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Abstract 
 
This paper presents a combined nonlinear and 
circular features extraction-based condition 
monitoring method for low speed slewing bearing. 
The proposed method employs the largest 
Lyapunov exponent (LLE) algorithm as a signal 
processing method based on vibration data. LLE 
is used to detect chaos existence in vibration data 
in discrete angular positions of the shaft. From the 
processed data, circular features such as mean, 
skewness and kurtosis are calculated and 
monitored. It is shown that the onset and the 
progressively deteriorating bearing condition can 
be detected more clearly in circular-domain 
features compared to time-domain features. The 
application of the method is demonstrated with 
laboratory run slewing bearing data. 
 
Nomenclature 

BPFI Ball Pass Frequencyof Inner Race 
BPFO Ball Pass Frequency of Outer Race 
BSF Ball Spin Frequency 

J Lag time or reconstruction delay 
k Circular kurtosis 
M Numbers of vectors reconstructed 
m Embedding dimension 
N Number of data points of vibration signal 
s Circular skewness 
r Radius of two dimensional plane 
R Resultant vector length 
X Phase space or reconstruction vectors 

x 
Time series vibration data, 
x = (x1, x2, . . ., xN) 

Zi Two-dimensional plane of αi 

Z Circular mean 

α 
Negative λ1 sign in circular domain,  
α = (α1, α2, ..., αi) 

β Reversible angle of slewing bearing 
∆t Sampling period of vibration signal 
λ1

 Largest Lyapunov exponent 

1. Introduction 

Slewing bearing is the rolling element bearing 
commonly used in large industrial machineries 
such as turntables, steel mill cranes, offshore 
cranes, rotatable trolleys, excavators, reclaimers, 
stackers, swing shovels and ladle cars. They 
typically support high axial and radial loads. 
Slewing bearings are often critical production 
parts. An unplanned downtime when one of these 
bearings breaks down can be very costly due to 
the interruption of production. Moreover, as 
replacement of large slewing bearings takes long 
lead time to arrive due to long manufacturing and 
delivery time, plants often carry spare bearings to 
guard against these unforeseen circumstances, 
adding extra cost. In order to prevent extended 
unplanned downtimes, an accurate condition 
monitoring method is needed. 
The accuracy of the condition monitoring method 
depends on the selection of the monitored 
features. The change in rolling element bearing 
condition is usually reflected by changes in the 
vibration signal features. However, it is difficult to 
select the proper features for the slow speed 
slewing bearing case (≈ 1 rpm). Statistical time-
domain features which are commonly used in high 
speed rolling element bearings show low 
sensitivities when applied to low rotational speed 
slewing bearings due to the low impact energy 
emission as the rotating elements contact with 
defect spots (Tan, et al 2008). The low energy 
impact generates a very weak vibration signal 
which is deeply masked by the background noise. 
Because the features are taken from the vibration 
signal where the noise is dominant, they are 
insensitive to any alteration in the bearing 
condition. When eventually the vibration amplitude 
exceeds the background noise, the features 
values do increase significantly but at this point 
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serious bearing damages have already occurred: 
often by this stage the bearing condition is already 
close to unsustainable fault. 
Most published articles in slewing bearing 
research employed finite element method analysis 
(Kania, 2006; Göncz, et al 2011; Gang, et al 2011; 
Glodež, et al 2012; Aguirrebeitia, et al 2012). 
There are few which use oil analysis (Bai, et al 
2011; Liu, 2007), and even fewer which discuss 
vibration monitoring techniques (Rodger, 1979). 
(Žvokelj, et al 2010) and (Žvokelj, et al 2011) 
presented a vibration analysis techniques based 
on ensemble empirical mode decomposition 
(EEMD) combined with multi-scale principal 
component analysis (MSPCA). The method was 
successfully used to monitor data from a lab 
slewing bearing where a fault was induced by an 
artificial single defect. In practice, due to low 
speeds, high load conditions and reversible 
rotations, the fault in slewing bearing is 
considered as due to multiple defects. Therefore, 
a signal processing technique to identify the 
occurrence of multiple defects is necessary. 
With large diameter slewing bearings, multiple 
defects can be identified by using a special data 
processing method which assesses the bearing 
condition in discrete angular positions of the shaft. 
In this paper, the combination of largest Lyapunov 
exponent (LLE) as a data processing method and 
circular features calculation as the monitored 
variables is employed. LLE is a common method 
to identify chaotic behaviour of time series, 
whereas circular features are used to statistically 
analyse the behaviour of distributed data in an 
angular or circular domain. LLE is usually used in 
medical engineering (Päivinen, et al 2005) and 
circular features are commonly used in the 
biological and neuroscience fields [Berens, 2009; 
Fisher, 1995; Pewsey, 2004). Neither method has 
been used in the vibration condition monitoring 
(CM) area to date. The two fsteps of the proposed 
method are illustrated in Picture 1. In step 1, the 
time series vibration data is reconstructed with 
predetermined embedding dimension and lag 
time, and the stable and chaotic condition in 
vibration signal based on reconstructed vectors is 
identified using LLE algorithm every 1 s (≈ 6°). 
Using the reconstructed vectors as the input, the 
LLE algorithm measures the exponential 
divergence, λ1 of the reconstructed vector. 
Further, the vibration condition is determined from 
the sign of λ1. If the sign is negative, i.e. λ1 < 0, it 
will imply stable condition, while λ1 > 0 implies 
chaos condition. Stable condition occurrence is 
recorded as ‘1’ and chaos condition is recorded as 
‘0’. By transforming the position of condition ‘1’ in 
the angular domain, circular features such as 

mean, skewness and kurtosis can be computed in 
step 2 of the proposed method. 
The proposed method is demonstrated with 
laboratory run slewing bearing data. The results 
show the superior effectiveness of the proposed 
method in monitoring the condition of slow speed 
slewing bearing from normal to failure, compared 
to time-domain features extraction. 
 

 
Picture 1 General steps of the proposed combined 
largest Lyapunov exponent and circular-domain 
feature extraction method 

2. Largest Lyapunov Exponent (LLE) 
Algorithm 

When a fault occurs in a slewing bearing, the 
dynamical contact between rolling elements and 
defect spots will produces a local instability 
vibration signal. Due to the low rotational speed, 
the impact energy is relatively low and short and, 
thus, the local instability signal is deeply masked 
in background noise. Using the conventional time-
domain features such as mean, root mean 
square, skewness and kurtosis the degradation 
progress from normal to faulty condition is difficult 
to identify. In order to overcome the drawback, a 
combined LLE algorithm, as a signal processing, 
and circular features as a monitored variable are 
used. Among the potential nonlinear features such 
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as fractal dimension, correlation dimension and 
LLE, the last one is selected in this paper due to 
its capability in identifying chaotic conditions by 
positive or negative signs (Päivinen, et al 2005). 
This characteristic is useful for the circular 
analysis method, as shown later. 
In order to analyse nonlinear and chaotic 
characteristics, the original time series vibration 
signal, x = (x1, x2, . . ., xN) is reconstructed, where 
N is the number of data points of the vibration 
signal. In common terms, the reconstructed 
vectors are said to form a phase space. The 
phase space can be defined as follows: 
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where J is the lag time or reconstruction delay, m 
is the embedding dimension and M is the number 
of vectors reconstructed from the original time 
series. Thus the dimension of X is an M x m 
matrix. 
 
Lyapunov exponent algorithm is an old 
methodology and has been reported in some 
areas such as the biomedical engineering field, 
especially to analyse electroencephalography 
(EEG) signals (Päivinen, et al 2005). As 
mentioned earlier, the LLE algorithm measures 
the exponential divergence (positive or negative) 
of two initial neighbouring trajectories in a phase 
space. The objective is to quantify the appearance 
of disturbances corresponding to signal 
abnormality. In other words, LLE algorithm 
measures the degree of chaos in certain time due 
to any disturbances. In this paper the term 
disturbances refers to any local instability vibration 
signal due to the dynamical contact between 
rolling elements and defect spots. This paper uses 
the LLE algorithm proposed by (Rosenstein, et al 
1993). This algorithm is suitable for small data 
sets, as required in this work. 

3. Circular Features Analysis 

Circular feature analysis is a sub-area of statistics 
which allows computing the statistic properties 
such as mean, skewness and kurtosis of data 
distributed in a circular or angular domain, unlike 
from general statistical analysis which calculates 

the features from data distributed in the time 
domain. In this paper, circular features calculation 
is used to analyse the data obtained from LLE 
algorithm. As mentioned earlier, LLE is employed 
to identify the stable or chaotic condition of raw 
vibration data in discrete angular positions (6° ≈ 1 
s). The illustration application of LLE algorithm as 
chaos detection method and circular analysis is 
presented in Picture 2, which is based on the 
laboratory data obtained as described in Section 
4. A set of 30 seconds raw vibration data is used 
as the input to the LLE algorithm, where every 1 
second data (≈ 4880 data points) is analysed to 
identify whether the data represents a stable or 
chaotic condition. In the Picture, the “star” signs 
represent stable conditions (negative λ1) while the 
“cross” signs represent chaotic condition (positive 
λ1). In Picture 2 all data are transformed into the 
circular or angular domain, but in the Picture 5 
only the stable condition is transformed in order to 
do the circular-domain features extraction. It noted 
that the stable condition will occur less and less 
frequently as the fault progresses. 
The vibration data used for illustration in Picture 2 
is the raw vibration data collected experimentally 
on March 26th. In order to calculate the circular 
features, the particular time when the stable 
condition (negative λ1) occurred is recorded. 
Then, it is transformed in the angular domain by 
the following expression: 

 







 








 2

360maxt

t         (2) 

 
where t is the time of recorded negative sign, tmax 
is the time when the slewing bearing rotates (tmax 
= 30 s) and β is the reversible angle of the slewing 
bearing (β=180o). The result of the negative λ1 
distributed in circular or angular domain as shown 
in Picture 5(a) and 5(b). 
 

Circular mean and mean resultant vector: 
The mean of vector   cannot be estimated 

using simple linear averaging data points. Since 
  is in angular directions, it is transformed into 
unit vectors in a two-dimensional plane by 

 

ii rZ  cos  or ii rZ  sin                                 (3)

 
where r is the radius of the two-dimensional 
circular plane (r = 1 is used in this paper).  After 

this transformation, the mean of Z can be 
computed from the vectors Zi by 
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
i

iZ
C

Z
1

                                                       

(4)

        

(13) 

 
where C is the number of data points (of positive 

sign). The vector Z is the mean resultant vector. 
We have used the built-in function “angle” in 
MATLAB to calculate the circular mean by 

transforming Z into the circular mean  . Further, 
i indicates the points in the circular domain where 
the positive signs indicating the chaos occur. The 

length of the mean resultant vector is an important 
quantity for the measurement of circular spread in 
circular domain (Berens, 2009), the more 
concentrated the data sample is around the mean 
direction. The resultant vector length is estimated 
by 
 

ZR 
                                                               

(5)
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Picture 2 Time-domain to circular-domain transformation for stable or chaos condition identification (this 
illustration is constructed based on the vibration data of March 26th 2007) 
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Circular skewness: 
As the third order statistical moments, circular 

skewness quantifies the symmetry of distribution 
data with respect to the circular mean. In circular 
domain, we used the circular skewness formula 
proposed by (Fisher, 1995): 

 

3/2
22

)1(

)2sin(

R

R
s





                                             

(6)

        

(15) 

Circular kurtosis: 
Similar to time-domain kurtosis feature, circular 

kurtosis measures the degree of the scatter of the 
distribution around the peak. Kurtosis reflects the 
condition of the bearing and provides potential 
damage detections at an earlier stage. In case of 
linear scale kurtosis, when the rolling elements roll 
across the defects spot, it produces responsive 
signal that has probability density sharper than a 
normal condition (Caesarendra, et al 2010). We 
also used Fisher’s formula (Fisher, 1995) to 
compute circular kurtosis as defined 

 

2

4
22

)1(

)2cos(

R

RR
k




                                      (7)
        

(16) 

 
This formula assumes that the angular data i  
follow a von Mises distribution, which is the 
circular analogue of the Normal distribution, k = 0 
(Berens, 2009), where R2 and 2 are obtained 
from the decomposition of the centered 
trigonometric moments, m2, defined as the 
moments relative to the sample mean (Berens, 
2009): 
 

 
 


C

i

C

i

ii C
i

C
m

1 1

2 )(2sin
1

)(2cos
1

       (8) 

4. Experimental setup 

The vibration data used in this paper was 
acquired from a laboratory slewing bearing test-
rig. The test-rig can be operated at speeds of 1 to 
12 rpm. The test-rig was designed to simulate the 
real working conditions of a steel making 
company. In this paper, the test-rig was operated 
in reversible rotation at speed of 1 rpm. The 
slewing bearing used was an axial/radial bearing 
supplied by Schaeffler (INA YRT260) with inner 
and outer diameters of 260mm and 385mm, 
respectively. The vibration data were acquired 
from four accelerometers installed on the inner 
radial surface at 90 degree to each other. The 
accelerometers were of the IMI608 A11 type. 

They were connected to high speed Pico scope 
DAQ (PS3424). The data was collected daily with 
4880Hz sampling rates during a 138-day period 
from February to August 2007. Each day the data 
were acquired for approx. 2 minutes. In order to 
accelerate the bearing defect, coal dust was 
injected into the bearing on April 2007. The 
schematic diagram of the laboratory slewing 
bearing test-rig is shown in Picture 3. The fault 
slewing frequencies are presented in Table 1. 
  

 
Picture 3 Schematic of Laboratory slewing bearing 
test-rig 
 

Defect mode  Axial  Radial 

BPFI (Hz)  1.32  0.55 

BPFO (Hz)  1.37  0.55 

BSF (Hz)  0.43  0.54 

Table 1 Fault frequencies of slewing bearing 
(calculated from appendix A) 

5. Results and discussion 

In common vibration analysis, the appearance of 
faults can normally be identified when fault 
frequencies emerge (Siegel, et al 2012). FFT has 
been used for this purpose but the slewing 
bearing fault frequencies, presented in Table 1, 
are difficult to identify. The vibration signal is 
dominated by the high frequency components 
which mask the low-energy and low-frequency of 
slewing bearing. Then, the time-domain features 
such as mean, skewness and kurtosis are 
calculated from February to August 2007 (138 
days). The results of the feature extractions are 
presented in Picture 4. It can be seen that the 
alteration of bearing condition from normal to 
failure (February to August 2007) are not obvious 
from mean and skewness features; only kurtosis, 
in contrast to mean and skewness, shows 
fluctuations in the end of the bearing running time. 
Based on the kurtosis feature calculation result, 
we assumed that there is performance 
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deterioration in the last period, namely during 
August 2007. We also calculated other time-
domain features such as entropy, upper and lower 
histogram based on (Widodo, et al 2007). For 
brevity, the results are not shown here; however, 
they do not indicate any deterioration similar to 
mean and skewness. 
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Picture 4 Linear time-domain features extraction 
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Picture 5 Example of positive sign occurrence 
(chaos) in circular domain plot and circular feature 
extraction on (a) March 26th 2007 (day 34th); (b) 
August 17th 2007 (day 124th) 
 
We, then, applied LLE algorithm to assess the 
condition of slewing bearing in each second (≈ 6°) 
of vibration signal, containing 4880 data points. As 
mentioned in Section 2, the LLE algorithm 
measures the exponential divergence (positive or 

negative) of two initial neighbouring trajectories in 
a phase space. According to Eq. (9) negative λ1 

means the bearing signal (4880 data points) is 
stable and positive λ1 means the bearing signal is 
chaotic. 
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Picture 6 Circular features extraction result based 
on circular analysis and LLE algorithm 
 
In the circular analysis method, the stable 
condition is recorded and the chaos condition is 
discarded. The time (second) when the stable 
condition recorded is transformed into the circular-
domain. It can be seen from Picture 5(a) and (b) 
that the stable condition is distributed or lies in the 
angular or circular domain marked by the circle. 
As can be seen, in the beginning of the bearing 
running condition, i.e. March 26th, most of the 
circle line lies on the angular scale shown in 
Picture 5(a). As time progresses, the portion of 
the large circle occupied by small circle markers 
decrease as shown in Picture 5(b). This indicates 
that chaotic conditions occur more frequently than 
stable conditions during 30 second of raw 
vibration data. Further statistical tools are needed 
to compute the difference accurately. Hence, the 
circular features calculation such as circular 
mean, circular skewness and circular kurtosis 
proposed by (Fisher, 1995) are employed. The 
one day result of these three circular features are 
shown in the right side of Picture 5(a) and Picture 
5(b). By computing the circular mean, circular 
skewness and circular kurtosis daily from 
February to August (138 days), we have the 
bearing performance deterioration condition 
shown in Picture 6. 
As can be seen from Picture 6, the three circular 
features show consistent results, with fluctuations 
in the last period of the bearing running time 

(a) 

(b) 
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(approx. 120-138 days). This condition is similar 
to that detected by the linear time-domain kurtosis 
of Picture 4 (bottom) where the fluctuations occur 
at approx. 100-130 days. To confirm the result, 
the slewing bearing was dismantled for inspection 
after August 31st 2007, i.e. after day 138. The 
deteriorated regions found can be clearly seen in 
Picture 7. 
 
 

 
 

 

 
 
Picture 7 (a) A view of damaged rollers in axial 
plane (b) Outer raceway damage 

6. Conclusions 

Feature extraction results of combined LLE 
algorithm and circular-domain features presented 
more sensitive than time-domain features in 
monitoring the bearing condition. It is pointed out 
that the effectiveness of circular-domain features 
extraction based on circular analysis and LLE 
algorithm is the consistency results of mean, 
skewness and kurtosis feature in which the 
features are more fluctuated when the bearing 
has been rotating about 123 days (August 2007). 
On the contrary the only sensitive feature in time-
domain features is kurtosis. Another merit is the 
short dynamical changes due to dust inserted 
(approx. 40 days from the beginning) and the 
incipient fault (90 days from the beginning) can be 
identified. However, the proposed method has 
shortcoming that is the calculation time of 
proposed method take longer than time-domain 
features extraction. It is because of the LLE 
algorithms works based on phase space vector 
with predetermined lag time and embedding 
dimension. 
 

In conclusion, the sensitive features that represent 
the bearing condition are needed in order to 
estimate the degradation index for prognosis 
method. 
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8. Appendix A: Slewing bearing fault 
frequencies (Eschmann, et al 1953) 

 Fault frequency of outer ring (BPFO): 

  cos
1

2

rpm rpm r
OR

m

IR OR d
F z

d

   
    

  
   

(A1) 
 

 Fault frequency of inner ring (BPFI): 

  cos
1

2

rpm rpm r
IR

m

IR OR d
F z

d

   
    

  
 

 
             (A2) 

 
 Fault frequency of rolling element (BSF): 

  2
cos

2

rpm rpm rm
R

r m

IR OR dd
F

d d

   
   
 
 

  
  (A3) 

Where rpmIR  and rpmOR  are the rotational speed 

of the inner ring and outer ring respectively. For 1 
rpm the value of rpmIR  is 1 and the value of rpmOR  

is 0. md  denotes the mean bearing diameter, rd  

is diameter of the rolling element and z  is number 
of rolling elements. 
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