
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part A 

Faculty of Engineering and Information 
Sciences 

1-1-2014 

Attribute-based data transfer with filtering scheme in cloud computing Attribute-based data transfer with filtering scheme in cloud computing 

Jinguang Han 
University of Wollongong, jh843@uowmail.edu.au 

Willy Susilo 
University of Wollongong, wsusilo@uow.edu.au 

Yi Mu 
University of Wollongong, ymu@uow.edu.au 

Jun Yan 
University of Wollongong, jyan@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/eispapers 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Han, Jinguang; Susilo, Willy; Mu, Yi; and Yan, Jun, "Attribute-based data transfer with filtering scheme in 
cloud computing" (2014). Faculty of Engineering and Information Sciences - Papers: Part A. 2263. 
https://ro.uow.edu.au/eispapers/2263 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/36998646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F2263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F2263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F2263&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/2263?utm_source=ro.uow.edu.au%2Feispapers%2F2263&utm_medium=PDF&utm_campaign=PDFCoverPages


Attribute-based data transfer with filtering scheme in cloud computing Attribute-based data transfer with filtering scheme in cloud computing 

Abstract Abstract 
Data transfer is a transmission of data over a point-to-point or point-to-multipoint communication 
channel. To protect the confidentiality of the transferred data, public-key cryptography has been 
introduced in data transfer schemes (DTSs). Data transfer is a transmission of data over a point-to-point 
or point-to-multipoint communication channel. To protect the confidentiality of the transferred data, 
public-key cryptography has been introduced in data transfer schemes (DTSs). Unfortunately, there exist 
some drawbacks in the current DTSs. First, the sender must know who the real receivers are. This is 
undesirable in a system where the number of the users is very large, such as cloud computing. In practice, 
the sender only knows some descriptive attributes of the receivers. Secondly, the receiver cannot be 
guaranteed to only receive messages from the legal senders. Therefore, it remains an elusive and 
challenging research problem on how to design a DTS scheme where the sender can send messages to 
the unknown receivers and the receiver can filter out false messages according to the described 
attributes. In this paper, we propose an attribute-based data transfer with filtering (ABDTF) scheme to 
address these problems. In our proposed scheme, the receiver can publish an access structure so that 
only the users whose attributes satisfy this access structure can send messages to him. Furthermore, the 
sender can encrypt a message under a set of attributes such that only the users who hold these attributes 
can obtain the message. In particular, we provide an efficient filtering algorithm for the receiver to resist 
the denial-of-service attacks. Notably, we propose the formal definition and security models for ABDTF 
schemes. To the best of our knowledge, it is the first time that a provable ABDTF scheme is proposed. 
Hence, this work provides a new research approach to ABDTF schemes. must know who are the real 
receivers. This is undesirable in a system where the number of the users is very large, such as cloud 
computing. In practice, the sender only knows some descriptive attributes of the receivers. Second, the 
receiver cannot be guaranteed to only receive messages from the legal senders. Therefore, it remains an 
elusive and challenging research problem on how to design a DTS scheme where the sender can send 
messages to the unknown receivers and the receiver can filter out false messages according to the 
described attributes. In this paper, we propose an attribute-based data transfer with filtering (ABDTF) 
scheme to address these problems. In our proposed scheme, the receiver can publish an access structure 
so that only the users whose attributes satisfy this access structure can send messages to him. 
Furthermore, the sender can encrypt a message under a set of attributes such that only the users who 
hold these attributes can obtain the message. In particular, we provide an efficient filtering algorithm for 
the receiver to resist the denial-of-service (DoS) attacks. Notably, we propose the formal definition and 
security models for ABDTF schemes. To the best of our knowledge, it is the first time that a provable 
ABDTF scheme is proposed. Hence, this work provides a new research approach to ABDTF schemes. 

Keywords Keywords 
attribute, filtering, scheme, cloud, computing, data, transfer 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Han, J., Susilo, W., Mu, Y. & Yan, J. (2014). Attribute-based data transfer with filtering scheme in cloud 
computing. The Computer Journal, 57 (4), 579-591. 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/2263 

https://ro.uow.edu.au/eispapers/2263


Attribute-based Data Transfer with

Filtering Scheme in Cloud Computing

Jinguang Han1, Willy Susilo1, Yi Mu1 and Jun Yan2

1 Centre for Computer and Information Security Research, School of Computer Science and
Software Engineering, University of Wollongong, NSW2522, Australia.

2School of Information Systems and Technology, University of Wollongong, NSW2522,
Australia.

Email: jh843@uowmail.edu.au

Data transfer is a transmission of data over a point-to-point or point-to-multipoint
communication channel. To protect the confidentiality of the transferred data,
public-key cryptography has been introduced in data transfer schemes (DTSs).
Unfortunately, there exist some drawbacks in the current DTSs. First, the sender
must know who are the real receivers. This is undesirable in a system where the
number of the users is very large, such as cloud computing. In practice, the sender
only knows some descriptive attributes of the receivers. Second, the receiver
cannot be guaranteed to only receive messages from the legal senders. Therefore,
it remains an elusive and challenging research problem on how to design a DTS
scheme where the sender can send messages to the unknown receivers and the
receiver can filter out false messages according to the described attributes. In
this paper, we propose an attribute-based data transfer with filtering (ABDTF)
scheme to address these problems. In our proposed scheme, the receiver can
publish an access structure so that only the users whose attributes satisfy this
access structure can send messages to him. Furthermore, the sender can encrypt
a message under a set of attributes such that only the users who hold these
attributes can obtain the message. In particular, we provide an efficient filtering
algorithm for the receiver to resist the denial-of-service (DoS) attacks. Notably,
we propose the formal definition and security models for ABDTF schemes. To
the best of our knowledge, it is the first time that a provable ABDTF scheme is
proposed. Hence, this work provides a new research approach to ABDTF schemes.

Keywords: Data Transfer, Access Control, Attribute-Based Encryption, Filtration, Cloud
Computing
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1. INTRODUCTION

Cloud computing provides computing resources (soft-
ware and hardware) as a service over network or in
the data center. This is called as Software-as-a-Service
(SaaS), Infrastructure-as-a-Service (IaaS) or Platform-
as-a-Service (PaaS) [1, 2]. Although it has brought ben-
efits to users including availability, cost saving and re-
liability, the confidentiality and efficiency of the trans-
ferred and stored data in cloud computing have been
the primary focus of them. In open communication en-
vironments, to provide users with a secure communica-
tion channel and avoid sharing a session key prior to
the communication, public-key cryptography has been
addressed [3, 4, 5, 6, 7, 8]. In these schemes, in or-
der to send sensitive data to the intended receivers, the
sender must know all the identities (or public keys) of
the receivers and communicate with them separately
[3, 4, 5, 6]. Furthermore, since anyone who knows

the identity of the receiver can send messages to him,
the receiver cannot determine whether those messages
are from the legal sender [5, 6, 7, 8]. These problems
are particularly serious in cloud computing. To clar-
ify these issues, we provide the following scenario. Due
to the large number of users in cloud computing, each
user is unable to know and communicate with all the
other users in the system. In the scenario, suppose
a user U would like to purchase a personal computer
PC = {Brand = Apple, Y ear = 2011}, he must set
conversations with the multiple unknown sellers. The
best solution is that the user specifies an access struc-
ture such that only the sellers whose product attributes
satisfy this access structure can contact him and negoti-
ate with him. This system will not only reduce the com-
munication cost, but also protect the user’s privacy. Ad-
ditionally, if a seller sells the machines PC = {Brand =
Apple, Price ≤ 5000, T ype = Student, Y ear = 2011},
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he will not do any deal with the buyer who is not a stu-
dent. Or else, he will face the furious denial-of-service
(DoS) attacks [9, 10, 11, 12], as any user who does not
hold the required attributes can also contact him. DoS
attacks are initialized by malicious adversaries to con-
sume the resource of the host or network such that the
legal users cannot be serviced. There are two kinds of
attacks [9]: logic attacks and flooding attacks. In the
logic attacks, the adversaries use the flaws in the cur-
rent software to degrade its performance. In the flood
attacks, the adversaries send or inject lots of false mes-
sages to consume the user’s resource or paralyze the
system. We note that filtering schemes can be used as
efficient primitives to resist the DoS attacks. Before
processing the received messages, the receiver can effi-
ciently filter out the false ones. One of the efforts to
improve the security of cloud computing is to protect
against DoS attacks [13, 14].
In this paper, we introduce a filtering scheme to

an attribute-based data transfer scheme to protect the
sender’s privacy and save the receiver from the DoS
attacks.

1.1. Related Work

In this section, we review the work related to our
ABDTF scheme.

1.1.1. Data Transfer with filtering schemes
Filtering in DTS schemes is an efficient tool to help
the receiver filter out the false data [15, 16, 17, 18, 19].
Furthermore, it has been used to protect against the
DoS attacks.
Bloom [15] proposed a filtering scheme based on the

hashing-code methods to detect the membership in a
given set of messages. Subsequently, Mitzenmacher
[16] proposed a compressed Bloom filter to improve the
preference and transmission of Bloom’s scheme.
Little [17] proposed an efficient algorithm for

nonrecursive and recursive digital filters, where the
filtering speed is related to the memory space and the
time is independent of the order of the filter. Yuen [19]
improved Little’s scheme by representing the data in
two complement forms, instead of the biased form.
Filtering schemes used to filter out the false report

in the wireless sensor networks (WSN) have been
proposed [3, 4, 20, 21, 22, 23]. To name a few, Ye,
Luo, Lu and Zhang [20] proposed a statistical en-route
filtering scheme to filter out the false report during the
forwarding process in sensor networks. In this scheme,
each sensor generates a keyed message authentication
code (MAC). For an event report, multiple MACs are
attached to it. As the report is forwarded, the sensor
verifies the correctness of the MACs probabilistically
and detects the false report.
Zhu, Setia, Jajodia and Ning [3] proposed an

interleaved hop-by-hop authentication scheme where
the false report can be detected by the base station

(sink) if no more than a certain number of sensors are
compromised . They also provided an upper bound for
the number of hops that a false report can be forwarded
prior to being detected if the compromised sensors are
under the certain number.
Yang, Ye, Yuan, Lu and Arbaugh [21] proposed

a location-based approach where the key is bound
to the geographic location to resist the compromised
sensors to compute the false report. Ren, Lou and
Zhang [22] proposed a location-aware end-to-end data
transfer scheme to provide the end-to-end security and
filter out the false report. Both [21] and [22] use the
symmetric key systems where each sensor must share a
key with his upper and lower sensors. Zhang, Liu, Lou
and Fang [23] proposed a location-based compromise-
tolerant mechanism based on public-key systems to
detect the false report.
Yu and Guan [24] proposed a dynamic en-route

filtering scheme where each sensor holds a keyed hash
chain to validate the report. They used the hill climbing
key dissemination to guarantee that the sensor close
to the sink has strong filtering ability, and broadcast
property to resist the DoS attacks.
Lu, Lin, Zhu, Liang and Shen [4] proposed a

bandwidth-efficient cooperative authentication mecha-
nism with filtering. They introduced the random graph
characteristics of sensor nodes and the cooperative bit-
compressed authentication technique to WSN to save
the energy of detecting the false report and reduce the
burden of the sink.

1.1.2. Attribute-based Encryption (ABE)
Attribute-based encryption (ABE) was introduced by
Sahai and Waters [7], where both the secret key and
the ciphertext are attached with a set of attributes. The
user can decrypt a ciphertext if there is a match between
the attributes which he holds and the attributes listed in
the ciphertext. The original idea of ABE was to design
a fuzzy (error-tolerant) identity-based encryption (IBE)
scheme [5, 6, 25, 26, 27]. Currently, there are two kinds
of ABE schemes:

Key-policy ABE (KP-ABE). In this scheme, the ci-
phertext is attached with a set of attributes, while
the secret key is associated with an access structure
[7, 28, 29, 30, 31, 32, 33].

Cipher-Policy ABE (CP-ABE). In this scheme, the
ciphtertext is associated with an access structure, while
the secret key is attached with a set of attributes
[8, 34, 35, 36, 37].

Access structure has been deployed to restrict an
unauthorized user to access sensitive data. An access
structure is monotonic if a set A satisfies the access
structure and A ⊆ B, then B satisfies the access
structure. A (k, n)-threshold access structure is a
special access structure where a secret is divided into
n shares. A user can reconstruct the secret if and

The Computer Journal, Vol. ??, No. ??, ????



ABDTF 3

only if he obtains at least k shares. In a KP-ABE
scheme, the central authority (CA) can specify a (k, n)-
threshold access structure and issues secret keys to
users according this access structure. An encrypter
can encrypt a message under the k-out-of-n public
attributes. Consequently, if a user holds the required
k attributes, he can use his secret keys to decrypt the
ciphertext.

In Sahai-Water’s seminal scheme [7], (k, n)-threshold
access structure was presented. In order to express a
more complex access structure, Goyal, Pandey, Sahai
and Waters [28] proposed a new KP-ABE scheme with
a fine-grained access control where any access structure
can be expressed using the access tree technique. An
access tree is a tree where each leaf node represents
an attributes and each non-leaf node δ consists of a
threshold gate (kδ, nδ), where nδ is the number of the
children of the node δ and kδ ≤ nδ. If kδ = 1, it is an OR
gate. However, if kδ = nδ, it is an AND gate. A secret
is embedded in the root node. If the attributes of a user
satisfy the access structure, he can use his secret keys
to reconstruct the secret. Then, Waters [8] proposed
a CP-ABE scheme where any access structure can be
expressed with a linear secret sharing scheme (LSSS)
[38].

Attrapadung and Imai [39] proposed a dual-policy
ABE scheme which combines KP-ABE scheme with
CP-ABE scheme. In this scheme, there are two access
structures: one is for the subjective attributes which
are attached to the secret key and the other is for the
objective attributes which are ascribed to the ciphertext.
A user can decrypt the ciphertext if his attributes
satisfy the first access structure and the attributes list
in the ciphertext satisfy the second one. Nevertheless,
both the CA and the sender can specify an access
structure in this scheme, and hence, the receiver has
no control on the received messages which may not be
useful to him. Thus, this scheme may be susceptible
against the DoS attacks.

Due to its ability to express a flexible access structure
and support one-to-many communication, ABE has
been used to design DTS in various large database
systems, such as wireless sensor networks [40] and cloud
computing [2].

Security Model. ABE scheme should be secure against
the collusion attacks [7], namely no group of users can
combine their secret keys to decrypt the ciphertext
which none of them can decrypt by himself. The
original ABE scheme [7] is secure under the selective-
set model where the adversary must submit a set of
attributes on which he wants to be challenged before
he can obtain the public parameters. Lewko, Okamoto,
Sahai, Takashima and Waters [37] proposed a stronger
security model called adaptive security model where
the adversary can get the public parameters directly
without the above mentioned limitations.

1.2. Our Contribution

Since ABE does not depend on the public-key
infrastructure (PKI), it has been used as a building
block to design DTS in the distributed systems.
However, distributed systems are susceptible against
the DoS attacks. These attacks consume users’
resources, and furthermore it may paralyze the system.
Therefore, it is a challenging work to design an
attribute-based DTS which can resist the DoS attacks.
In this paper, we propose the formal definition
and security models for attribute-based data transfer
with filtering (ABDTF) scheme. Then, an efficient
ABDTF is proposed and proven to be secure in
the proposed security models under the standard
complexity assumptions (DBDH and CBDH). In our
scheme, the sender can encrypt a message under a set of
attributes such that only the receiver who holds these
attributes can obtain the message. Additionally, the
receiver can also broadcast an access structure such
that only the sender whose attributes satisfy this access
structure can send data to him. Prior to processing
the received data, the receiver can efficiently verify
whether it comes from the legal senders. Note that the
receiver can update his access structure dynamically
without the need of re-initializing the system and re-
issuing the secret keys to the users. Furthermore,
the authentication key stored by the receiver and
the authentication information from the sender are
short. The authentication key and the authentication
information can be computed off-line by the receiver
and the sender, respectively. We also implement any
access structure by using the access tree technique in
[28]. To the best of our knowledge, it is the first time
that a provable ABDTF scheme is proposed. Therefore,
our work provides a formal treatment on the research
of ABDTF schemes. We implement our scheme in the
PBC library [41].

1.3. Organization of The Paper

The remainder of this paper is organized as follows. In
Section 2, we review the preliminaries which are used
throughout this paper. We propose an ABDTF scheme
and prove its security in Section 3. In Section 4, we
implement our scheme in the PBC library. Finally,
Section 5 concludes this paper.

2. PRELIMINARIES

In this section, we review the preliminaries used
throughout this paper.

In the rest of this paper, we denote x
R
← X as x is

selected randomly fromX . IfX is a finite set, by x
R
← X

and |X |, we denote that x is selected from X uniformly
and the cardinality of X , respectively. By A(x) → y,
we denote y is computed by running the algorithm A
on input x. We say that a function ε : Z → R is
negligible if for all k ∈ Z, there exists a z ∈ Z such
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that ε(x) < 1
xk for all x > z. By p(x)

R
← Zp[x], we

denote the polynomial p(x) is randomly selected from
the polynomial ring Zp[x] consisting of the polynomials
that coefficients are from the finite field Zp.

Lagrange Interpolation. Let p(x)
R
← Zp[x] be a (k −

1) degree polynomial. Given any k different values
p(x1), p(x2), · · · , p(xk), the polynomial p(x) can be
reconstructed as follows:

p(x) =
∑

xi∈S

p(xi)
∏

xj∈S,xj 6=xi

x− xj

xi − xj
=

∑

xi∈S

p(xi)∆S,xi
(x)

where S = {x1, x2, · · · , xk}. The Lagrange coefficient
for xi in S is defined as

∆S,xi
(x) =

∏

xj∈S,xj 6=xi

x− xj

xi − xj
.

Consequently, given any k different polynomial
values, we can compute p(x) for ∀x ∈ Zp. Additionally,
the other polynomial values are unconditionally secure
if only k − 1 different polynomial values are given.

2.1. Attribute-based Data Transfer with Filter-
ing (ABDTF)Scheme

In our attribute-based data transfer with filtering
scheme, access structures are employed to control the
receivers and senders. We define an access structure as
follows.

Definition 2.1. (Access Structure) [38]. Let P =
{P1, P2, · · · , Pn} be a set of parties. We say that a
collection A ⊆ 2{P1,P2,··· ,Pn} is monotonic if S1 ⊆ S2

and S1 ∈ A implies S2 ∈ A. An access structure
(respectively monotonic access structure) is a collection
(respectively monotonic collection) A of the non-empty
subset of 2{P1,P2,··· ,Pn}, namely A ⊆ 2{P1,P2,··· ,Pn}\{φ}.
We call the set in A as the authorized set, and the set
outside A as unauthorized set.

In this paper, we use monotonic access structures.

An ABDTF scheme consists of the following five
algorithms:

• Setup(1`,U) → (params,MSK). This algorithm
takes as input a security parameter 1` and the
universal attribute set U , and outputs the public
parameters params and the master secret key
MSK.

• KeyGen(params,MSK,AU ) → SKU . This al-
gorithm takes as input the public parameters
params, the master secret key MSK and a set of
attributes AU , and outputs a secret key SKU .

• Receiver-Policy(params,R) → (AR, AK). This
algorithm takes as input the public parameters
params and a set of attributes R, and outputs an
access structure AR and an authentication key AK.

• Enc(params,M,AC ,AR, SKE) → (CT,AI). This
algorithm takes as input the public parameters
params, a message M , a set of attributes AC ,
an access structure AR and the encrypter’s secret
key SKE, and outputs the ciphertext CT and the
authentication information AI. This ciphertext
can be decrypted by the user who holds a set of
attributes AU if AC ⊆ AU .

• Decryption

1. Filter(AK,AI) → True/False. This algo-
rithm takes as input the authentication key
AK and the authentication information AI,
and outputs True if the attributes of the en-
crypter AE satisfy the access structure AR.
Otherwise, it outputs False and aborts the
protocol.

2. Dec(params, SKU , CT ) → M. This algo-
rithm takes as input the public parameters
params, the secret key SKU and the cipher-
text CT , and outputs the message M .

Definition 2.2. We say that an attribute-based data
transfer with filtering (ABDTF) scheme is correct if

Pr

































Setup(1`,U)→ (params,
MSK);
KeyGen(params,MSK,
AU )→ SKU ;

Dec(params, Receiver− Policy(params,
SKU , CT ) = R)→ (AR, AK);
M Enc(params,M,AC ,AR,

SKE)→ (CT,AI);
Filter(AK,AI)→ True
AC ⊆ AU

































= 1

where the probability is taken over the random coins
which are consumed by the algorithms in the system.

2.2. Security Models

With respect to the security of the ABDTF scheme,
we use the following two games to formalize it. These
games are played by a challenger and an adversary. The
first game is about the security of the ciphertext, which
is similar to the selective-set security model in [7]. The
second game is about filtration security. This game is
used to formalize the model that only the sender whose
attributes satisfy the access structure specified by the
receiver can send messages to him.

Game 1: Selective-Set Security Model.

Initialization. The adversary A submits a set of
attributes AΥ on which he wants to be challenged.

Setup. The challenger runs Setup(1`,U) to generate the
system parameters (params,MSK), and responses A
with params.
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Phase 1. A can adaptively query secret keys for
sets of attributes AU1 , AU2 , · · · , AUq1

, where the only
restriction is AΥ * AUi

for i = 1, 2, · · · , q1.
The challenger runs KeyGen(params,MSK,AUi

) to
generate a secret key SKUi

for AUi
, and responds A

with SKUi
, where i = 1, 2, · · · , q1.

Challenge. A submits two message M0 and M1 with
the equal length. The challenger flips an unbiased
coin with {0, 1}, and gets % ∈ {0, 1}. He runs
Enc(params,M%, AΥ, ·, ·) to generate the ciphertext
CT ∗, and responds A with CT ∗.

Phase 2. A can adaptively query secret keys for sets of
attributes AUq1+1 , AUq1+2 , · · · , AUq

, where AΥ * AUj

for j = q1 + 1, q1 + 2, · · · , q. Phase 1 is repeated.

Guess. A outputs his guess %′ on %. A win the game if
%′ = %.

Definition 2.3. An attribute-based data transfer
with filtering (ABDTF) scheme is (T, q, ε(`))-secure
in the selective-set security model if no probabilistic
polynomial-time adversary A who queries secret keys
for at most q sets of attributes has the advantage

AdvA =

∣

∣

∣

∣

Pr[%′ = %]−
1

2

∣

∣

∣

∣

≥ ε(`)

in the above game.

Game 2: Filtration Security Model.

Initialization. The adversary A submits a set of
attributes AΨ on which he wants to be challenged.

Setup. The challenger runs Setup(1`,U) to generate
(params,MSK), and responds A with params.

Phase 1. A can adaptively query authentication infor-
mation for access structures AR1 ,AR2 , · · · ,ARq1

, where
the only constraint isAΨ /∈ ARi

for i = 1, 2, · · · , q1. The
challenger runs Enc(params, ·, ·,ARi

, SKUi
) to generate

an authentication information AIi for ARi
, where AUi

∈
ARi

. He responses A with AIi for i = 1, 2, · · · , q1.

Challenge. The challenger runs Receiver-
Policy(params,AΨ) to generate (AΨ, AKΨ), and
responds A with AΨ.

Phase 2. A can query authentication information for
access structures ARq1+1 ,ARq1+2 , · · · ,ARq

, where the
only constraint is AΨ /∈ ARi

for i = q1+1, q1+2, · · · , q.
Phase 1 is repeated.

Output. A outputs an authentication information AIΨ
for the access structure AΨ. A wins the game if
Filter(AKΨ, AIΨ)→ True.

Definition 2.4. An attribute-based data transfer
with filtering (ABDTF) scheme is (T, q, ε(`))-secure
in the filtration security model if no probabilistic

polynomial-time adversary A who queries authentica-
tion information for at most q sets of attributes has the
advantage

AdvA = Pr[Filter(AK,AIΥ)→ True] ≥ ε(`)

in the above game.

2.3. Complexity Assumption

Let G and Gτ be two cyclic groups with prime order p,
and g be a generator of the group G. A bilinear map
e : G×G→ Gτ is a map with following properties.

1. Bilinearity. For any a, b ∈ Zp and µ, ν ∈ G,
e(µa, νb) = e(µ, ν)ab.

2. Non-degeneracy. e(g, g) 6= 1, where 1 is the identity
of the group Gτ .

3. Computability. There exists an efficient algorithm
to compute e(µ, ν) for all µ, ν ∈ G.

We denote GG(1`) as a bilinear group generator which
takes as inputs a security parameter 1` and outputs a
bilinear group (e, p,G,Gτ) with prime order p and a
bilinear map e : G×G→ Gτ .

Definition 2.5. (Computational Bilinear Diffie-
Hellman (CBDH) Assumption [6]) Let GG(1`) →
(e, p,G,Gτ) and g be a generator of G. We say that
the CBDH assumption holds in (e, p,G,Gτ) if no prob-
abilistic polynomial-time adversaries A can compute
e(g, g)abc from (A,B,C) = (ga, gb, gc) with advantage

AdvCBDH
A = Pr[A(A,B,C)→ e(g, g)abc] ≥ ε(`)

where the probability is taken over the random choices

of a, b, c
R
← Zp and the bits consumed by A.

Definition 2.6. (Decisional Bilinear Diffie-Hellman
(DBDH) Assumption [27]) Let GG(1`) → (e, p,G,Gτ)
and g be a generator of G. We say that
the DBDH assumption holds in (e, p,G,Gτ) if no
probabilistic polynomial-time adversaries A can dis-
tinguish (A,B,C, Z) = (ga, gb, gc, e(g, g)abc) from
(A,B,C, Z) = (ga, gb, gc, e(g, g)z) with advantage

AdvDBDH
A =

∣

∣

∣

∣

Pr[A(A,B,C, e(g, g)abc) = 1]
−Pr[A(A,B,C, e(g, g)z) = 1]

∣

∣

∣

∣

≥ ε(`)

where the probability is taken over the random choices

of a, b, c, z
R
← Zp and the bits consumed by A.

3. ATTRIBUTE-BASED DATA TRANSFER
WITH FILTERING SCHEME

In this section, we propose an attribute-based data
transfer with filtering (ABDTF) scheme. Then, the
scheme is proven to be secure in the proposed security
models. Finally, we analyze the computation cost and
communication cost of our scheme.

The Computer Journal, Vol. ??, No. ??, ????



6 J. Han, W. Susilo, Y. Mu, J. Yan

3.1. Overview

A DTS scheme should provide the properties: confi-
dentiality, integrity and authentication [42]. To design
an ABDTF scheme, we introduce a filtering scheme to
a KP-ABE scheme. In our scheme, there is a central
authority (CA) who monitors the services provided by
the cloud server and issues secret keys to users [43].
At first, CA specifies a (k, n)-threshold access structure
A. Then, all users interact with the CA to obtain se-
cret keys for his attributes. Suppose that a receiver
and a sender hold sets of attributes AR and AS , re-
spectively. To resist the DoS attacks, the receiver can
specify a (k, ρ)-threshold access structure AR such that
only the user (sender) whose attributes satisfies AR can
send messages to him, where ρ ≤ n. The receiver stores
an authentication key K for AR and encapsulates K in
AR. If the sender wants to send a message to the re-
ceiver, he must check whether AS satisfies AR. If AS

satisfies AR (AS ∈ AR), the sender can use his secret
keys to reconstruct the authentication key K. Conse-
quently, the sender encrypts the message under a set of
attributes AC (AC ⊆ AR) and computes a keyed mes-
sage authentication code (MAC) which is the hash value
of the authentication key K and the ciphertext CT. The
sender sends the ciphertext CT and the authentication
information MAC to the receiver. Receiving (MAC,
CT), the receiver checks the MAC by using the stored
keyK and the ciphertext CT. If the MAC is correct, the
receiver checks whether he holds the attributes listed in
the ciphertext and uses his secret keys to decrypt the
ciphertext. Otherwise, the receiver treats the received
(MAC, CT) as a false message and aborts. Therefore,
the filtering algorithm in our scheme is based on the
MAC technique. We explain our model in Fig.1

3.2. Our Scheme

We describe our attribute-based data transfer with
filtering (ABDTF) scheme in Fig.2.

Correctness. The scheme described in Fig.2 is correct.
Because, we have

FS = e(DS ,W )

= e(gαhσs , gw)

= e(g, g)αw · e(g, h)wσs ,

Fvj = e(DS,vj , Evj )

= e(h

p(avj
)

tvj , gwtvj )
∆Q,avj

(0)

= e(g, h)
wp(avj

)∆Q,avj
(0)

,

e(DR, C1) = e(gαhσr , gs)

= e(g, g)αs · e(g, h)sσr

and

e(DR,x, Cx)
∆AC,ax (0)

= e(h
p(ax)

tx , gstx)∆AC,ax (0)

= e(g, h)sp(ax)∆AC,ax (0).

Therefore,

F =
FS

∏

avj
∈Q Fvj

=
e(g, g)αwe(g, h)wσs

∏

avj
∈Q e(g, h)wp(avj

)∆Q,vj
(0)

=
e(g, g)αwe(g, h)wσs

e(g, h)
w

∑
avj

∈Q
p(avj

)∆Q,avj
(0)

=
e(g, g)αwe(g, h)wσs

e(g, h)wσs

= e(g, g)αw

and

C0 ·

∏

ax∈AC
e(DR,x, Cx)

∆AC,ax (0)

e(DR, C1)

= C0 ·

∏

ax∈AC
e(g, h)sp(ax)∆AC,ax (0)

e(g, g)αs · e(g, h)sσr

= C0 ·
e(g, h)

s
∑

ax∈AC
p(ax)∆AC,ax (0)

e(g, g)αs · e(g, h)sσr

= C0 ·
e(g, h)sσr

e(g, g)αs · e(g, h)sσr

= M ·
e(g, g)αs

e(g, g)αs

= M.

In our scheme, both the computation costs of
the access structure AR from the receiver and the
authentication information AI from the sender are
linear with the number of the required attributes.
However, (K, W, {Ejc}ajc∈R) and (F, FS , {Fvj}avj

∈Q)

can be computed by the receiver and the sender off-line.
Note that, the receiver can update the access structure
AR dynamically without re-initializing the system and
re-issuing secret key to the users.
In the practical scenario, the filtration can be done

by a proxy server. The receiver can determine an
access structure, compute the authentication keyK and
delegate it to the proxy server. When a message (Γ, CT )

arrives, the proxy server checks Γ
?
= H(K||CT ). If so,

he sends the message to the receiver. Otherwise, he
filters it out on behalf of the receiver. This is especially
necessary in the e-mail systems [5, 44, 45, 46]. The filter
can help the user filter out the junk e-mail and reduce
jams. Since the authentication key K in our scheme is
only one element (512 bites) in the bilinear group, it
can be stored in the software with a limited memory
space.
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Receiver Sender

FIGURE 1. The Model of Attribute-based Data Transfer With Filtering Scheme

We provide the comparison of the computation cost
and communication cost of our ABDTF scheme with
the existing and related schemes in the literature in
Table1 and Table 2, where by E, P and TH , we denote
the running time of executing one exponentiation, one
paring and one hash function, respectively. By EG

and EGτ
, we denote the length of one element in G

and one element in Gτ , respectively. By `S , `O and
`S,max, we denote the number of the rows of the matrix
used to encrypt messages, the number of the rows of
the matrix used to generate secrete keys for users and
the maximum number of rows of the matrix used to
generate secrete keys for users in [39], respectively. By
−−, we denote that the item is not suitable for the
scheme.
Key management in attribute-based systems is a

tricky issue, especially key revocation, as multiple users
might satisfy the access structure. The common method
to deal with this problem is to append to each of the
attributes an expiration day [31, 34].

3.3. Security Analysis

Theorem 3.1. Our attribute-based data transfer with
filtering (ABDTF) scheme is (T, q, ε(`)) secure in the
selective-set security model if the (T ′, ε′(`)) decisional
bilinear Diffie-Hellman (DBDH) assumption holds in
(e, p,G,Gτ), where

T ′ = O(T ) and ε′(`) =
ε(`)

2
.

Proof. If there exists an adversary A that can
(T, q, ε(`)) break the ciphertext security of our ABDTF
scheme, we can construct an algorithm B that can use
A to break the DBDH assumption as follows.
The challenger creates the bilinear group GG(1`) →

(e, p,G,Gτ). Let g be a generator of the group G.
He flips an unbiased coin with {0, 1}, and obtains a
bit % ∈ {0, 1}. If % = 0, he sends (A,B,C, Z) =
(ga, gb, gc, e(g, g)abc) to the algorithm B. Otherwise,
he sends (A,B,C, Z) = (ga, gb, gc, e(g, g)z) to B, where

z
R
← Zp. B will outputs his guess %′ on %.

Initialization. The adversary A submits a set of
attributes A∗ on which he want to be challenged.

Setup. B sets Y = e(g, g)ab and h = Agη, where

η
R
← Zp. If ai ∈ A∗, he chooses ti

R
← Zp and computes

Ti = gti . Otherwise he chooses ti
R
← Zp and computes

Ti = hti = gti(a+η). The public parameters are

(e, p,G,Gτ , Y, T1, T2, · · · , Tn).

The implicit master secret key is

(ab, {ti}ai∈A∗ , {ti(a+ η)}ai /∈A∗).

B sends (e, p,G,Gτ , Y, T1, T2, · · · , Tn) to A.

Phase 1. A queries secret key for a set of
attributes Â, where A∗ * Â. Suppose that

Â
⋂

A∗ = {ai1 , ai2 , · · · , ail}, where l < k. B chooses

r, yi1 , yi2 , · · · , yil , · · · , yik−1

R
← Zp, and computes

D̂ = B−ηhr (1)

{D̂ij = h

yij
tij }aij

∈A∗ (2)

and

{D̂λi
= (B−1gr)

∆Ω,0(aλi
)

tλi

k−1
∏

j=1

g

yij
∆Ω,aij

(aλi
)

tλj }aλi
∈Â−A∗

(3)
where Ω = {ai1 , ai2 , · · · , ail , · · · , aik−1

}
⋃

{0}.

We claim that D̂ and D̂ij are correctly generated.

D̂ = B−ηhr = g−bηgr(a+η)

= gabg−ab−bηgr(a+η)

= gabg−b(a+η)gr(a+η)

= gabg(a+η)(r−b)

= gabhr−b.

Let r̂ = r − b, we have D̂ = gabhr̂. By the choices
of yi1 , yi2 , · · · , yik−1

, we implicitly defined a (k − 1)
degree polynomial p̂(x) ∈ Zp[x], where p̂(0) = r − b

and p̂(aij ) = yij for aij ∈ Â
⋂

A∗. By Lagrange
interpolation, we can reconstruct p̂(x) as follows:

p̂(x) = (r − b)∆Ω,0(x) +

k
∑

j=1

yij∆Ω,aij
(x).
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Setup. Suppose that the universal attribute set U = {a1, a2, · · · , an} ∈ Zn
p , where n < p. This algorithm

takes as input a security parameter 1`, and outputs the bilinear group GG(1`)→ (e, p,G,Gτ) and an one-way
hash function H : {0, 1}∗ → {0, 1}λ, where e : G×G→ Gτ and λ is another security parameter (λ < `). Let

g and h be the generators of G. It selects α
R
← Zp, and computes Y = e(g, g)α. For each attribute ai ∈ U , it

chooses ti
R
← Zp, and computes Ti = gti . The public parameters are

(e, p,G,Gτ , g, h, Y, T1, · · · , Tn).

The master secret key is (α, t1, t2, · · · , tn).

KeyGen. To generate a secret key for the user U who holds a set of attribute AU ⊆ U , this algorithm chooses

σu
R
← Zp and a (k − 1) degree polynomial p(x)

R
← Zp[x] with p(0) = σu and computes

DU = gαhσu , {DU,i = h
p(ai)

ti }ai∈AU
,

where ai ∈ AU is one of the user’s attributes and ti ∈ {t1, t2, · · · , tn} is the master secret key corresponding
to the attributes ai. The secret key for the user U is SKU = (DU , {DU,i}ai∈AU

) where DU,i is the secret key
corresponding to the attribute ai ∈ AU .

Receiver Policy. If the receiver only wants to receive messages for the sender who holds k-out-of-ρ attributes

R = {aj1 , aj2 , · · · , ajk , · · · , ajρ} ⊆ U , he chooses w
R
← Zp and computes K = e(g, g)αw, W = gw and

{Ejc = Tw
jc}

ρ
c=1), where k ≤ ρ ≤ n. The receiver keeps K as the authentication key, and publishes his access

structure AR = (W, {ajc , Ejc}
ρ
c=1).

Encryption. To encrypt a message M ∈ Gτ under a set of attributes AC , this algorithm chooses s
R
← Z∗

p and
a set of attributes Q = {av1 , av2 , · · · , avk} ⊆ AS

⋂

R, and computes

C0 = M · e(g, g)αs, C1 = gs, {Cx = T s
x}ax∈AC

,

FS = e(DS ,W ), {Fvj = e(DS,vj , Evj )
∆Q,avj

(0)
}avj

∈Q and F =
FS

∏

avj
∈Q Fvj

where AS and (DS , {DS,vj}avj
∈Q) are the set of attributes held by the sender and his partial secret

key, respectively. The ciphertext is CT = (C0, C1, {Cx}ax∈AC
) and the authentication information is

AI = Γ = H(F ||CT ).

Decryption.

1. Filtration. Receiving the ciphertext CT = (C0, C1, {Cx}ax∈AC
) and the authentication information

AI = Γ, this algorithm checks Γ
?
= H(K||CT ). If the equation holds, it goes to the next step. Otherwise,

it aborts.

2. Decryption. This algorithm takes as input as the ciphertext CT = (C0, C1, {Cx}ax∈AC
) and the receiver’s

secret key SKR = (DR, {DR,ij}aij
∈AR

), and outputs

M = C0 ·

∏

ax∈AC
e(DR,x, Cx)

∆AC,ax (0)

e(DR, C1)

FIGURE 2. Attribute-based Data Transfer with Filtering (ABDTF) Scheme

TABLE 1. The Comparison of Computation Cost

Scheme
Computation Cost

Setup KeyGen Receiver Policy Encryption Decryption
SW[7] (n + 1)E + P |AU |E −− (|AC | + 1)E kE + 2kP

GPSW[28] (n + 1)E + P |AU |E −− (|AC | + 1)E kE + kP
PTMW[31] E 3|AU |E −− (|AC + 2|)E 2kE + (k + 1)P

AI[39] 2E (2 + |AU |+ `O)E −− (2 + 2`S + AC)E (AU + AC)E+
(2AU + 2AC)P

Our Scheme (n + 2)E + P (|AU | + 1)E (ρ + 2)E (|AC | + k + 2)E + (k + 1)P + TH kE + (k + 1)P + TH

The Computer Journal, Vol. ??, No. ??, ????
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TABLE 2. The Comparison of Communication Cost

Scheme
Communication Cost

Setup KeyGen Receiver Policy Encryption
SW[7] nEG +EGτ |AU |EG −− |AC |EG + EGτ

GPSW[28] nEG +EGτ |AU |EG −− |AC |EG + EGτ

PTMW[31] (n+ 1)EG +EGτ 2|AU |EG −− (|AC |+ 1)EG + EGτ

AI[39] (n+ |AC |+ 1 + `S,max)EG + EGτ (1 + |AU |+ 2`O)EG −− (1 + `S + |AC |)EG + EGτ

Our Scheme nEG +EGτ (|AU |+ 1)EG (ρ+ 1)EG +EGτ (|AC |+ 1)EG + 2EGτ

Therefore, for aλi
∈ Â−AC , we have

D̂λi
= h

p̂(aλi
)

tλi
(a+η) = g

p̂(aλi
)

tλi

= g
(r−b)∆Ω,0(aλi

)

tλi

k−1
∏

j=1

g

yij
∆Ω,aij

(aλi
)

tλi

= (B−1gr)
∆Ω,0(aλi

)

tλi

k−1
∏

j=1

g

yij
∆Ω,aij

(aλi
)

tλi .

Challenge. The adversary A submits two equal-length
messages M0 and M1. B flips an unbiased coin with
{0, 1}, and obtains µ ∈ {0, 1}. B computes

C0 = Mµ · Z, C1 = C, {Cx = Ctx}ax∈A∗ ,

where ax is one of the attributes in the challenged
set A∗. B responds A with the challenged ciphertext
(C0, C1, {Cx}ax∈AC

). Hence, when Z = e(g, g)abc,
(C0, C1, {Cx}ax∈A∗) is the valid ciphertext of Mµ.

Phase 2. Phase 1 is repeated.

Guess. The adversary A outputs his guess µ′ on µ. If
µ′ = µ, B outputs his guess %′ = 0. If µ′ 6= µ, B outputs
his guess %′ = 1.
The public parameters and secret keys created in the

simulation paradigm are identical to those in the real
protocol. Hence, the advantage with which B can use
A to break the DBDH assumption can be computed as
follows.
If % = 0, (C0, C1, {Cx}ax∈AC

) is a valid ciphertext of
Mµ. Therefore, A can output µ′ = µ with advantage at
least ε(`), namely Pr[µ′ = µ|% = 0] ≥ 1

2 + ε(`). Since B
guesses %′ = 0 when µ′ = µ, we have Pr[%′ = %|% = 0] ≥
1
2 + ε(`).
In the case when % = 1, A cannot obtain any

information about µ. In other words, A can output
µ′ 6= µ with no advantage, namely Pr[µ′ 6= µ|% =
1] = 1

2 . Since B guesses % = 1 when µ′ 6= µ, we have
Pr[%′ = %|% = 1] = 1

2 .
Therefore, the over advantage which B can break the

DBDH assumption is | 12 Pr[%
′ = %|% = 0] + 1

2 Pr[%
′ =

%|% = 1]− 1
2 | ≥

1
2 ×

1
2 + 1

2 × ε(`) + 1
2 ×

1
2 −

1
2 ≥

1
2ε(`).

Theorem 3.2. Our attribute-based data transfer with
filtering (ABDTF) scheme is (T, q, ε(`)) secure in the
filtration security model if the (T ′, ε′(`)) computational

bilinear Diffie-Hellman (CBDH) assumption holds in
(e, p,G,Gτ) and the hash function H is collusion
resistant, where

T = O(T ) and ε(`) = ε′(`).

Proof. If there exists an adversaryAwho can (T, q, ε(`))
break the filtration security of our scheme, we can
construct an algorithm B that can uses A to break the
CBDH assumption as follows.
The challenger generates the bilinear group GG(1`)→

(e, p,G,Gτ) and a hash function H : {0, 1}∗ → {0, 1}λ.
Let g be a generator of the group G. The challenger
sends (A,B,C) = (ga, gb, gc) to B. B will outputs
Z = e(g, g)abc.

Initialization. The adversary A submits a set of
challenged attributes R∗.

Setup. B sets Y = e(g, g)ab and h = Agη, where

η
R
← Zp. If ai ∈ R∗, he chooses ti

R
← Zp and computes

Ti = gti . Otherwise, he chooses ti
R
← Zp and computes

Ti = hti = gti(a+η). So, B implicitly defines the public
parameters and the master secret key as

(e, p,G,Gτ , Y, T1, T2, · · · , Tn)

and
(ab, {ti}ai∈R∗ , {ti(a+ η)}ai /∈R∗)

respectively. B sends (e, p,G,Gτ , Y, T1, T2, · · · , Tn) to
A. These public parameters are the same as those in
the above proof.

Phase 1. The adversary A queries the authenti-
cation information for an access structure AR =
(W, {ajc , Ejc}

ρ
c=1), where |R∗

⋂

Q| < k and Q =
{aj1 , aj2 , · · · , ajρ}. At first, by using the techniques
in (1), (2) and (3), B generates the secrete key
(DS , {DS,vj}avj

∈Q′), where Q′ ⊆ Q and |Q′| = k. B

computes FS = e(DS,W ), {Fvj = e(DS,vj , Evj )}avj
∈Q′

and F = FS∏
avj

∈Q′ Fvj

. Then, B chooses s
R
← Zp, M

R
←

Gτ and a set of attributes L = {aj1 , aj2 , · · · , ajk} ⊆ U ,
and computes CT = (C0, C1, {Cjx}

k
x=1), where C0 =

e(g, g)αs ·M , C1 = gs and {Cjx = T s
jx
}ajx∈L. B com-

putes Γ = H(F ||CT ) and sends the authentication in-
formation AI = Γ and the ciphertext CT to A.

Challenge. B sets W ∗ = C and computes {E∗
jc =

Ctjc }ajc∈R∗ . B sends the challenged access structure
AR∗ = (W ∗, R∗, {E∗

jc
}ajc∈R∗) to A.
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Phase 2. Phase 1 is repeated.

Outputs. At the end, the adversary A outputs the
authentication information AI = Γ∗.
As shown in the simulation, the public parameters

and the secret keys are identical to those in the real
protocol. Now, we compute the advantage with which
B can use A to break the CBDH assumption.
When W = C = gc, it implies K∗ = e(g, g)abc. If A

can output a valid authentication information AI = Γ∗

for the access structure AR∗ with advantage at least
ε(`), he can computes F ∗ = e(g, g)abc with the same
advantage as H is a one-way hash function. Therefore,
B can compute K∗ = F ∗ = Z = e(g, g)abc with the
same advantage.

3.4. Fine-Grained Access Control

In our ABDTF scheme, we use the (k, n)-threshold
access structure. In order to express a complex access
structure, we can use the access tree introduced by
Goyal, Pandey, Sahai and Waters [28]. Let T denote
a tree which specifies an access structure and defines an
ordering among the children of the node v from 1 to
nv. Each no-leaf node v in T defines a threshold gate
which comprises a threshold value kv and the number
of its children nv, where kv ≤ nv. When kv = 1,
it defines an OR gate; while kv = nv, it defines an
AND gate. Each leaf-node v in T is related to an
attribute and a threshold value kv = 1. For any access
structure, a polynomial can be constructed for each
non-leaf node in T following the top-to-down manner.
In our system, the central authority selects an access
tree T for a complex access structure. Starting from
the root node r, it sets the degree dr of the polynomial
as kr − 1. To generate secret keys for a user with a
set of attributes, he chooses a kr − 1 degree polynomial
pr(x) with pr(0) = σu. For other nodes in T , it can set
pv(0) = pparent(v)(index(v)), where parent(x) denotes
the parent of node v and index(v) denotes the ordering
number labeled with v. This technique can also used
by the receiver to specify a complex access structure.

4. PERFORMANCE EVALUATION

The efficiency of a pairing-based scheme depends on
the employed elliptic curve. Literatures [41, 47, 48]
suggested the selection of elliptic curves for efficient
cryptosystems. In order to select a secure elliptic curve,
two important factors must be considered: the group
size l of the elliptic curve and the embedding degree
d. To achieve the security of 1,024-bit RSA, the group
size and the embedding degree should satisfy l × d ≥
1024. Although the elliptic curve with high embedding
degree can result in a short size of elements, the pairing
operations on this curve is expensive. Most of pairing-
based schemes are implemented in the elliptic curves:
Type A and Type D [41]. Type A is supersingular curve

y2 = x3 + x and the group order is a Solinas prime. On
a Type A curve where G1 = G2, the pairing operation
is fastest. Meanwhile, a Type D curve is an MNT curve
y2 = x3+λ1x+λ0, where G1 6= G2. On a Type D curve,
the element can be shorter but the pairing operation is
more expensive.
We implement our scheme on Type A curve: y2 =
x3 + x, where l = 512, d = 2 and p is a 160-bit prime
number. We use SHA−1 as the one-way hash function.

4.1. Benchmark Time

We test the running time of different operations on
the bilinear group on a DELL E630 with Intel(R)
CoreTM 2 Duo CPU ( T8100@2.10GHz) and 2GB RAM
running Ubuntu 10.10. The running time is obtained
by computing the average of running the operation 10
times with random inputs using the text code from
the PBC library [41]. The running times of different
operations on the bilinear group from Type A curve are
described in Table 3. By PPp, PP1, PP2 and PPτ ,
we denote the running time of a pairing operation with
preprocessing, an exponential operation on group G1

with preprocessing, an exponential operation on group
G2 with preprocessing and an exponential operation
on group Gτ with preprocessing, respectively. By
multi-based, we denote the running time of executing
exponential operations on more than one base, such as
η = ga1ha2 .
The running time and communication cost in different
phases of our scheme are described in Table 4 and Table
5, respectively.

4.2. Implementations of Our Scheme

In our implementation, we set the number of the
universal attributes as |U| = 32, the threshold value
as k = 8, the number of the attributes used to encrypt
messages as |AC | = 8 and ρ = 16, namely the central
authority specifies a (8, 32)-threshold access structure
and the receiver specifies a (8, 16)-threshold access
structure. The running time and the communication
cost in different phases are described in Fig. 3, Fig. 4,
Fig. 5 and Fig. 6. We separate the running time and
the communication cost of KeyGen from Fig. 4 and Fig.
6 as it depends on the number of the attributes held by
each user.
We observe that it takes 14.304 ms to setup the

scheme. It consumes 6.945 ms to generate an access
structure by the receiver. To encrypt a message and
decrypt a ciphertext, it takes 12.643 ms and 8.938 ms,
respectively. The time consumed by KeyGen is linear in
the number of the attributes held by each user.
Type A curve has symmetric bilinear groups and

both the elements in groups G and Gτ can be
represented with 512 bits. Therefore, the lengths of
the authentication key and the ciphertexts are 64 bytes
and 660 bytes, respectively.
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TABLE 3. Benchmark Time of Different Operations on a Type A Curve and SHA-1 (ms)

Curve
Pairing G1 G2 Gτ SHA-1

Normal PPp PP1 Multi-based PP2 Multi-based PPτ Multi-based

Type A 2.001 0.939 0.405 3.847 0.407 3.933 0.060 0.448 0.007

TABLE 4. Running Time of Our Scheme on a Type A Curve (ms)

Curve Setup KeyGen Receiver Policy Encryption Decryption

Type A 1.344 + 0.405 × n (|AU |+ 1) × 0.405 0.465 + ρ× 0.405 1.411 + |AC | × 0.405 + k × 0.999 0.946 + k × 0.999
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FIGURE 4. The Running Time of Setup, Receiver Policy,
Encryption and Decryption

5. CONCLUSION

The confidentiality of the sensitive data and the
DoS attacks attract lots of interests in data transfer
research community. Even though data transfer system
(DTS) have been extensively studied recently, there
is no scheme that discusses how to transfer and
filter data according the required attributes. In this
paper, we proposed the formal definition and security
models for attribute-based data transfer with filtering
(ABDTF) scheme, which provides a formal treatment
for the research of ABDTF schemes. Subsequently, we
designed an ABDTF scheme and proved its security in
the proposed security models. In the proposed scheme,
both the authentication key and the authentication
information are short. Note that the authentication
key can be updated offline without re-initializing the
system and re-issuing secret key to users. To update
an authentication key, the receiver selects a random
number and computes a new authentication key and
access structure by using the selected random number
and the public parameters without any help from the
CA. And also, the authentication information can be
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FIGURE 6. The Communication Cost of Setup, Receiver
Policy, Encryption and Decryption

computed by the sender off-line. Furthermore, we
implemented any access structure using the access tree
technique. Finally, we implement our scheme in the
PBC library.
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TABLE 5. The Communication Cost of Our Scheme on Type A Curve (bits)

Curve Setup KeyGen Receiver Policy Encryption

Type A (n+ 3)× 512 (|AU |+ 1)× 512 (ρ+ 2)× 512 (|AC |+ 2) × 512 + 160
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