Ecunr2:=expand(Ecunr2);

> Ecunr2:=subs(diff(RR(t),t)=H(t)*RR(t),Ecunr2);

> Ecunr3:=subs(diff(RR(t),t)=H(t)*RR(t),Ecunr3);

> EcuKG:=subs(diff(RR(t),t)=H(t)*RR(t),EcuKG);

Finally we have the Friedmann equations in the form :

1

c2

[

φ̈(t) + 3H(t)φ̇(t)
]

+
1

2
DV (t) = 0 (10)

3H(t)2 + 3c2K(t) −
4πG

c4

[

φ̇(t)2 + c2V (t) + 2c2ε(t)
]

= 0 (11)

2Ḣ(t) + 3H(t)2 + c2K(t) +
4πG

c4

[

φ̇(t)2

− c2V (t) + 2c2p(t)
]

= 0 (12)

H(t)2(1 − 4Q(t)) + c2K(t) +
4πG

c4

[

φ̇(t)2

− c2V (t) + 2c2p(t)
]

= 0 (13)

1

c2

[

φ̈(t)φ̇(t) + 3H(t)φ̇(t)2
]

+
1

2
V̇ (t) + ε̇(t) +

3H(t)(p(t) + ε(t)) = 0 (14)
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These are the classical Friedmann equations (11 and 12, 13) together with

Klein-Gordon equation (10) and the conservation law (14). After all these

calculations are done we save a MAPLE type library, called cosmo.m

through a save command. We have to point out here that there are some

new facts around save command starting with MAPLE 6 version, so for

this we need to do as :

> parse(cat("save ",substring(convert([anames(),

"cosmo.m"],string),2..-2)),statement);

Having this library stored, every-time one need the above equations, it

can load fast through a read command. It provides all the functions and

variables directly without running all the stuff we presented here above.

Thus, the cosmo.m library provides all the necessary environment for doing

calculation within the standard model of cosmology, with FRW metric and

a scalar field and other matter variables included. For these last ones there

are some functions left undefined (epsilon(t) and p(t)) where the user

can define other matter fields than the scalar field to be included in the

model - even a second scalar field and/or the cosmological constant as

describing the dark-energy content of the Universe. Thus our library can

be used in more applications than those we presented in the next section.

In the same purpose, we left in the library some of the original equations

unprocessed - having different names - as for example the components

of the Einstein tensor (Ein(dn,dn)). Thus the user can finally save his

own library, expanding the class of the possible applications of our cosmo

library.

As an example, we shall next point out some results we obtained by

using this library for the so called “reverse-technology” (Ellis et.al. 2004)

treatment of inflation triggered by the scalar field.

4. Some results In the standard treatment of cosmological models

with scalar field, it is prescribed a certain potential function for the scalar

field (taking into account some physical reasons specific to the model pro-

cessed) and then the dynamical Friedmann equations are solved (if it is

possible) to obtain the time behavior of the scale factor of the universe.

As recently some authors pointed out, a somehow “reverse” method (Ellis

et.al. 2004) is also interesting, where the time behavior of the scale factor

is “a priori” prescribed (as a function of time which will model the sup-

posed time behavior of the universe in inflation or in cosmic accelerated

expansion) then solving the Friedmann equations we can extract the shape
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of the corresponding potential for the theory. This is the so called “reverse

technology” and we shall use it here to illustrate the usage of our cosmo.m

library.

We shall concentrate ourselves to the case of no matter variables other

than the scalar field. In this case we solve first equations (11) and (12)

for the potential V (t) and φ̇(t)2, not before denoting the last one with a

special intermediate Maple function called D2Phi(t) with subs command :

> Ecunr1:=subs(diff(Phi(t),t)^2=D2Phi(t),Ecunr1);

> Ecunr2:=subs(diff(Phi(t),t)^2=D2Phi(t),Ecunr2);

> solve({Ecunr1,Ecunr2},{V(t),D2Phi(t)});

Thus we have (Ellis-Madsen 1991) :

V (t) =
1

4π

[

Ḣ(t) + 3H(t)2 + 2K(t)
]

(15)

φ̇2 =
1

4π

[

−Ḣ(t) + K(t)
]

(16)

Here and in the following pages we have, as usual geometrical units

G = c = 1. Here we shall process one of the examples pointed out in

Ellis and Madsen article (Ellis-Madsen 1991), namely that one of de Sitter

exponential expansion, where

R(t) = R0e
ωt ; H(t) = ω (17)

Thus (15) and (16) became

V (t) =
3ω2

4π
+

k

2πe2ωt
; φ̇(t)2 =

k

4πe2ωt
(18)

after simple evaluations of the corresponding Maple expressions. It is obvi-

ous that φ̇(t) can be simply obtained by square root of the above expression

and can also be integrated to give the potential as:

φ(t) = −
1

2

√

ke−ωt

√

πω
+ φ0 (19)

The result is that, after evaluating the Einstein equations we have au-

tomatically satisfied Ecunr1, Ecunr2 and Ecunr3 and the Klein Gordon
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equation has the form :

EcuKG =

√

kω
√

πeωt
+

1

2
DV (t) = 0 (20)

The last one is used to express the DV(t) by solving it, and it is a point to

check the calculation if this expression is equal to that one obtained directly

from the potential. But this checking can be done only if we express, after

a sequence of simple subs and solve commands, the potential V (t) and his

derivative DV (t) in terms of the scalar field, more precisely in terms of

φ(t) − φ0. The result is

V (φ(t)) =
3ω

4π
+ 2ω2(φ(t) − φ0)

2 (21)

DV (φ(t)) = 4ω2(φ(t) − φ0) (22)

These results are in perfect agreement with the well-known results from

(Ellis-Madsen 1991).

We processed in the same way more examples, some of them com-

pletely new. Our purpose was to produce Maple programs for processing

the “reverse-technology” (Ellis-Madsen 1991)-(Ellis et.al. 2004) method for

these type of potentials with matter added to the model, especially dust or

radiative matter. Although the steps for computing are the same, there are

two points of the calculations where troubles can appear and the solution

is not straightforward. The first one is the integration of the DPhi(t) ob-

tained as the square root of D2Phi(t). Sometime it is not trivial to do this,

so in several cases we used approximation techniques, by evaluating the

cosmological functions at the initial time. Our main purpose was to pro-

duce good initial data for numerical solving the Einstein equations (with

the Cactus code, for example) thus these approximations can be a good

solution for short time after the initial time. The second trouble point is

to evaluate the potential in terms of the scalar field, namely to extract the

time variable from it. Sometimes here we have transcendental equations

and again some approximation methods can solve the problem. Because

these results are not in the topic of this article we plan to report them in

a future article.
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