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Abstract: 

As the first part of a sequence focusing on the dynamic response of composite 

caisson-piles foundations (CCPFs1), this paper develops a simplified method for the 

lateral response of these foundations. A Winkler model for the lateral vibration of the 

CCPF is created by joining the two components, the caisson and the pile group, where 

the four-spring Winkler model is utilized for the caisson and axial-lateral coupled 

vibration equations are derived for the pile group. For determining the coefficients of 

the four-spring Winkler model for the caissons, embedded footing impedance is used 

and a modification on the rotational embedment factor is made for the sake of the 

geometrical difference between shallow footings and caissons. Comparisons against 

results from finite element simulations demonstrate the reliability of this modified 

four-spring Winkler model for caissons in both homogenous and layered soils. The 

proposed simplified method for the lateral vibration of CCPFs is verified also by 3D 

finite element modeling. Finally, through an example, the idea of adding piles beneath 

the caisson is proved to be of great significance to enhance the resistance of the 

foundation against lateral dynamic loads. 

Key words: composite caisson-piles foundation; lateral response; Winkler model; 

embedment factor; modification; finite element simulations 

1 Introduction 

The composite caisson-piles foundation (CCPF) was proposed in the 
                                                        
1 CCPF: composite caisson-piles foundation 



pre-construction investigation report for the highway channel across Qiongzhou 

straits between the mainland and Hainan Island of China, with the expectation that 

adding piles beneath the caisson can improve its behavior under lateral and seismic 

loads. As suggested in the report, the CCPF can be constructed by driving piles from 

the inside of the caisson after it sinks to the designed depth. The general appearance 

of the CCPF is a combination of a caisson and grouped piles, as shown in Fig. 1. 

Caissons are widely used in bridge engineering and offshore engineering, e.g. 

Jiangyin Yangtze River Highway Bridge in China and San-Francisco-Oakland Bay 

Bridge in USA, due to their advantages such as the convenience of underwater 

construction and the good resistance to the ship collision. However, even though the 

caisson is often categorized as one of the deep foundation types, its embedment depth 

cannot compare with that of the pile group. For this reason, what worries us is how 

caissons would behave under strong lateral or seismic loads. Our confidence may be 

reduced by the fact that many structures on caissons suffered serious damages during 

the Kobe 1995 earthquake [1]. The resistance of caissons against lateral dynamic 

loads is crucial during earthquake since the structure inertial could cause tremendous 

deformation of the foundations. Gerolymos and Gazetas [1] proposed a four-spring 

Winkler model in which soils are modeled with four types of springs (associated with 

dashpots) for the dynamic response of rigid caissons, and a method for calibrating the 

spring coefficients with the impedance of shallow footings was developed [4~8]. In 

their companion papers [2, 3], this model was extended to consider the soil and 

interface nonlinearities. In order to back-calculate the Winkler spring coefficients in 

layered soils, Varun et al. [9] and Varun [10] conducted a number of numerical 

simulations with the finite element method. Considering the structures supported by 

caissons, Tsigginos et al. [11] studied the seismic response of the foundation-structure 

system with a dynamic Winkler model for the foundation. Despite the lack of more 

enough published research fruits about caissons, there are abundant references in 

terms of shallow embedded foundations which can enlighten the study of caissons, e.g. 

the research of Gazetas and Tassoulas [4~5], Hatzikonstantinou et al. [6], Fotopoulou 

et al. [7], Gazetas [8], Beredugo and Novak [12], Kausel and Roësset [13], and Wolf 

[14].  

Since the CCPF is composited by a caisson and grouped piles, the analysis on it is 

somewhat complex due to a significant difference between the caisson and the 

grouped piles. Because of the geometry characteristics, it is reasonable to assume the 



caissons as a rigid body. However, piles are totally different, owing to not only their 

slenderness but also the interaction among the individual piles. The dynamic response 

of pile groups were well studied in the past decades. Simplified methods were 

developed by Gazetas and Makris [15], Makris and Gazetas [16] and Mylonakis and 

Gazetas [17] for the axial, lateral, as well as seismic response of pile groups. For the 

layered soils, Wu et al. [18] and Huang et al. [19] adopted the transfer matrix method 

to study the axial and lateral responses of pile groups based on the dynamic Winkler 

model. 

A simplified approach is developed for the lateral vibration of CCPFs in this paper. 

The dynamic Winkler models for caissons and pile groups are coupled, generating a 

composite Winkler model for CCPFs. The spring coefficients for the caisson part are 

determined through the method proposed by Ref. [1] based on the impedance of 

shallow footings [4~8]. However, considering the difference of depth-width ratio 

between caissons (i.e. 0.5<d/B<4 [1]) and shallow footings (i.e. d/B≤1 [4~8]), the 

feasibility of the expressions for the shallow footing impedance is checked for their 

application in caissons, and a modification is made to gain more accurate spring 

coefficients for caissons. This modification is proved to be meaningful by the finite 

element method. In order to verify the proposed simplified method for the lateral 

vibration of CCPFs, a series of 3D finite element simulations are developed and good 

agreements are reached between the numerical method and the proposed simplified 

method. Finally, with an example calculated by the proposed simplified method, the 

significance of adding piles in resisting lateral dynamic loads is studied. 

2 Derivations of lateral impedance of CCPFs in Winkler model 

2.1 Impedance of CCPFs  

A dynamic Winkler model could be created by simplifying the soil resistances 

with a series of springs (associated with dashpots) for the lateral response of CCPFs, 

as shown in Fig. 2. The lateral equilibrium equation of the CCPF can be expressed as 

bcp PK 









bu
                        (1) 

where ub and  are the horizontal displacement and the rotation angle of the base 

center of the caisson part, and Pb is the load vector given by 
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where D is the length of the caisson part, and Q0 and M0 are the dynamic horizontal 

force and moment applied on the top of the CCPF respectively, as shown in Fig. 2. 

Kcp, the impedance matrix of the CCPF with respect to the base center of its 

caisson part, is a two dimensional matrix, i.e. 

cp cp
HH HM
cp cp
MH MM

K K

K K

 
  
 

cpK
 

 
                       (3) 

and the determination on it in Winkler model is the main purpose of this paper. 

For convenience of application, the impedance of the CCPF can also be expressed 

with respect to its top center by coordinate transformation on Kcp, i.e. 
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where HHS
~

, HMS
~

, MHS
~

 and MMS
~

 are named as the complex swaying stiffness, 

cross swaying-rocking stiffness, cross rocking-swaying stiffness and rocking stiffness 

respectively, and HM MHS S  . 

Since the CCPF is a composition of a caisson and a pile group, its impedance 

matrix Kcp can be obtained by adding the impedance matrixes of the caisson and the 

pile group together, namely 

 cp c pK K K                         (5) 

where Kp and Kc are the impedance matrixes of the pile group and the caisson 

respectively, which will be determined in Section 2.2 and 2.3 respectively. 

2.2 Determination of impedance matrix of pile group Kp 

Although the axial and the lateral vibrations of the pile groups have been well 

studied in the past [15~19], the work is seldom related to the axial-lateral coupled 

vibration. However, it is essential to couple the axial vibration into lateral vibration in 

this study, because the piles will deform vertically once the CCPF rotates, with the 

vertical reaction forces exerted to the caisson, equivalent to a resultant reaction 

moment, as shown in Fig. 3. 

Through Refs. [15] and [18], considering the pile-pile axial interaction, the axial 

displacement at the head of a pile (e.g. pile k) in a pile group is given as 
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where N is the number of the piles, Vj is the axial load undertaken by pile j, fV is the 

axial flexibility of the sole pile, and V
kj is the axial pile-pile interaction factor between 

pile j and pile k. 

Through Refs. [16] and [19], considering the pile-pile lateral interaction, the 

lateral displacements at the head of a pile (e.g. pile k) in a pile group are given as 
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where Hj and Mj are the horizontal load and moment undertaken by pile j, fH is the 

lateral flexibility matrix of the sole pile, and H
kjα  is the lateral pile-pile interaction 

matrix between pile j and pile k. 

   The derivation of Eqs. (6) and (7) is introduced in the appendix. 

When both axial and lateral harmonic loads are applied on the cap, the pile group 

will perform with an axial-lateral coupled vibration, as shown in Fig. 4, where VG, HG 

and MG represent vertical load, horizontal load and moment applied on the pile group, 

and wG, uG and G represent vertical displacement, horizontal displacement and 

rotation angle of the cap respectively. In Fig. 4, the positive directions of the vertical, 

horizontal and rotational axes are defined as downward, rightward and clockwise 

respectively. 

For pile k beneath the cap, the vertical displacement wk, horizontal displacement 

uk and rotation angle k at its head have a relation with the displacements and rotation 

angle of the cap, i.e. 

G
k

G
k xww                           (8) 

GG
k

G
k uxuu  2)(                    (9) 

G
k                                 (10) 

where xk is the x coordinate of the location of pile k, in a coordinate system that 

defines the origin of x axis as the center of the cap, and the positive direction as 

rightward. 

The resultant forces of the loads undertaken by all the piles must equal the loads 

applied on the cap, hence 
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The overall equation for axial-lateral coupled vibration obtained by putting Eqs. (6) 

~ (13) together can be expressed as 
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where the vertical degree of freedom of the cap center is removed because it has no 

effect on the lateral impedance matrix of the pile group. uG and PG are the 

displacement and external force vectors, which are 
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and H, M, V and A12~A44 are 
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where k =1, …, N and j=1, …, N 

According to the definition of the lateral impedance matrix, i.e. 

G G
pK u P                       (33) 

Through Eq. (14), the lateral impedance matrix of the pile group can be derived as 
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2.3 Determination of impedance matrix of caisson Kc 

The four-spring Winkler model proposed by Ref. [1] can be extendedly applied in 

the layer soils, as illustrated in Fig. 5. Herein, d represents the embedment depth of 

the caisson, d1 ~ dn are the thickness of the soil layers along the caisson shaft, and h0 

and h1 are the distances from the center of gravity to the top surface and base surface 

of the caisson. Particularly when the caisson is fully embedded, the embedment depth 

of the caisson d equals to its length D. 

In frequency domain, when the caisson is subjected to the dynamic horizontal 

force Q0 and moment M0, the equilibrium of external loads, soil resistance and inertial 

forces with respect to the base center gives 
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where, ω is the circular frequency, ub is the horizontal displacement of the base center 

and  is the rotation angle. Load vector, mass matrix and complex stiffness matrix in 

above equations are respectively given by 
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where, m and J are the mass and mass moment of inertia of the caisson about its 

center of gravity. By integration of the complex spring stiffness, each element of Kb 

could be obtained as 
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where xik  and ik  are the complex stiffness of the distributed translational and 

rotational springs (associated with dashpots) of layer i (i varies from 1 to n), and hK  

and rK  are the complex stiffness of the concentrated springs at the base, as shown in 

Fig. 5. For a CCPF, the soil deformation under the caisson part, induced by the 

deformation of the pile group, will lead to a huge loss of caisson base stiffness. 

Therefore, hK  and rK  should be neglected. 

In Eq. (42), zi is the distance from the center of layer i to the soil surface, i.e. 
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The Winkler parameters xk
~

 and k
~

 were back-determined in the study of 

Gerolymos and Gazetas [1], in which the impedance of caissons Kb is approximated 

by the impedance of cylindrical embedded footings determined through Ref. [8]. 



According to the method, xk
~

 can be expressed as 
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where KH is the static horizontal stiffness of circular surface footings, Itw is the 

horizontal embedment factor (the product of KH and Itw is the horizontal stiffness of 

embedded footings), and χemb is the horizontal dynamic coefficient. The detailed 

expressions of KH, Itw, χemb and cx can be determined by referring Refs. [1] and [8]. 
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where KM is the static rocking stiffness of circular surface footings, Гw is the rocking 

embedment factor (the product of KM and Гw is the rocking stiffness of embedded 

footings), and 1k  is the rocking dynamic coefficient. The detailed expressions of KM, 

Гw, 1k  and c1 can be determined by refering Refs. [1] and [8]. 

Because of the difference of depth-width ratio between rigid caissons and shallow 

footings, it’s necessary to check the accuracy of Itw and Гw of shallow footings for 

their application in caissons, and a modification may be required if the accuracy is not 

satisfied. This work is given in Section 3. 

3 Modification and verification of the four-spring Winkler model for caissons 

3.1 Modification of the embedment factors 

As introduced in Section 2.3, the expressions of the complex stiffness of the 

distributed springs in the four-spring Winkler model for caissons were determined by 

Gerolymos and Gazetas [1] based on the impedance of shallow footings. However, 

owing to the difference between the depth-width ratios of rigid caissons (0.5≤d/B≤4) 

and those of shallow footings (d/B≤1), the embedment factors, Itw and Гw (in Eqs. (45) 



and (49)) should be checked, and some modification may be required for their 

utilization in caissons. 

Varun [10] has computed the stiffness of some caissons by the finite element 

method for a wide range of 0.25≤d/B≤7. Here those data with d/B≤4 are chosen to 

check and modify the parameters Itw and Гw. 

According to Refs. [1] and [8], the horizontal embedment factor of a cylindrical 

caisson Itw has such relation with d/B 
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Varun’s finite element simulations [10] computed the horizontal stiffness of 

caissons with respect to the top centers. These results are transformed to be the 

stiffness with respect to the base centers by coordinate transformation, and then 

divided by the stiffness of surface footings to obtain the embedment factors. Figure 6 

shows the comparison of Eq. (50) against the data transformed from Varun’s results. 

They match quite well, demonstrating that Eq. (50) is feasible to be used for the range 

of 0<d/B≤4, and hence no modification is needed. 

According to Refs. [1] and [8], the rocking embedment factor of a cylindrical 

caisson Гw has such relation with d/B as follows 
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Likewise, Varun’s rocking stiffness of caissons with respect to the top centers [10] 

is transformed into the stiffness with respect to the base centers by coordinate 

transformation, and then divided by the rocking stiffness of surface footings to get the 

embedment factors. Comparison of Eq. (51) against the data transformed from 

Varun’s finite element results are shown in Fig. 7, demonstrating that they agree well 

merely in the range of d/B≤1. Therefore, it is necessary to make a modification on Eq. 

(51) for applying it in the cases of 0<d/B≤4. Keeping the exponents in Eq. (51) 

unchanged, and fitting the coefficients A1 and A2 of 
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data from Ref. [10] by the least square method, a new expression of Гw is obtained as 
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The significance of this modification will bestudied in Section 3.2. 



3.2 Verification by static and frequency domain finite element simulations 

In order to evaluate the significance of the above modification, comparisons 

between the modified four-spring Winkler model and 3D finite element method are 

conducted via three examples. 

3.2.1 Static response of a cylindrical caisson in homogenous soil 

The case presented here is a massless cylindrical caisson embedded in the 

homogenous soil and subjected to a static load. The diameter of the caisson, B, is 2 m, 

and the depth, d, is a variable changing from 0 to 8 m (being a surface footing while 

d=0) rather than a constant, through which the influence of the ratio d/B is studied. 

The Young’s modulus, Poisson’s ratio and the mass density of the soil are 1.0 MPa, 

0.30 and 1600 kg/m3 respectively. The horizontal static load applied at the top of the 

caisson is 1000 kN. A finite element model of the caisson and soil is created with 

20-node solid elements. A quarter of the symmetric system is depicted in Fig. 8, 

where the model sizes are marked. 

For an attempt to testify the significance of the modification on Гw, both 

four-spring Winkler models with unmodified Гw (using Eq. (51)) and modified Гw 

(using Eq. (52)) are applied and the results are compared against the finite element 

simulation. Horizontal displacements and rotation angles atop the caisson are shown 

in Fig. 9. The comparison between the finite element simulation and the unmodified 

Winkler model indicates that the difference becomes more conspicuous with the 

increase of the ratio d/B. Good agreements between the finite element simulation and 

the modified four-spring Winkler model show the significance of the modification on 

Гw. 

3.2.2 Dynamic response of a cylindrical caisson in homogenous soil 

Herein, the second case is conducted to compute the dynamic response of a 

caisson subjected to a horizontal harmonic load with the amplitude of 1000 kN and 

the frequencies of 0~10 Hz. The model is similar to that presented in Section 3.2.1, 

with the caisson depth d set as 6 m and some soil elements changed into sponge 

boundary elements for wave absorption, The finite element mesh is shown in Fig. 10, 

where the soft grey elements enveloping the soil elements are the sponge boundary 

elements for attenuating the wave reflection. 

Sponge boundary is one kind of absorption boundary proposed by Varun et al [9] 

and Varun [10] to attenuate the wave reflection at the boundary, of which the 



fundamental is the theory of viscoelasticity [20]. Taking the shear wave as example, 

as the wave propagates, the displacement in the visco-elastic media is 
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where x is the distance from the original point, t is time, ω is circular frequency, A0 is 

the amplitude at the original point and c is the shear wave velocity. e-x indicates the 

attenuation of the amplitude. The values of c and  depend on the visco-elastic 

material properties. 

Sponge boundary can be made by adding Rayleigh damping to the boundary 

elements. Based on the fundamental, the Rayleigh damping parameters a0, a1 and 

boundary thickness x in this example are determined as 10.5, 0.0105 and 12 m. 

Fig. 11 illustrates the results calculated by the four-spring Winkler model and 3D 

finite element simulation, and shows that the accuracy of the four-spring Winkler 

model is improved remarkably with the modification of Гw. 

3.2.3 Dynamic response of a cylindrical caisson in layered soils 

Here the dynamic response of a massless cylindrical caisson embedded in layered 

soils, as illustrated in Fig. 12, is studied as the third case. The diameter B and the 

embedment depth d of the caisson are 2 m and 8 m. The top two soil layers have the 

thickness of d1=3 m and d2=4 m, and the third layer is a half space. From the top to 

the bottom, the Young’s moduli are 10 MPa, 30 MPa and 50 MPa respectively, the 

mass densities are 1500 kg/m3, 1600 kg/m3 and 1800 kg/m3 respectively, and 

Poisson’s ratio for all the three layers is 0.30. The amplitude of the horizontal 

harmonic load atop the caisson is 1000kN. This example was analyzed by Varun et al 

[9] by 3D finite element method. Here it is calculated with the four-spring Winkler 

model and the results are compared with the finite element results of Ref. [9]. As 

shown in Fig. 13, the comparison shows that the accuracy of the four-spring Winkler 

model in layered soils is improved remarkably with the modification of Гw. 

The above three examples verify that the modification on Гw is greatly significant 

to improve the accuracy of the spring coefficients for both static and dynamic loads 

and in both homogenous soil and layered soils. 

4 Lateral response of CCPFs: verification and example 

4.1 Verification of the proposed method by 3D FEM 



In order to verify the proposed method for lateral response of CCPFs, a series of 

numerical simulations are conducted and compared with the proposed method. The 

basic foundation is a rigid massless cylindrical caisson with depth-diameter ratio 

d/B=1 embedded in a homogenous soil half space. Besides the case of the caisson, 

two cases of CCPFs are considered by adding a 22 pile group and a 33 pile group 

beneath the caisson respectively. The foundations are all fully embedded, so their 

embedment depths equal to their lengths, namely d=D. The ratios between the piles 

and soils in terms of the Young’s modulus, Poisson’s ratio and the mass density are 

Ep/Es=1000, p/s=1 and p/s=1.25. The pile length-caisson depth ratio, pile 

diameter-caisson diameter ratio and pile distance-pile diameter ratio are L/d=2, 

2r/B=0.1 and s/2r=5 for the 22 pile group, and L/d=2, 2r/B=0.1 and s/2r=2.5 for the 

33 pile group. In the numerical modeling, the caisson diameter, the soil Young’s 

modulus, Poisson’s ratio and mass density are set as B=2 m, Es=1 MPa, s=0.30 and 

s=1600 kg/m3 respectively. All the elements are modeled with 20-nodes solid 

elements. A quarter of the symmetrical system of the soil and the CCPF with 33 pile 

group is depicted in Fig. 14, where the CCPF is shown in larger scale beside the total 

mesh. The cases of the caisson and the CCPF with 22 pile group have the same mesh 

with Fig. 14, with only the number of piles different. 

The impedance of the caisson, the CCPF with 22 pile group and the CCPF with 

33 pile group are all computed by the dynamic finite element method and the 

proposed simplified method (with Γw modified). Figures 15~17 give the normalized 

complex swaying stiffness, cross swaying-rocking stiffness and rocking stiffness of 

the caisson as functions of the dimensionless frequency respectively. The 

dimensionless frequency is given as 
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where Vs is the shear wave velocity of the soil. 

Likewise, Figs. 18~20 are for the CCPF with 22 pile group while Figs. 21~23 are 

for the CCPF with 33 pile group. In addition, the lateral response of these 

foundations under a harmonic horizontal load with the amplitude of 100 kN is 

computed by both the numerical and simplified analytical methods, with the results 

shown in Fig. 24. These comparisons show that the simplified method agrees well 

with the numerical method, ensuring the reliability of the simplified method. 



4.2 An example: lateral response of a CCPF with different pile lengths 

In order to study the significance of adding piles beneath the caisson, the response 

of a CCPF subjected to lateral harmonic loads is computed with the proposed method 

and the effect of pile length is studied. The diameter and the embedment depth of the 

caisson are 15 m and 20 m. The caisson part is made of concrete, so its mass density 

is 2500 kg/m3. Thickness of the top, bottom and side walls of the caisson is 1.0 m. 

The pile part is a 33 steel-pipe pile group. The layout of these piles is shown in Fig. 

25. The Young’s modulus and mass density of the pile material are 206 GPa and 7850 

kg/m3. The diameter of the piles is 80 cm and the wall thickness is 4 cm. To study the 

pile length effect, the pile length is not a constant, and five sets of calculations are 

conducted with it varying among 0, 10m, 20 m, 40 m and 60 m. The amplitudes of the 

harmonic horizontal load and moment atop the caisson are 10 MN and 200 MN·m. 

Two soil conditions are studied. In the first one, a homogeneous soil is adopted, of 

which the Young’s modulus is 10 MPa, the mass density is 1500 kg/m3 and the 

Poisson’s ratio is 0.30. In the second one, the soil below the caisson base and around 

the piles is changed to be stiffer by increasing its Young’s Modulus and mass density 

to 30MPa and 1800 kg/m3, forming a two-layer soil condition. Both conditions are 

computed and compared to show the effect of piles. 

The impedances of the CCPF in both soil conditions and with all pile lengths are 

compared in Figs. 26~28, in which the results are normalized with the Young’s 

Modulus of the homogeneous soil and the length of the caisson. The horizontal 

displacements and rocking angles atop the foundation are shown in Fig. 29 and Fig. 

30, for the two soil conditions respectively. 

The results indicate that: (1) piles make great contribution to the foundation in 

resisting the lateral loads. The impedances of the foundation increase and the 

displacements decrease significantly after adding piles beneath the caisson; (2) 

although the soil around the caisson does not change, after the soil around the piles 

becomes stiffer, the impedances of the CCPF increase and the displacements decrease 

pronouncedly. This shows that in the composite foundation, the piles play an 

important role in resisting the lateral loads; (3) the increasing rate of the impedances 

and the decreasing rate of the displacements become smaller while the pile length 

becomes larger, showing that there is a limitation upon the pile length; and (4) piles 

have less impact on complex swaying stiffness than complex rocking stiffness. This is 



because under lateral loads the major response of the caisson is rocking effect, which 

can be largely resisted by the pile reaction forces. 

From the third point above, it can be found that the lateral response of the CCPF 

could not be mitigated lastingly by solely increasing the pile length. If the pile length 

is large enough, the further increase of it will have only a small effect. 

5 Conclusions 

This paper proposed a simplified method for the lateral response of CCPFs based 

on the dynamic Winkler model. The main contribution of this paper includes: (1) the 

development of the modified four-spring Winkler model for caissons in layered soils, 

in which the rocking embedment factor Γw is modified; (2) the derivation of the lateral 

impedance matrix for pile groups in layered soils; and (3) the combination of the 

caisson and piles that creates the Winkler model for lateral vibration of CCPFs. 

For caissons, verifications by the finite element simulations show the significance 

of the modification on Γw for both static and dynamic problems in both homogenous 

soil and layered soils. The proposed Winkler model for lateral response of CCPFs is 

also verified by the finite element method. 

Finally, with the study of an example of the CCPF, it is concluded that adding 

piles is a significant way to increase the capability of the foundation in resisting the 

lateral dynamic loads. The effect of the pile length is also discussed. The lateral 

response of the CCPF could not be decreased lastingly only by increasing the pile 

length, so it is important to have a control on the pile length from the economic point 

of view. 

Appendix 

A.1 The derivation of vertical vibration equation of pile group 

As given in Refs. [15] and [18], the axial vibration equation of a sole pile in soil 

layer i is 
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where z is the vertical coordinate, wi is the axial displacement of the pile, 
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 , hi is the thickness of soil layer i, mp, Ep and Ap are the 

distributed mass along the shaft, Young’s Modulus and cross section area of the pile, 

kpzi and cpzi are the dynamic Winkler coefficients of soil layer i. 

With the transfer matrix method, the relation of the axial displacements and forces 

between the pile top and bottom can be derived as 
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where L is the pile length and 1
VT  is the axial transfer matrix. The axial flexibility of 

the sole pile fV (  
 
0

0
V w

f
V

 ) can then be determined with the boundary condition at the 

pile bottom. 

To simulate the axial pile-pile interaction in layered soils, the axial vibration 

equation of a passive pile (e.g. pile 2) is given as 
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where w11,i and w21,i are the axial displacements of the active and passive piles in soil 

layer i, and i
V

 is the attenuation function of the axial displacement depending on the 

pile distance s. 

With the transfer matrix method, the relation between the active and passive piles 

can be derived as 

 
 

 
 

 
 

21 21 11

21 21 11

0 0

0 0

w L w w

V L V V

                
          

1 2
V VT T             (A.4) 

where 2
VT  is the axial inter-transfer matrix between the two piles. The axial pile-pile 

interaction V (  
 

21

11

0

0
V w

w
  ) can then be determined with the boundary condition at 

the pile bottom. 

Considering the effects from all other piles, the axial displacement at the head of a 

pile (e.g. pile k) in a pile group can be obtained by 
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where N is the number of the piles, Vj is the axial load undertaken by pile j, and V
kj is 

the axial pile-pile interaction factor between pile j and pile k. 



A.2 The derivation of lateral vibration equation of pile group 

As given in Refs. [16] and [19], the lateral vibration equation of a sole pile in soil 

layer i is 
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where ui is the horizontal displacement, 
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, Ip is the cross 

section moment of inertial of the pile, kpxi and cpxi are the horizontal dynamic Winkler 

coefficients of soil layer i. 

The relation of the lateral displacements and forces between the pile top and 

bottom can be derived through the transfer matrix method, i.e. 
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where  is the rotation angle, H and M are the shear force and the moment in the pile,  

and 1
HT  is the lateral transfer matrix. 

The lateral flexibility matrix of the sole pile fH (  
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Hf ) can then be 

determined with the boundary condition at the pile bottom. 

The lateral vibration equation of a passive pile (e.g. pile 2) is given as 
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where u11,i and u21,i are the horizontal displacements of the active and passive piles in 

soil layer i, and i
H

 is the attenuation function of horizontal displacement depending 

on the pile distance s and the angle  between the oscillating and displacement 

directions. 

With the transfer matrix method the relation of the lateral displacements and 

forces between the active and passive piles can be derived as 
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where 2
HT  is the lateral inter-transfer matrix between the two piles. The pile-pile 

interaction matrix of lateral vibration H (  
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Hα ) can then be 

determined with the boundary condition at the pile bottom. 

Considering the effects from all other piles, the lateral displacements at the head 

of a pile (e.g. pile k) in a pile group can be obtained by 
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where Hj and Mj are the horizontal load and moment undertaken by pile j, and H
kjα  is 

the lateral pile-pile interaction matrix between pile j and pile k. 
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Figure captions 

Fig. 1 Schematic diagram of the composite caisson-piles foundation. 

Fig. 2. Winkler model for lateral vibration of the composite caisson-piles foundation. 

Fig. 3. Vertical response of piles when the CCPF rotates 

Fig. 4. Axial-lateral coupled vibration of the pile group with rigid cap subjected to 

vertical, horizontal and moment loads. 

Fig. 5. Four-spring Winkler model for lateral vibration of the caisson in layered soils. 

Fig. 6. Horizontal embedment factors of cylindrical rigid caissons. 

Fig. 7. Rocking embedment factors of cylindrical rigid caissons. 

Fig. 8. Finite element mesh for static analyses of a cylindrical caisson in 

homogeneous soil. 

Fig. 9. Static horizontal displacements and rotation angles of a cylindrical caisson in 

homogeneous soil. 

Fig. 10. Finite element mesh for dynamic analyses of a cylindrical caisson in 

homogeneous soil. 

Fig. 11. Horizontal displacements and rotation angles in frequency domain of a 

cylindrical caisson in homogeneous soil. 

Fig. 12. Schematic diagram of a cylindrical caisson in layered soils. 

Fig. 13. Horizontal displacements and rotation angles in frequency domain of a 

cylindrical caisson in layered soils. 

Fig. 14. Finite element mesh for dynamic analyses of CCPFs and a caisson in 

homogenous soil. 

Fig. 15. Normalized complex swaying stiffness atop the caisson in the homogenous 

soil. 

Fig. 16. Normalized complex cross swaying-rocking stiffness atop the caisson in the 

homogenous soil. 

Fig. 17. Normalized complex rocking stiffness atop the caisson in the homogenous 

soil. 

Fig. 18. Normalized complex swaying stiffness atop the CCPF with 22 pile group in 

the homogenous soil. 

Fig. 19. Normalized complex cross swaying-rocking stiffness atop the CCPF with 22 

pile group in the homogenous soil. 



Fig. 20. Normalized complex rocking stiffness atop the CCPF with 22 pile group in 

the homogenous soil. 

Fig. 21. Normalized complex swaying stiffness atop the CCPF with 33 pile group in 

the homogenous soil. 

Fig. 22. Normalized complex cross swaying-rocking stiffness atop the CCPF with 33 

pile group in the homogenous soil. 

Fig. 23. Normalized complex rocking stiffness atop the CCPF with 33 pile group in 

the homogenous soil. 

Fig. 24. Horizontal displacements and rotation angles of the caisson and the CCPFs in 

the homogenous soil. 

Fig. 25. The layout of the piles beneath the caisson and the geometric attribute of the 

CCPF from the side view. 

Fig. 26. Normalized complex swaying stiffness atop the CCPF. 

Fig. 27. Normalized complex cross swaying-rocking stiffness atop the CCPF. 

Fig. 28. Normalized complex rocking stiffness atop the CCPF. 

Fig. 29. Horizontal displacements and rotation angles of the CCPF in homogeneous 

soil. 

Fig. 30. Horizontal displacements and rotation angles of the CCPF with stiffer soil 

around the piles. 

 

 

 

 



 
Fig. 1 Schematic diagram of the composite caisson-piles foundation. 

 
Fig. 2. Winkler model for lateral vibration of the composite caisson-piles foundation. 



 
Fig. 3. Vertical response of piles when the CCPF rotates 

 

 
Fig. 4. Axial-lateral coupled vibration of the pile group with rigid cap subjected to vertical, horizontal 

and moment loads. 

 



 
Fig. 5. Four-spring Winkler model for lateral vibration of the caisson in layered soils. 

 

 
Fig. 6. Horizontal embedment factors of cylindrical rigid caissons. 

 

 
Fig. 7. Rocking embedment factors of cylindrical rigid caissons. 



 

 
Fig. 8. Finite element mesh for static analyses of a cylindrical caisson in homogeneous soil. 

 

 

(a) Horizontal displacements 

 
(b) Rotation angles 

Fig. 9. Static horizontal displacements and rotation angles of a cylindrical caisson in homogeneous soil. 

 



 
Fig. 10. Finite element mesh for dynamic analyses of a cylindrical caisson in homogeneous soil. 

 

 

(a) Horizontal displacements 

 
(b) Rotation angles 

Fig. 11. Horizontal displacements and rotation angles in frequency domain of a cylindrical caisson in 

homogeneous soil. 

 



 
Fig. 12. Schematic diagram of a cylindrical caisson in layered soils. 

 

 

(a) Horizontal displacements 

 
(b) Rotation angles 

Fig. 13. Horizontal displacements and rotation angles in frequency domain of a cylindrical caisson in 

layered soils. 

 



 
Fig. 14. Finite element mesh for dynamic analyses of CCPFs and a caisson in homogenous soil. 

 

 

(a) Real part 

 
(b) Imaginary part 

Fig. 15. Normalized complex swaying stiffness atop the caisson in the homogenous soil. 

 



 

(a) Real part 

 
(b) Imaginary part 

Fig. 16. Normalized complex cross swaying-rocking stiffness atop the caisson in the homogenous soil. 

 

 

(a) Real part 



 
(b) Imaginary part 

Fig. 17. Normalized complex rocking stiffness atop the caisson in the homogenous soil. 

 

 

(a) Real part 

 
(b) Imaginary part 

Fig. 18. Normalized complex swaying stiffness atop the CCPF with 22 pile group in the homogenous 

soil. 

 



 

(a) Real part 

 
(b) Imaginary part 

Fig. 19. Normalized complex cross swaying-rocking stiffness atop the CCPF with 22 pile group in the 

homogenous soil. 

 

 

(a) Real part 



 
(b) Imaginary part 

Fig. 20. Normalized complex rocking stiffness atop the CCPF with 22 pile group in the homogenous 

soil. 

 

 

(a) Real part 

 
(b) Imaginary part 

Fig. 21. Normalized complex swaying stiffness atop the CCPF with 33 pile group in the homogenous 

soil. 

 



 

(a) Real part 

 
(b) Imaginary part 

Fig. 22. Normalized complex cross swaying-rocking stiffness atop the CCPF with 33 pile group in the 

homogenous soil. 

 

 

(a) Real part 



 
(b) Imaginary part 

Fig. 23. Normalized complex rocking stiffness atop the CCPF with 33 pile group in the homogenous 

soil. 

 

 

(a) Horizontal displacements 

 
(b) Rotation angles 

Fig. 24. Horizontal displacements and rotation angles of the caisson and the CCPFs in the homogenous 

soil. 

 



 
Fig. 25. The layout of the piles beneath the caisson and the geometric attribute of the CCPF from the 

side view. 

 

 

(a) Real part 

 
(b) Imaginary part 

Fig. 26. Normalized complex swaying stiffness atop the CCPF. 

 



 

(a) Real part 

 
(b) Imaginary part 

Fig. 27. Normalized complex cross swaying-rocking stiffness atop the CCPF. 

 

 

(a) Real part 



 
(b) Imaginary part 

Fig. 28. Normalized complex rocking stiffness atop the CCPF. 

 

(a) Horizontal displacements 

 
(b) Rotation angles 

Fig. 29. Horizontal displacements and rotation angles of the CCPF in homogeneous soil. 

 



 

(a) Horizontal displacements 

 
(b) Rotation angles 

Fig. 30. Horizontal displacements and rotation angles of the CCPF with stiffer soil around the piles. 
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