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Abstract

The article illustrates the graphical study of geodesic
motion on curved space-times (mainly exact solutions
of Einstein equations) using the symbolic, numerical
and graphical computation facilities of Maple platform.
The example of null geodesics on Schwarzschild solu-
tion is completely processed. The geodesic curves are
plotted directly using DEtools package in Schwarzschild
coordinates.

1. Introduction

This article is dedicated to the study of the geodesic
motion on curved spacetimes solutions of the Ein-
stein equations (Einstein Spaces - [2], [3],[4]) using the
graphical facilities of Maple [6]. The study of geodesics
on Einstein spaces plays an important role in general
relativity for pointing out several properties as causal-
ity, dynamic behavior around black-holes and for long
time in the study of movements of cosmic objects (as
planets and satellites) in the solar system [4]. The lit-
erature concentrates mainly in approximate methods
or special analytic methods (which at an end are again
approximate methods) for solving the geodesic equa-
tions. The use of Maple in general relativity and in the
study of geodesic motion has a long standing history
(see for example [5], [7], [9], [10],[11] and at [1] for a
list of articles using Maple and GrTensorII package)

In this article we developed new analytical methods
for treating these equations in their entire complex-
ity using symbolic computation with Maple + GrTen-
sorII package. The main goal of the article was to

∗Permanent address : West University of Timişoara, Math-
ematics and Computer Science Faculty, Bl. V. Pârvan no. 4,
300223, Timişoara, Romania

bring the geodesic equations in an appropriate form to
graphically represent them for visualizing their prop-
erties in a more easy and striking way. We done this
using directly the DEtools package without explicitly
solving analytically the equations. We shall illustrate
here this study for the Schwarzschild spacetime, mod-
eling the environment around a black-hole for the null
geodesics (describing the motion of light particles). Af-
ter a short introduction on the geodesic equations on
Riemannian manifolds (in section 2) we shall concen-
trate (in section 3) to the preparing the set of differ-
ential equations in Schwarzschild spherical coordinates
using Maple analytic facilities (with GrTensorII pack-
age for Riemannian differential geometrical manipula-
tions). Finally, in section 4, we shall graphically rep-
resent the null geodesic curves using DEtools package
included in Maple for direct plotting the solutions of
the obtained differential equations.

2 Geodesics

A geodesic on a Riemannian manifold (M, g) is
defined as a smooth curve γ : (a, b) −→ M satisfying

∇γ̇(t)γ̇(t) = 0 (1)

where ∇ is the Levi-Civita connexion.
Using local coordinates (x1, ..., xm) for which the

connexion Christoffel symbols are Γk
ij with i, j, k = 1, m

and the geodesic curve is γ(t) = (x1(t), ..., xn(t)), the
above equations are a system of nonlinear ordinary dif-
ferential equations.

Considering the notations da(t)
dt = ȧ(t) and ∂

∂xi = ∂i

with i = 1, m we obviously have γ̇(t) = ẋi∂i. Thus:

∇γ̇(t)γ̇(t) = ∇γ̇(t)ẋ
i∂i =

ẋi∇γ̇(t)∂i +
d

dt
(ẋi)∂i = ẋi∇ẋj∂j

∂i + ẍi∂i =
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ẋiẋj∇∂j ∂i + ẍi∂i

But knowing that ∇∂j ∂i = Γk
ij∂k with i, j, k = 1, m

and choosing a torsionless connexion (i.e. is symmetric
: Γk

ij = Γk
ji) finally the geodesic equations became [2]

ẍk + Γk
ij ẋ

iẋj = 0 ∀k = 1, m (2)

Because the coefficients Γk
ij = Γk

ij(x) depend smoothly
on x we can use the classical existence Banach-Picard
theorem for initial values to deduce the next proposi-
tion on the local existence [8]:

Proposition : Let (M, g) a Riemannian mani-
fold. For any compact sub-manifold K of the tangent
space TM of the manifold there exists ε > 0 so that
∀ (x, X) ∈ K exists an unique geodesic γ = γx,X :
(−ε, ε) −→ M verifying γ(0) = x and γ̇(0) = X .

3 Maple+GrTensorII programs for
geodesic equations

This section is dedicated to the description of com-
mands and short programs in Maple we used for pro-
cessing the geodesic equations on Schwarzschild space-
time [4]. We preferred to calculate the Christoffel sym-
bols and the geodesic equations from the metric with
the help of GrTensorII package [1] as being the most
easy-to-use tensor manipulation package. Thus at the
very beginning we have the next sequence of Maple
commands:

> restart; grtw(); qload(schw);
> grcalc(Chr(dn,dn,dn));
> grdisplay(Chr(dn,dn,dn));

initializing the GrTensorII package, loading the metric,
calculating and displaying the Christoffel symbols. The
Schwarzschild metric line element has the form:

ds2 = (1 − 2m

r
)dt2 − dr2

1 − 2m
r

− r2(dθ2 + sin(θ)2dφ2)

in spherical coordinates (t, r, θ, φ). Next we shall
define the 4-velocity and 4-acceleration, namely

vi :=
dxi

dτ
; ai :=

dvi

dτ

where τ is the proper time measured in the proper
reference frame of the particle. We shall use an inter-
mediate coordinate set te(tau), er(tau), ph(tau),
th(tau) instead of the coordinates (t, r, θ, φ) fixed by
the GrTensorII, till we shall come back to Maple, where
there is no possibility of confusion. We done this as a
series of GrTensorII definitions:

> grdef(‘v{^i}:=
[diff(er(tau),tau),diff(th(tau),tau),
diff(ph(tau),tau),diff(te(tau),tau)]‘);

> grcalc(v(up)); grdisplay(v(up));
> grdef(‘accel{ ^i }:= [diff(er(tau),
tau,tau),diff(th(tau),tau,tau),diff(ph
(tau),tau,tau),diff(te(tau),tau,tau)]‘);

> grcalc(accel(up));grdisplay(accel(up));
> grdef(‘geo{ ^i }:=

accel{ ^i } +
Chr{ j k ^i }*v{ ^j }*v{ ^k }‘);

> grcalc(geo(up)); grdisplay(geo(up));

In this way we defined and computed a GrTensorII
4-vector, geo(dn) containing as components the four
geodesic equations. Next we shall not use anymore
GrTensorII so for our purposes we shall “extract” one
by one the components of geo(dn) as pure Maple ob-
jects:

> four:=grcomponent(geo(up),[t]);
> one:=grcomponent(geo(up),[r]);
> two:=grcomponent(geo(up),[theta]);
> three:=grcomponent(geo(up),[phi]);

A close inspection of the above equations shows
off the fact that we have mixed coordinates,
namely t, r, θ, φ (through the components of the
Christoffel symbols as calculated by GrTensorII) and
t(tau), er(tau), te(tau), ph(tau) coming from the com-
ponents of the 4-acceleration. To avoid this confusion
and because we are no more “inside” GrTensorII, we
proceed now through several substitutions, as the par-
tially we illustrate below:

> one:=subs(r=r(tau),one);
> two:=subs(r=r(tau),two);
.............
> one:=subs(

diff(er(tau),tau)=diff(r(tau),tau),
diff(th(tau),tau)=diff(theta(tau),tau),
diff(ph(tau),tau)=diff(phi(tau),tau),
diff(te(tau),tau)=diff(t(tau),tau),one);

......................

Thus we obtained the next four geodesic equations:

d2r

dτ2
− m

r(r − 2m)

(
dr

dτ

)2

− (r − 2m)
(

dθ

dτ

)2

−sin(θ)2(r − 2m)
(

dφ

dτ

)2

− m

r3
(r − 2m)

(
dt

dτ

)2

= 0

d2θ

dτ2
+

2
r

dr

dτ

dθ

dτ
− sin(θ)cos(θ)

(
dφ

dτ

)2

= 0
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d2φ

dτ2
+

2
r

dr

dτ

dφ

dτ
+ 2 ctg(θ)

dθ

dτ

dφ

dτ
= 0

d2t

dτ2
+

2m

r(r − 2m)
dr

dτ

dt

dτ
= 0

The last of the above equation can be written as:

d

dτ

(
(1 − 2m

r
)
dt

dτ

)
= 0

thus we can solve it using the next Maple commands
lines:

> bau:=diff((1-2*m/r(tau))*
diff(t(tau),tau),tau);

> expand(simplify(four*(2*m-r(tau))/
r(tau)+bau));

> four:=expand(simplify(four*(2*m-r(tau))/
r(tau)));

> ecufour:=(1-2*m/r(tau))*diff(t(tau),tau)-C1;
> diffte:=solve(ecufour,diff(t(tau),tau));
> ecufour:=expand(simplify(subs(diff(t(tau),

tau)=diffte,ecufour)));
> four:=expand(simplify(subs(diff(t(tau),

tau)=diffte,four)));
> four:=expand(simplify(four));

obtaining for diffte (with C1 as a constant):

dt

dτ
=

C1r

r − 2m

Now comes a series of alternate simplify and ex-
pand commands for arranging the terms in the rest of
the above equations - with substitution, of course, in
everyone of the diffte expression [6]. Finally we will
solve the three equation as:

> bau2:=diff(r(tau)^2*sin(theta(tau))^2*
diff(phi(tau),tau),tau);

> expand(simplify(subs(sin(theta(tau))=
sin(theta),cos(theta(tau))=
cos(theta),bau2/r(tau)^2/
sin(theta(tau))^2)-three));

> ecuthree:=r(tau)^2*sin(theta)^2*
diff(phi(tau),tau)-C2;

> diffph:=solve(ecuthree,diff(phi(tau),tau));
> ecuthree:=expand(simplify(subs(diff(

phi(tau),tau)=diffph,ecuthree)));
> three:=expand(simplify(subs(diff(phi(tau),

tau)=subs(theta=theta(tau),
diffph),subs(cos(theta)=cos(theta(tau)),
sin(theta)= sin(theta(tau)),three))));

> one:=subs(diff(phi(tau),tau)=diffph,one);
> two:=subs(diff(phi(tau),tau)=diffph,two);

obtaining for diffph the expression

dφ

dτ
=

C2

sin(θ)2r2

where C2 it’s another constant. To solve the last two
remaining equations (one and two and after substitut-
ing the above expression for diffph) is necessary to fix
the coordinate θ = π/2, the movement being restricted
to the equatorial plane. Thus we have:

> bau3:=diff(r(tau)^2*diff(theta(tau),tau),
tau)- r(tau)^2*sin(theta)*cos(

theta)*diffph^2;expand(simplify(bau3/
r(tau)^2-two,trigsin));

> one;two; theta(tau):=Pi/2;
> one:=eval(subs(theta=Pi/2,eval(one)));
> two:=eval(subs(theta=Pi/2,eval(two)));

followed again by an appropriate sequence of sim-
plify and expand commands, for arranging the terms.
Observe that the second equation (two) is now can-
celed by the fixing of θ coordinate. Finally we have the
equation (from one Maple object):

d2r

dτ2
− m

r(r − 2m)

(
dr

dτ

)2

−C2
2 (r − 2m)

r4
+

C2
1m

r(r − 2m)
= 0

coupled with the above expressions for diffte and
diffph.

Our purpose is from now one to split the above equa-
tion in two different ones, expressing the derivatives
for r and t in terms of the angular coordinate φ, thus
eliminating the proper time τ . Physically this means
we shall study the geodesic movement of a particle in
Schwarzschild coordinates from the point of view of an
inertial observer situated far away from the two singu-
larities (r = 2m or r = 0) where the reference frame
can be considered a Minkowski one (flat spacetime).
This can be done directly through appropriate manip-
ulating of the equations above. Finally we will split the
one remaining equation in two (Maple defined objects
one1 and one2) as:

> aba1:=C2*diff(r(phi),phi)/r(phi)^2;
> aba2:=C2^2/r(phi)^4*(diff(r(phi),phi,phi)-

diff(r(phi),phi)^2/r(phi));
> one1:=subs(diff(r(tau),tau,tau)=aba2,

diff(r(tau),tau)=aba1,r(tau)=r(phi),one);
> one1:=expand(simplify(one1));
> one2:=diff(t(phi),phi) -

C1*r(phi)^3/C2/(r(phi)-2*m);

Thus we obtained the next two differential equations:
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C2
2

r4

d2r

dφ2
− C2

2 (r − m)
r5(r − 2m)

(
dr

dφ

)2

−

C2
2 (r − 2m)

r4
+

C2
1m

r(r − 2m)
= 0 (3)

dt

dφ
− C1r

3

C2(r − 2m)
= 0 (4)

The first of the above equations is, obviously, the
generalized Binet equation (with extra terms coming
from the gravitational interaction) for a central field
movement [4] - this fact is easy to prove when we are
changing as usual the variable r −→ 1/u. The standard
procedure here is to solve it approximatively (as is done
for the study of the movement in the solar system) or
to use elliptic functions (see for example in [4], cap.
15). Instead we preferred here the direct solving of this
system of differential equations, as we shall explain in
the next section.

4 Graphical results

Maple has the DEtools package, which permits,
among other facilities the numerical integration (and
the direct visualization through appropriate DEplot
commands) of certain systems of differential equations
- see [6]. An entire class of numerical integration
methods are at the user disposal (as for example sev-
eral Runge-Kutta methods, Taylor series, Rosenbrock
method, and so on). A problem here could be the ap-
propriate choosing of the integration methods as well
as the dimension the integration steps (stepsize op-
tion). In our particular case the main problem will be
to avoid the singularity of the Schwarzschild metric at
r = 2m (in this coordinate frame).

We used the Maple commands sequence below for
numerical integration of the system of equations (3,4)
obtained in the previous section. Of course we specified
before certain values for the constants, in our examples
we used m = 1, C2 = π, C1 = 1.

> with(DEtools);
> one1graph:=subs(C2=Pi,C1=1,m=1,one1);
> ini1:=r(0)=3,D(r)(0)=1;
> one2graph:=subs(m=1,C2=Pi,C1=1,one2);
> ini2:=t(0)=0;
> DEplot(one1graph,r(phi),phi=0..Pi,[[ini1]],

method=classical,axes=BOXED,
thickness=5,stepsize=0.001);

> DEplot3d([one1graph,one2graph],[r(phi),
t(phi)],-Pi/4..Pi,[[ini1,ini2]],

r(phi)
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1.5

1
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32.521.510.50
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t(phi)

20
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Figure 2.

method=classical,stepsize=0.001,axes=
BOXED,thickness=5);

The first DEplot command above is producing
the bidimensional graphical representation of the first
equation (3) - (one1) practically being the function
r(φ). We used Runge-Kutta method (“classical” op-
tion). The result is the figure no. 1.

Much more interesting is the graphical output ob-
tained through the second DEplot3d command above.
Here are numerically integrated (and graphically plot-
ted) the system of the two equations (eqs. 3 and 4
through the Maple objects one1 and one2). We ob-
tained a 3-d plot, being represented both functions
r(φ), t(φ) in terms of the radial variable φ. At an
appropriate resolution Maple can deal with the singu-
larity at r = 2m. This plot is presented here in Figure
2

The 3-dimensional plot we have here can also out-
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put several projections on different planes of the cor-
responding image by rotating the image obtained in
the Maple graphical interface. These results are illus-
trated in the next two figures (3) and (4). The first
one, namely 3 represents a projection on the plane
φ = const plotting the function r(t). It is very striking
here the situation around the singularity at r = 2m
(here r = 2 m being unity). Because our equations are
the null geodesic (i.e. photons trajectories) this type of
plotting can be used for the study of causality on the
space-time represented by the Schwarzschild metric. It
is obvious the different behavior of these geodesics out-
side and inside the Schwarzschild horizon at r = 2m
(see [4]).

The image plotted in Figure 4 represents the pro-
jection of the 3-dimensional image we obtained on the
plane t = const being actually the image of the func-
tion r(φ).

It is also possible to represent, on the same plot
multiple geodesics, as emerging from a single point with
different initial data (angles) as we illustrate in Figure
5 using the same plot command.

5. Conclusions

We illustrated here the possibility of the study of
geodesic motion using the graphical facilities of an
integrated (algebraic+graphic) computer platform as
Maple. We applied the DEtools package included in
several versions of Maple (we mainly used Maple 9 but
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this package is present even in older versions) for direct
numerical integrations and numerical output plotting
of geodesic equations. For this purpose it was necessary
to bring the equations in an appropriate form which
imposed a special treatment by algebraic computing
methods (including tensorial manipulations done in
GrTensorII package). This treatment was somehow dif-
ferent of the classical analytical methods used to study
the geodesic equations in the literature. For the case of
null geodesics on Schwarzschild spacetime (which was
our working example) we obtained the geodesic equa-
tions in Schwarzschild coordinates which we consid-
ered more appropriate for visualizing the trajectories
described by the geodesic equations.

The Maple programs and commands sequences we
used can be easily adapted for other examples. DeSit-
ter, anti-DeSitter and Robertson-Walker metrics are in
our view, as future development of this study.

The main conclusion is that, at least Maple
(equipped with appropriate packages as we mentioned
: GrTensorII and DEtools) can deal through its graph-
ical and analytic facilities, with the study of geodesic
equations on curved space-times, as part of the more
general topic of numerical relativity (computer solving
of Einstein equations)
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