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Abstract—Gait analysis has become an attractive quantitative
and non-invasive mechanism that can aid early detection and
monitoring of the response of Parkinson’s disease sufferers to
management schedules. In this paper, we model cycles of human
gait as a sparsely represented signal using over-complete dictio-
nary. This representation forms the basis of a classification that
allows the recognition of symptomatic subjects. Experiments have
been conducted using signals of vertical ground reaction force
(GRF) from subjects with Parkinson’s disease from the publicly
available gait database (physionet.org). Our method achieved a
classification accuracy of 83% in recognising pathological cases
and represents a significant improvement on previously published
results that use a selection of the Fourier transform coefficients
as features.

I. INTRODUCTION

Gait analysis can be used in the quantification of human lo-
comotor disorders. By quantitatively studying human walking
patterns, gait analysis is able to assist in the diagnosis of neuro-
musculoskeletal diseases, therapy planning and rehabilitation
evaluation [1]. Increasingly, gait analysis is being used to
provide supplementary reports to support diagnosis or evaluate
rehabilitation progress of subjects undergoing treatment or
assessment in hospitals or gait laboratories [2].

When used as a diagnostic tool, it can facilitate the detection
of pathological gait which may be useful in clinical decision-
making and automatic disease recognition. Pathological gait is
a significant indicator for many neuromusculoskeletal diseases,
especially in early stages. Gait analysis can also be used
to conduct quantitative studies on longitudinal data from
pathological subjects. Such studies provide quantitative and
objective evaluation of changes in gait before and after under-
going treatments and can assist decision making for therapy
updating and rehabilitation.

The types of data captured from gait monitoring devices
include kinetic, kinematic or temporal-distance and are of high
dimensionality and variability. For instance, the kinetic data
may include ground reaction force beneath various parts of the
feet such as toes and heels. The kinematic data may involve
angles of joints in frontal plane (abduction and adduction),
sagittal plane (flexion and extension) and transverse plane
(external and internal rotations) [2]. Once captured, the data

constitutes large number of time series samples with high di-
mensionality. Furthermore, gait has a high intra-subject, inter-
subject, inter-cycle variability. These problems exacerbate the
difficulty of modelling the data and time taken to conduct the
gait analysis [3].

Parkinson’s disease is an example of nervous disease with
symptoms of movement disorders. The degeneration of central
nervous system decreases the ability of the individual to
control their locomotor systems in the early stage of Parkin-
son’s disease. The gait is affected and thus its analysis is
considered a quantitative and noninvasive method for early
detection of Parkinson’s disease. As mentioned above, the
high dimensionality and variability of gait data available for
analysis make the detection task difficult.

In this paper, we use a sparse representation based on
over-complete dictionary to model gait data of subjects with
Parkinson’s disease and identify pathological gait patterns.
Sparse representation seeks a sparse linear combination of
atoms from a given dictionary to faithfully represent an input
signal. The reconstructed signal based on the dictionary is such
that it is the best approximation using the minimum number
of atoms. Compared to traditional pattern recognition and
machine learning algorithms, sparse representation provides an
easy interpretation for diagnostic results. The selected atoms
for representing an input gait signal together with coefficients
used in linear combination become evidence for diagnosis and
are more descriptive. Doctors and clinicians usually prefer a
descriptive method to a black box, as would be the case for
neural network, for easier understanding.

The remaining parts of this paper are organised as fol-
lows. Section II presents related work in which quantitative
gait analysis have been conducted to achieve pathological
gait recognition. In Section III, details about the proposed
algorithm as well as theoretical formulation are provided. We
describe the dataset used in our experiments in Section IV.
Experimental design to evaluate our proposed algorithm and
results obtained on GRF signals to recognise subjects with
Parkinson’s disease are described in Section V. We offer some
concluding remarks in Section VI.



II. RELATED WORK

Quantitative gait analysis normally involves discriminative
feature extraction and quantitative analysis. A data set for a
single subject may combine kinetic, kinematic and temporal-
distance data types, depending on the available capture equip-
ment and the intended purpose of the study. It is also known
that data describing human movement are highly correlated,
temporally dependent and normally contains a large number
of time series samples [3]. For these reasons, it is important
to employ some dimensionality reduction technique to pro-
cess the data and obtain discriminative features in a reduced
dimension.

The most intuitive approach is to work on the bio-
mechanical features extracted from gait data since they are
either highly related to certain diseases or generally shared by
various neuralmuscular diseases. Senanayake et al. [4] derived
the timing of gait phases from both kinetic and kinematic
features. By accurately identifying each phase and testing the
timing of the gait phases, pathological gait is detectable. Be-
sides the timing of gait phases, other bio-mechanical features
include peak time, intensity of GRF signals [5], minimum
foot clearance (MFC) of toe displacement [6]. These bio-
mechanical features significantly reduce the data dimension
by only selecting values with clinical or bio-mechanical
importance. Meanwhile, temporal dependence between gait
cycles is neglected. The extraction of bio-mechanical features
requires detection of specific gait events. However, gait events
derived from an able-bodied subject may be difficult to locate
in symptomatic gait data. The various methods available to
define and calculate these events would further increase the
subjectivity in gait analysis [7].

A more robust approach to extract features from gait data is
to use analytical techniques that seek discriminative features
by mathematically modelling the gait data. Such methods
are able to identify local and global features automatically.
Fourier transform has been used to derive features from gait
signals [8]. By retaining only the first 28 coefficients from a
128-point Fourier transform of vertical GRF, the authors in [8]
reduced the dimensionality of the feature of interest in the data
space. The transformation and selection also preserved the top-
level features between normal and abnormal gait signals. A
neural network was then trained to classify the reduced gait
data and a high classification rate of 95% was achieved. It is
not clear whether this result represent an average over several
tests or a cross-validation output. However, most pathological
subjects in this study were patients with calcareous fractures
and artificial limbs, who suffer heavy movement impairment.
The data selected was the vertical GRF pairs of both limbs
in the stance phase and did not cover long-time walking
information. Furthermore, by applying Fourier transform and
dropping portions of the coefficients, the information on time
axis and subtle changes of the force intensity were lost.
Clinically important components might also be missed. Köhle
and Merkl extended the work by employing a different neuron
function and involving force intensity in three dimensional

space [9]. Deluzio and Astephen [10] work on gait wave-
forms to extract discriminative components and reduce data
dimension using principal component analysis. By excluding
several less important components, discriminative features are
gained with lower dimension. Some other techniques that
have been used to extract discriminative features and reduce
the data dimension include factor analysis (FA) and multiple
correspondence analysis (MCA) [3].

The applications of quantitative gait analysis mainly falls
into two categories: evaluation of rehabilitation or treatment
performance and pathological gait detection. Both of these
applications provide important indicators for planning and
refining treatments schedules. Yang et al. [11] proposed an
algorithm to assess gait patterns of complex regional pain
syndrome (CRPS) using multiple layer perceptron neural
networks (MLP). PCA has also been used to analyse the
gait data to seek the most statistically significant patterns for
further evaluation [10]. Three kinds of gait signals related
to knee osteoarthritis from multiple subjects were used in
the study. Principal component analysis was used as, not
only dimensionality reduction method but also feature extrac-
tion algorithm. The authors interpret the computed principal
components in the view of bio-mechanical properties and
conducted discriminative analysis to classify the data set. They
achieved a result of misclassification rate of 8%.

Pathological gait detection assists in diagnosing diseases
impacting locomotor systems. Efforts in this area of research
have employed techniques from computational intelligence;
for example, multi-variate statistical methods, support vector
machine and neural networks [12]. Lai et al. [5] extracted
peak values and time to those peaks in five direction from
GRF. Kinematic features including maximum angle of rear
foot (measured in three anatomical planes) and tibia (measured
only in transverse plane) as well as time to these maximum
points were put together with feature points from GRF. The
resultant 30-feature samples was collected from 27 subjects.
Support vector machine was used and a good classification rate
was obtained by combining features from both GRF signals
and kinematic signals. Some recent research also apply hidden
Markov model on detecting pathological gait phase [13] and
fuzzy inference systems which treat the variability within
gait data as non-probabilistic uncertainties [4], [3]. There is
also a trend to combine multiple algorithms to gain both
high classification rate and descriptivity. For example, in [14],
decision tree and neural networks were combined to rank
knee osteoarthritis. In this paper, we focus on pathological
gait detection of subjects with Parkinson’s disease. Sparse
representation is adopted in the extraction of discriminative
features.

III. PATHOLOGICAL GAIT DETECTION BASED ON SPARSE

REPRESENTATION

In our proposed method we pose pathological gait detection
as a binary classification problem. A query gait signal is
labelled as either normal or pathological during the classi-
fication process. In particular, we adopt sparse representation



of signals based on learned dictionary to detect pathological
gait from subjects with Parkinson’s disease. The dictionary
learning algorithms address the problem of modelling gait
signals with intra-subject and inter-subject variations. Based
on sparse representation constraints and learned dictionary,
atoms from the dictionary are able to faithfully recover the
training signal. To motivate our approach we assume a gait
signal is a combination of prototype signals with inter-subject
and intra-subject variations. The prototype signals are the
atoms of the learned dictionary. A query gait signal can be
assigned to a certain class according to the reconstruction
error [15] incurred by sparse representation or using a jointly
trained classifier to work on the sparse coefficients [16], [17].

Sparse representation seeks a sparse linear combination of
atoms from a given dictionary to faithfully reconstruct an
input gait signal. The dictionary is represented as a matrix
whose columns are the atoms and the training signals lie in
the associated column space. The sparse constraint ensures
that only a few of the columns are needed for the repre-
sentation. In other words the coefficient vector has few non-
zero entries. We represent a database with n data samples
as Y = {y1, y2, . . . , yn}. Each data sample yi ∈ Rd may
involve several features extracted from either a normal subject
or a subject with Parkinson’s disease. Let the sparse coef-
ficients for the database Y be denoted by a matrix X =
{x1, x2 . . . xn}, where {xi ∈ Rd, i = 1, 2, . . . n}. The
problem of sparsely encoding a gait signal can be formulated
as follows [18],

arg min
xi

‖yi − D · xi‖2
2 s.t. ‖xi‖0 < T0, (1)

where D represents the dictionary matrix with {di ∈ Rd, i =
1, 2, . . . ,K} as its atoms. T0 < k is a predefined number
which constrains the maximum number of atoms allowed
have corresponding non-zero entry in the coefficient vector. In
Fig. 1, a gait signal and its sparse representation coefficients
are shown. The signal in Fig. 1 records the ground reaction
force in vertical direction for one gait cycle. The 6th atom in
Fig. 1 (a) gains the largest coefficient value and hence is more
likely to be in the same class as the test signal.

Gait signals are of high variability between and within
subjects as mentioned above. The dictionary D is expected
to only adequately reconstruct either normal or symptomatic
gait data using sparse representation in the classification task.
A dictionary D learned from a database is supposed to have
its atoms capture the structure of signals in the database.
Thus, the training database with gait signals from multiple
pathological subjects and more training samples than the
desired number of atoms (size of dictionary) is used to train
one dictionary. Another dictionary is trained using the database
containing normal gait signals with the same structure as the
pathological database. The two dictionaries are trained either
separately by K-SVD [18] or jointly by D-KSVD [16] and
LC-KSVD [17]. The performance of each algorithm will be
evaluated in Section IV.

K-SVD is a dictionary learning algorithm which generalises

the K-means clustering algorithm [18]. K-SVD aims to find
a dictionary and a set of coefficients to minimise the recon-
struction error with respect to the whole training database. The
objective function is written as in (2),

arg min
D

n∑
i=1

‖yi − D · xi‖2
2 s.t. ‖xi‖0 ≤ T0. (2)

Orthogonal matching pursuit (OMP) [19] is used to iteratively
solve (1) prior to optimising (2). A similar matrix is calculated
using singular value decomposition (SVD) for all k atoms in
the dictionary D. The dictionary D is iteratively adapted to rep-
resent database Y. Sparse representation-based classification
(SRC) [15] drives the classification process using the trained
dictionaries. In its original formulation SRC directly selects
training signals from c different classes to construct c sub-
dictionaries without an explicit feature extraction procedure.
Each sub-dictionary Di ∈ Rd×Ni contains selected vector
samples among all the Ni samples belonging to the ith class.
In this paper, the two sub-dictionaries, Dc and Dp, are trained
for control and pathological classes respectively. A query
sample is sparsely encoded using the trained sub-dictionaries
either separately or jointly as one dictionary DJ = {Dc, Dp}.
The sample is assigned to the class which can faithfully
recover the input. The category of an unknown sample yk

will be identified as [15],

Labelk = arg min
k

‖yk − Di · xDi
‖2 i ∈ [p, c]. (3)

In classification tasks using sparse representation, the over-
complete dictionary is expected to be both representative
and discriminative. However, the discriminative constraints
were not explicitly forced during the optimisation process
in conventional dictionary learning algorithms. Only repre-
sentation performance is optimised in the training process.
The classification relied on the differences manifesting in the
sparse nature of test samples. D-KSVD [16] is a dictionary
learning method that constructs a dictionary which is both
representative and discriminative. The formulated optimisation
problem has been included into the framework of K-SVD and
is written as,

arg min
W,X,D

=
∥∥∥∥
(

Y√
α · H

)
−

(
D√

α · W

)
· X

∥∥∥∥
2

F

(4)

s.t. ‖xi‖0 < T0,

where H = {h1, . . . , hn} contains the label information, W is
a jointly trained linear classifier and α is the parameter con-
trolling contribution of label information. The linear classifier
W is trained with the dictionary D together using K-SVD
algorithm. The objective function (4) associates each training
sample with a class label and combines the classification
error and reconstruction error together in selecting appropriate
atoms. It is possible to derive a classification scheme using
the trained dictionary D and the linear classifier W. Label
consistent K-SVD (LC-KSVD) [17] further associates each
atom in the dictionary with a class label at the initialisation
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Fig. 1. (a) A gait signal with its sparse coefficients and (b) Atoms utilised to recover the original signal
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Fig. 2. (a) Decomposed components for a normal gait cycle (b) Decomposed
components for a pathological gait cycle

stage. By adding a label consistent error to the objective
function of D-KSVD, the new objective function is written
as,

arg min
W,X,D

=

∥∥∥∥∥∥
⎛
⎝ Y√

α · H√
β · Q

⎞
⎠ −

⎛
⎝ D√

α · W√
β · A

⎞
⎠ · X

∥∥∥∥∥∥
2

F

(5)

s.t. ‖xi‖0 < T0.

The information section Q about atom labels is added in each
training sample. The transition matrix A maps the sparse code
matrix X into atom label space which is recognised as more
discriminative space. Each atom is associated with one row
of Q at the initialisation stage. For a training sample yi, the
corresponding column qi is 1 for all the rows representing
atoms from the same class as this training sample. In the K-
SVD training process, the samples are forced to be decom-
posed using atoms which are originally from the same class
as the training samples. Similar to D-KSVD, the jointly trained
classifier W is later used as a classifier on sparse codes.

Fig. 2 shows a pair of gait signals for one cycle from both
control and pathological subjects. They are sparsely encoded
using a dictionary trained by D-KSVD. Each signal is de-
composed into a main component (MC) and several variation
components (VC1, VC2,. . . ). The number of training samples
is much larger than the number of atoms in the trained dictio-
nary. Hence, in the training process, a limited number of main
components and variation components are used to represent a

TABLE I
NUMBER OF SUBJECTS IN THE DATASET

Group Number of Patients Number of Controls
Ga [20] 25 16
Ju [21] 29 25
Si [22] 34 28

much larger number of samples. Main components describing
the prototype signal for control subjects are prevalent in
the sub-dictionary trained with control gait signals. However,
these components are rare in the sub-dictionary trained with
pathological signals. This makes both the reconstruction errors
and sparse codes discriminative between pathological and
control signals. The main components largely determine to
which class the gait signals should be assigned. The results
shown in Fig. 2 are also easier for clinicians to judge and
evaluate the diagnostic results; a common requirement for
application in clinical gait analysis [14].

IV. EXPERIMENTAL DATA

Experiments were conducted on natural gait data sets. The
data set contains both pathological and control subjects of
matched ages. Pre-processing procedures were undertaken to
segment the data into gait cycles for each subject.

A. Gait data measured from subjects

The data set records vertical GRF when subjects walked
at self-selected speeds. The data set contains vertical force
intensity signals from subjects with Parkinson’s disease and
controls from physionet.org. For each subject, eight force
sensitive sensors were inserted beneath both left and right
feet. Force intensity for each individual sensor as well as
the total force intensity for each limb are available in this
data set. All the information included in this data set is from
three previous studies using the same measurement equipment.
The number of subjects from each study is shown in Table I.
Among all the selected 157 subjects, 94 subjects are male
while 63 subjects are female. The subjects with Parkinson’s
disease are of matched age with control subjects.



(a) (b)

Fig. 3. Gait cycle segmentation using toe-off events

B. Pre-processing on gait data

All the force intensity waveforms were sampled at 100
samples per second for around 2 minutes. Each of the long
term signals in this data set involves several gait cycles.
Among all 8 gait signals measured from different positions
of feet, force information on heels and toes is usually utilised
to separate each gait cycle from the whole waveform in terms
of the toe-off and heel-strike events. In this paper, the toe-
off events were utilised to separate gait signals into multiple
cycles. By tracking the moment when the force intensity at
the toe part decreases to zero (“incoming zero”), the toe-off
event can be identified to differentiate two cycles as shown in
Fig. 3 (a) and (b). In Fig. 3 (a), each incoming zero has been
marked by an asterisk. The upper plot in Fig. 3 (b) shows a
truncated gait signal involving several cycles. Cycles of this
gait signal are separated by red lines drawn from the asterisk-
marked points in Fig. 3 (a). The lower figure in Fig. 3 (b)
presents a separated cycle which is the first complete cycle
enclosed by a black frame. Segmented cycles are data samples
in this study.

V. EXPERIMENTAL DESIGN

Features were extracted from vertical GRF data described in
Section IV-A from heels, toes as well as the entire foot. A gait
sample which describes one gait cycle may consists of features
derived from different parts of the feet. Samples were classi-
fied using sparse representation-based classification algorithms
including SRC with K-SVD trained dictionaries (SRC†), D-
KSVD and LC-KSVD. The resultant classification rates were
also compared to those obtained using support vector machine
(SVM) on the same features.

A. Feature Extraction

Because the durations of gait cycles vary within and across
subjects, features were extracted using linear interpolation to
align them to the same range. Thus the features incorporated
in the classifiers are of identical length. Gait cycles were
normalised against time and weight of subjects individually so
that force values sampled at specific time points are aligned to
the correspondence percentage of the whole cycle. This also
enabled comparisons between subjects with different weights.

In this paper, features combine interpolated vertical GRF
beneath heels & toes of both limbs (LRHT) and the entire
foot of a single limb (VGRF). Each feature sample extracted
from a gait cycle is of the same dimension.

Fourier transformation (FT) was also used to remove the
inter-cycle variations and extract discriminative features. Fur-
thermore, by selecting only the significant coefficients pro-
vided by FT, the dimension of the gait data was reduced. FT
was conducted on GRF beneath the entire foot of a single
limb (VGRFFT). We chose 25 real and 25 imaginary FT
coefficients because they preserved over 99% of the power
of the original signal.

In classification algorithms using sparse representation,
sparse features were further extracted. Above-mentioned fea-
tures from test samples were further projected onto the trained
dictionaries. The resultant sparse codes of feature samples
became new feature samples which were used with either the
dictionary or the jointly trained classifier to make a decision
of the class labels.

B. Experiments using SVM

In the experiments using SVM, the open-source support vec-
tor machine library, “libsvm” [23] was employed. Parameters
of SVM with a specific kernel were adjusted, and using each of
the features mentioned above, to achieve the best performance.
In this paper, we tested the linear and radial basis function
kernels. For each kernel and feature, the SVM model was
trained with relevant parameters varying from 2−10 to 211.
The best classification rate with the optimised parameters was
chosen as the final result for that kernel-feature. The SVM
models were firstly trained using feature samples and label
information of each sample and then tested by classifying
unseen samples.

10-fold cross-validation was taken as the validation method
to evaluate the generalisation performance (classification rate).
Feature samples from 157 subjects were grouped into 10
folds. Each fold involves samples extracted from both patients
and controls. Features samples extracted from controls were
all marked as normal while those extracted from abnormal
persons were marked as pathological. All samples collected
from the same person were assigned to the same fold. Each



TABLE II
CLASSIFICATION OF FEATURES USING DIFFERENT SVM KERNEL

FUNCTIONS

Linear Kernel Radial Basis Kernel
VGRF 64.97% 68.79%

VGRFFT 65.61% 65.61%
LRHT 80.25% 81.53%

TABLE III
CONFUSION MATRIX FOR RADIAL BASIS KERNEL WITH RESPECT TO

LRHT

Number of Controls Number of Patients
True 51 77
False 18 11

fold thus held 15 to 17 subjects. At each cross-validation
iteration, feature samples in one fold were reserved as test
fold while the other folds were used to train the classifiers. The
iteration continued until all folds were once used as the test
fold. The cross-validation performance was tested on all the
three features using both the proposed algorithms and SVM.

A subject can be recognised as a gait-intact subject when
majority of feature cycles extracted from this gait signal are
classified as normal. We aim to apply the previous verified
classifier and features to our current data set and compare
the classification results with those using sparse representation
based algorithms.

Table II shows the best classification rate with SVM on
different features using two kernel functions with optimised
parameters. The radial basis kernel recommended by [23]
works best across all the features with the highest classification
rate of 81.53% for LRHT. The confusion matrix for this result
is shown in Table III. The cost parameter c and degree value in
the kernel function are 25 and 2−4 respectively. According to
Table II, LRHT containing force information from heels and
toes of both limbs shows the highest discrimination among
control and pathological gait.

C. Experiments using SRC†
Performance of the joint dictionary and individual dictio-

naries was also tested on the above-mentioned features. For
the experiments using SRC†, features from pathological and
control subjects were used to train two dictionaries separately.
The test samples stacked in column vectors were sparsely
encoded either by two dictionaries separately or by a joint
dictionary. Experiments on individual dictionaries (SRCI ) and
the joint dictionary (SRCJ ) were conducted for various levels
of sparsity. Classification rates using one joint dictionary and
two individual dictionaries are compared in Section V-E. The
dictionary sizes for the feature VGRF, VGRFFT and LRHT are
350, 75, 900 respectively.

As shown in Table. IV, with a joint dictionary, the highest
classification rate of 76.64% was achieved by SRCI with
feature LRHT. For sparse coding using individual dictionaries,
a relatively lower classification rate of 75.16% was reached,
which is rather close the that of SRCJ . and training samples.
However, SRCJ with a joint dictionary is more robust to the

TABLE IV
EXPERIMENTAL RESULTS FOR SRC†

Features
Classification Rate Sparsity
SRCI SRCJ SRCI SRCJ

VGRF 58.60% 63.69% 5 25
VGRFFT 59.24% 60.51% 25 15
LRHT 75.16% 76.64% 20 10
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Fig. 4. Experiment results with sparsity from 5 to 50

changes of sparsity as is shown in Fig. 4. Both SRCI and
SRCJ were conducted triple times on LRHT. The classification
results against each sparsity value are shown in Fig. 4. With
the sparsity increasing, the classification rates of SRCJ trends
to converge to 74% while those for SRCI are still fluctuating.

D. Experiments using D-KSVD and LC-KSVD

The parameter tuning procedure was also applied on D-
KSVD and LC-KSVD. The classification rates obtained with
the optimised parameters were later used to evaluate features
and algorithms. The training and test data groups for LC-
KSVD and D-KSVD follow the same procedure as those
for SRC† in Section V-C. Control and pathological samples
were jointly used to train a unique dictionary with potential
sub-dictionaries embedded. Two classifiers were trained with
these two algorithms jointly. The test gait samples were firstly
sparsely encoded using a dictionary and the sparse codes were
then classified using the linear classifier trained together with
the dictionaries.

Compared to SRC†, the additional parameter to be adjusted
in D-KSVD is α which controls the contribution of classi-
fication errors in the objective function. We verified values
of

√
α in (4) from 2−10 to 211 as for SVM and SRC†. LC-

KSVD further adds the parameter β that adjusts the penalty of
using atoms with different labels than the input sample. This
parameter,

√
β in (5), was also tested with the value varying

from 2−10 to 211. Both α and β were tested with the sparsity
values 10, 25, 40, 55. The best performance for each sparsity
level is shown in Table V and Table VI.

The classification rates using D-KSVD and LC-KSVD on
the LRHT features based on gait cycles are shown in Fig. 5. As
shown in Fig. 5 (a), when sparsity reaches a certain threshold,
allocating more atoms for reconstructing the input signal did
not positively impact the classification rate but the simulation
speed of the experiments deteriorates. For both D-KSVD and
LC-KSVD with a constant sparsity, a large-valued parameter
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Fig. 5. Experiment Results for D-KSVD and LC-KSVD with Varying Parameters

TABLE V
EXPERIMENTAL RESULTS FOR D-KSVD ON LRHT

Sparsity Classification Rate Parameters
√

α
10 77.07% 2−1

25 81.53% 2−1

40 80.89% 2−4

55 81.53% 25

TABLE VI
EXPERIMENTAL RESULTS FOR LC-KSVD ON LRHT

Sparsity Classification Rate
Parameters√
α

√
β

10 78.98% 2−1 2−4

25 81.53% 2−7 2−7

40 81.53% 2−7 2−7

55 83.44% 2−10 22

α or β will overfit the classification model. The classification
rate decreased when the value of

√
α exceeded 26. In these

cases, classification errors dominate the reconstruction error.
The added label information will dominate the input signals,
which leads to a high training classification rate while the
general performance becomes poor.

E. Discussion

Among all the classification algorithms, LC-KSVD reached
the maximum classification rate of 83.44%. SVM and D-
KSVD converged at 81.53% with SRC† being at 76.64%.
All the highest rates were achieved on LRHT. Although the
highest classification rates of SVM and sparse representation-
based algorithms are quiet close (only three more persons
were correctly classified for the case with 83.44%), the latter
methods are more descriptive and interpretable.

According to results quoted above, LRHT turns out to be the
most discriminative feature between pathological and control
subjects. GRF changes beneath heels and toes are generally
used to differentiate gait phases during walking [2]. LRHT
contains interpolated GRF cycles from heels and toes of both
limbs, which provides not only the durations and orders of gait
phases but also conditions of walking balance. Pathological
subjects in this data set are in Stage 2 or over of the Hoehn and
Yahr Stages of Parkinson’s disease, wherein stage symptoms

start to impact both limbs. Thus, LRHT provides extensive
information about symptoms manifesting in gait.

In Fig. 6, the original VGRF cycle (OC) and main com-
ponent (MC) are shown together with three variation compo-
nents (VC) with the largest amplitudes. Both samples were
projected onto the same dictionary trained by LC-KSVD.
Main component of the misclassified pathological sample in
Fig. 6 (b) gains features of a control sample when compared
to MC in Fig. 2 (a). Misclassified control samples undergoes
similar variation (Fig. 6 (a)). The manner in which samples
are sparsely represented determines the results of the classifi-
cation. Because OMP was used to decompose input samples,
similarities between the samples and atoms dominate the rep-
resentation process. In our paper, feature samples are extracted
from quasi-periodic signals which are of high similarity, and
this distorts the classification algorithms.

Due to correlations among gait cycles, it is necessary to
improve the logic of determining class labels of subjects based
on cycle labels. In future work we may explore data fusion
techniques, so decisions on each gait cycle may be combined
using some of the classifier combination techniques [24], [25].
Meanwhile, all gait cycles are currently treated as a single
cycle in the sparse coding stage. In fact, feature samples
extracted from the same person are supposed to share a similar
main component. Constraints on the similarity of sparse codes
for a certain subject may also assist in classifying subjects
according to gait cycles. As the stage of Parkinson’s disease
increases, the gait deteriorates when compared to the normal.
One would expect that the accuracy of detection increases
with the stage of the disease. However, based on the data
set we used in our experiments, we have not noticed a clear
correlation between the accuracy of detection and the stage of
the disease. This will be further investigated when we collect
a large data set.

VI. CONCLUSION

In this paper, we model gait as sparsely represented signal
based on learned dictionary to address the variability of gait
data between and among persons. Dictionaries were designed
to possess both representative and discriminative properties.
Our representation forms the basis of features extracted and
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Fig. 6. Examples of misclassified samples from both pathological and control subjects

used in a classification scheme that detects pathological gaits
of persons suffering Parkinson’s disease. We provide rigorous
experiments to evaluate and validate our proposed scheme.
Results indicate that our proposed scheme outperforms com-
parable schemes reported in the literature.

In our continuing work we are exploring the construction of
dictionaries based on sparse and low-rank approximation. This
will allow us to incorporate constraints that combine sparse-
ness, compactness, representation and discriminability. Such
dictionaries hold promise to increase the detection accuracy
of our method.
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