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Effects of annealing on microstructure and microstrength of metallurgical
coke

Abstract
Two metallurgical cokes were heat treated at 1673 K to 2273 K (1400 degrees celsius to 2000 degrees celsius)
in a nitrogen atmosphere. The effect of heat treatment on the microstructure and microstrength of
metallurgical cokes was characterized using X-ray diffraction, Raman spectroscopy, and
ultramicroindentation. In the process of heat treatment, the microstructure of the metallurgical cokes
transformed toward the graphite structure. Raman spectroscopy of reactive maceral-derived component
(RMDC) and inert maceral-derived component (IMDC) indicated that the graphitisation degree of the
RMDC was slightly lower than that of the IMDC in the original cokes; however graphitisation of the RMDC
progressed faster than that of the IMDC during annealing, and became significantly higher after annealing at
2273 K (2000 degrees celsius). The microstrength of cokes was significantly degraded in the process of heat
treatment. The microstrength of the RMDC was lower, and of its deterioration caused by heat treatment was
more severe than IMDC. The degradation of the microstrength of cokes was attributed to their increased
graphitisation degree during the heat treatment.
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Effects of Annealing on Microstructure and Microstrength
of Metallurgical Coke

XING XING, GUANGQING ZHANG, HAROLD ROGERS, PAUL ZULLI,
and OLEG OSTROVSKI

Two metallurgical cokes were heat treated at 1673 K to 2273 K (1400 �C to 2000 �C) in a
nitrogen atmosphere. The effect of heat treatment on the microstructure and microstrength of
metallurgical cokes was characterized using X-ray diffraction, Raman spectroscopy, and ultra-
microindentation. In the process of heat treatment, the microstructure of the metallurgical cokes
transformed toward the graphite structure. Raman spectroscopy of reactive maceral-derived
component (RMDC) and inert maceral-derived component (IMDC) indicated that the grap-
hitisation degree of the RMDC was slightly lower than that of the IMDC in the original cokes;
however graphitisation of the RMDC progressed faster than that of the IMDC during
annealing, and became significantly higher after annealing at 2273 K (2000 �C). The micro-
strength of cokes was significantly degraded in the process of heat treatment. The microstrength
of the RMDC was lower, and of its deterioration caused by heat treatment was more severe than
IMDC. The degradation of the microstrength of cokes was attributed to their increased grap-
hitisation degree during the heat treatment.

DOI: 10.1007/s11663-013-0002-y
� The Minerals, Metals & Materials Society and ASM International 2013

I. INTRODUCTION

METALLURGICAL coke is a major material used
in blast furnace (BF) ironmaking. In BF ironmaking,
which is a shaft furnace-based process, coke is used as
both a reductant and fuel. However, the structural
support to the burden column is the most significant
function that coke fulfils in the BF as the other roles of
coke can be substituted to some extent with other
carbonaceous materials, such as pulverized coal for
tuyere injection. Therefore, coke with good mechanical
strength is required to ensure good permeability of the
liquid, powder, and gas phases flowing through the
burden in the blast furnace.

The mechanical strength of coke is much higher than
the load to which coke is subjected in the blast furnace.
However, the coke collected from the lower region of the
furnace shows evidence of degradation, such as lump-size
decrease and microtextural changes. Previous studies on
parameters determining mechanical strength of metallur-
gical cokes suggested that the mechanical strength of
coke was affected by the pore structure and the micro-
strength of coke wall components structure.[1–6].

Microstructure of carbonaceous materials has been
extensively studied using X-ray diffraction (XRD) and
Raman spectroscopy.[7–18] Heating of cokes was shown
to have a significant impact on the growth of crystallite
size, Lc, by demonstrating the correlation between
crystallite size and annealing temperature.[15,18,19] Cor-
respondingly, the proportion of graphite-like structure
increased during the thermal heating process.[10]

Microstrength of carbonaceous materials has been
investigated by ultra-microindentation,[5,6,20–23] with a
principal focus on the effect of coking condition and
reaction on the microstrength of the cokes. However,
little has been reported on the effect of annealing on the
microstrength of metallurgical cokes, especially in the
temperature range found in the lower region of the blast
furnace. The mechanism of the change in the micro-
strength of metallurgical cokes upon heating is still
unclear.
The aim of this paper is to study the effect of heat

treatment under inert conditions on the microstructure
and microstrength of metallurgical coke in the temper-
ature range of 1673 K to 2273 K (1400 �C to 2000 �C),
and develop an understanding of the mechanism of
change in microstrength during heat treatment.

II. EXPERIMENTAL

A. Materials

Two metallurgical cokes, Coke A and Coke C,
studied in this work. One coke is from a commercial
BF operation and the second was produced in a pilot
coke oven. Proximate analysis of cokes is shown in
Table I.
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B. Heat Treatment

Approximately 200 g of coke with a particle size of 19
to 21 mm was heat treated in a graphite furnace under
nitrogen atmosphere for 2 h at temperatures of 1673 K,
1873 K, 2073 K, and 2273 K (1400 �C, 1600 �C,
1800 �C, and 2000 �C). The heating rate was fixed at
25 K min�1 (25 �C min�1). The samples were contained
in a graphite crucible, into which 1 L min�1 of nitrogen
(99.99 pct) was continuously blown through a graphite
ducting tube attached to the bottom of the crucible. A
type B thermocouple was inserted through the gas
ducting tube with the tip located at the center of the
coke bed. Heat treatment was counted from the time
when the furnace temperature reached the designated
level.

C. Microstructure of Carbonaceous Materials

1. X-ray diffraction of carbonaceous materials
XRD spectra of powdered samples were obtained

using Philips X’Pert multipurpose X-ray diffraction
system (MPD). Cu Ka radiation (45 kV, 40 mA) was
used as the X-ray source. Samples were scanned with 2h
in the range of 10 to 50 deg with a step size of 0.02 deg
and 0.6 seconds scanning time at each step.

The crystallite size, Lc, or stack height and interlayer
spacing between aromatic planes of carbon crystallites,
d002, (Figure 1) were calculated using the Scherrer
equation[24] and Bragg’s Law.[25] The wavelength of
incident X-ray for Cu Ka radiation in this study was
1.5409 Å.

2. Raman spectroscopy of carbonaceous materials
Carbonaceous materials were also analyzed using a

Renishaw inVia Raman microscope with a 514 nm
excitation wavelength. The beam size was 1.5 to 2 lm,
which allowed analysis of inert maceral-derived compo-
nent (IMDC) and reactive maceral-derived component
(RMDC) separately. Raman spectra were scanned from

900 to 1900 cm�1 with 25 mW laser power for an
exposure time of 15 seconds. The appearance of IMDC
and RMDC under plane reflected light with air gap
objective is shown in Figure 2. At least ten measure-
ments in different zones were taken for each type of
microtexture. Highly ordered pyrolytic graphite
(HOPG) was also analysed by Raman spectroscope as
a reference material with a high degree of graphitisation.
Figure 3 shows a typical first order Raman profile of

RMDC texture of metallurgical cokes annealed at high
temperature. The Raman spectrum consists of two
apparent peaks, overlapped G* and D* bands centered
at around 1600 and 1360 cm�1, respectively. It was
reported that both G* and D* bands became sharper
with increasing annealing temperature, and the G* band
split into two peaks centered at 1580 and 1620 cm�1,
respectively after annealing at 2073 K (1800 �C).[9,26] In
previous investigations, different curve fitting methods
of G* and D* bands were attempted; Ferrari and
Robertson[27] focused only on G* and D* peaks at 1600
and 1350 cm�1. Dong et al.[7] fitted the G* and D*
bands with G, D, R1, and R2 peaks. Sheng[28] and
Kawakami et al.[10] further separated G peak into two
peaks centered at around 1580 and 1620 cm�1, respec-
tively. Li et al.[29] deconvoluted G* and D* bands more
finely into ten individual peaks.
In the present work, overlapped G* and D* bands

were deconvoluted into five peaks with Lorentzian band
fitting: G, D, D¢, R1, and R2 (Figure 3). The G peak
represents the Raman scattering from the inner graphitic
plane which arises from E2g (1580 cm�1) peak.[7] The
E2g peak is attributed to the stretching vibration mode
in the aromatic layer of the graphite crystallite.[14,27,28,30]

The D¢ peak appears near the high frequency edge of the
vibrational states of the carbon lattice.[31] The D peak,
which represents the disordered carbon, is due to the
breathing modes of A1g symmetry involving phonons
near the K zone boundary which is active only in the
presence of disorder.[14,27] R1 and R2 peaks are assigned
to the so-called turbostratic or random structure, which
has an intermediate structure between graphite and an
amorphous state.[17,32,33]

Based on the above interpretation of Raman bands,
the G fraction which characterizes coke graphitisation
was calculated as ratio of area under the G peak to the
total area.[7]

D. Microstrength of Carbonaceous Materials

Microstrength of each coke was determined using a
UMIS2000 ultra-microindentation system. Earlier
indentation studies on metallurgical cokes showed that
using a Berkovich indenter with a centerline-to-face
angle of 65.27 deg, there was very little plastic defor-
mation with no residual indenter impress after full load,
and no crack formation.[5,6] Therefore a sharper cube
corner indenter, with a centerline-to-face angle of
35.26 deg, was used when a residual impression and
measurable radial cracks were needed. Indentations
were made on the polished surface of resin-mounted
samples with an appropriate indenter.

Table I. Proximate Analysis of Coke Samples

(Wt Pct Air-Dried Basis)

Coke A Coke C

Mad 0.39 0.51
Vad 1.39 1.53
Aad 11.92 12.08

Mad is moisture in the air-dry sample. Vad is volatile matter in the
air-dry sample. Aad is ash in the air-dry sample.

Fig. 1—Single carbon crystallite.

METALLURGICAL AND MATERIALS TRANSACTIONS B VOLUME 45B, FEBRUARY 2014—107



1. Hardness and Young’s modulus
A three-sided Berkovich indenter was applied to

determine the hardness, H, and Young’s modulus, E.
A load of 100 mN was applied, and ten measurements
for each type of coke microtexture and HOPG were
carried out across several sample lumps. Hardness and
Young’s modulus were determined according to the
loading–unloading curve generated by increasing ap-
plied load and measuring the depth of penetration of the
diamond indenter.

The hardness, H, and Young’s modulus, E, were
calculated according to the method developed by Oliver
and Pharr.[34]

2. Fracture toughness
The measurement of fracture toughness relies upon

the optical microscope measurement of the crack length
of the residual impression formed after indentation.
Fracture toughness of the two coke microtextures and
HOPG was determined using 200 and 50 mN loads,
respectively, with cube corner indenter. Determinations

of fracture toughness were located at ten different
locations and crack lengths of residual impression after
full unload were measured from the images obtained by
the digital camera linked to the microscope of the
UMIS. The fracture toughness K1c was calculated using
experimental hardness, Young’s modulus, length of
cracks, and geometry of the applied indenter.[35]

III. RESULTS AND DISCUSSION

A. Effect of Heat Treatment on Microstructure of the
Metallurgical Cokes

1. XRD analysis
The XRD spectra with profiles of 002 carbon peak of

original Cokes A and C, and annealed at different
temperatures are presented in Figure 4. The peaks at
26.6 and 20.8 deg in original samples were assigned to
quartz in the coke ash; they were substantially removed
in annealing above 1673 K (1400 �C). The shape of the
002 carbon peaks is used as a qualitative indication of
the graphitisation degree of metallurgical cokes; coke
samples with shaper 002 peaks have a larger crystal size
and greater degree of graphitisation. The comparison of
XRD patterns of coke annealed at different tempera-
tures shows that the 002 carbon peak became sharper
with increasing annealing temperature.
The effects of annealing on the carbon crystallite size

Lc and interlayer spacing d002 cokes subjected to
different annealing temperature are presented in Fig-
ures 5 and 6, respectively. The crystallite size Lc of both
cokes increased significantly with increasing heat treat-
ment temperature; the increase became more prominent
at high temperatures. The crystallite size Lc of original
Coke C was slightly lower than that of original Coke A;
however in the process of annealing, the crystallite size
of Coke C grew faster than that of Coke A. After heat
treatment at 2273 K (2000 �C), the crystallite size Lc of
Coke C was 20 pct higher than Coke A.
Interlayer spacing d002 was also strongly affected by

the annealing temperature. Increasing annealing tem-
perature resulted in a denser structure and decreased
d002 value. However, the minimum d002 value among all
coke samples was higher than that of HOPG (3.36 Å).

2. Raman spectroscopy analysis
The Raman spectra of RMDCmicrotexture of Coke A

annealed at different temperatures are shown in Figure 7.
This figure also includes Raman spectrum of HOPG. The
Raman spectrum of original coke contained two over-
lapped G* and D* bands centered at around 1600 and
1360 cm�1, respectively. Both of these bands became
sharper with increasing annealing temperature; G* band
split into G and D¢ peaks after heat treatment at 2073 K
(1800 �C), and the D¢ peak became more evident after
annealing at 2273 K (2000 �C). Raman spectrum of
HOPG presented three individual peaks centered at 1355,
1580, and 1620 cm�1. Comparison of the Raman spectra
of metallurgical coke and HOPG indicates that the
structure of metallurgical coke transformed towards
HOPG with increasing annealing temperature.

Fig. 2—Inert maceral-derived component (IMDC) and reactive
maceral-derived component (RMDC) of Coke A.

Fig. 3—Typical Raman profile of inert maceral-derived component
(IMDC) or reactive maceral-derived component (RMDC) for metal-
lurgical cokes.
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The Raman spectra were deconvoluted into G, D, D¢,
R1, and R2 peaks as described previously with Lorentzian
band fitting, and G fraction of Coke A, Coke C, and
HOPG was calculated. The G fractions of Coke A and
CokeCheat treated at different temperatures are presented
in Figure 8. G fraction of all microtextural types in the
tested coke samples increased as annealing temperature

increased which indicates that the proportion of graphite
structure in cokes increased in the process of thermal
annealing. The G fraction of tested HOPG was approx-
imately 52 pct which was higher than the G fraction of
cokes annealed at 2273 K (2000 �C).
In both coke samples, the G fraction of the RMDC of

original coke samples was slightly lower than that of the
IMDC. However, the G fraction of the RMDC and
IMDC reached the same level after heat treatment at
1673 K (1400 �C); with further increase in the annealing
temperature the G fraction of the RMDC became higher
than that of the IMDC, and the difference became larger
with further increase in the heat treatment temperature.
These changes in G fraction of the RMDC and IMDC
indicate that the graphitisation degree and the effect of
temperature on it were higher for the RMDC than for
the IMDC for both cokes.

Fig. 4—Profiles of 002 carbon peaks in XRD spectra of original
Cokes A and C, and after annealing at different temperatures.

Fig. 5—Crystallite sizes (Lc) of Coke A and Coke C annealed at dif-
ferent temperatures.

Fig. 6—Interlayer spacing (d002) of Coke A and Coke C annealed at
different temperatures.

Fig. 7—Raman spectra of RMDC of Coke A annealed at different
temperatures and HOPG.
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B. Effect of Heat Treatment on the Microstrength of the
Metallurgical Cokes

The fracture toughness of coke samples and HOPG
was calculated using experimental data on hardness and
Young’s modulus, and the measurement of the crack
length of the residual impression after indentation. The
fracture toughness of the original cokes and after
annealing at different temperatures is presented in
Figure 9. The crack length of residual impression after
microindentation of RMDC in Coke C was difficult to
measure as this microtexture is dominated by coarse
mosaic and foliate microtexture. Therefore, the fracture
toughness of Coke C was studied only for IMDC.

Fracture toughness of IMDC in the original cokes
was 1.5 to 1.6 MPa m1/2. Heat treatment of coke
samples in the temperature range of 1673 K to 2273 K
(1400 �C to 2000 �C) degraded the fracture toughness of
both Coke A and Coke C. After annealing at 2273 K
(2000 �C), the fracture toughness of the IMDC of Coke
C was 0.9 MPa m1/2 which was 13.5 pct lower than that
of Coke A. The fracture toughness of RMDC of original
Coke A was slightly lower than that of IMDC, and the
deterioration of RMDC caused by heat treatment was
more severe than IMDC. After heat treatment at

2273 K (2000 �C), the fracture toughness of RMDC
was 0.7 MPa m1/2, which is approximately 34.6 pct
lower than that of IMDC. Compared with metallurgical
cokes, HOPG had a fracture toughness of 0.32
MPa m1/2, which was 67 pct lower than IMDC and
53 pct lower than RMDC of metallurgical cokes.

C. Correlation of Microstructure and Microstrength

Crystallite size, Lc, and G fraction of graphite
structure in carbonaceous material are used as an
indication of graphitisation degree of the metallurgical
cokes. During heat treatment in the temperature range
of 1673 K to 2273 K (1400 �C to 2000 �C), Lc param-
eter and G fraction increased significantly for all
samples tested. The Raman spectrum of coke annealed
at 2273 K (2000 �C) had a similar shape to the Raman
spectrum of HOPG. These parameters indicate that the
graphitisation degree increased and the carbon structure
of coke samples transformed towards the graphite
structure in the process of heat treatment.
The microstrength of cokes, represented by fracture

toughness, degraded during annealing at 1673 K to
2273 K (1400 �C to 2000 �C). Correlation of micro-
structure and microstrength of cokes was tested by
plotting fracture toughness against G fraction. Correla-
tion between the G fractions and fracture toughness for

Fig. 8—G fraction of Coke A and Coke C annealed at different tem-
peratures.

Fig. 9—Fracture toughness of original coke samples and after
annealing at different temperatures.
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RMDC and IMDC of Coke A and IMDC of Coke C is
shown in Figure 10. This plot also includes the G
fraction and fracture toughness of HOPG.

The HOPG had the highest graphitisation degree and
lowest fracture toughness; the fracture toughness of
RMDC and IMDC of both cokes decreased with
increasing G fraction; obviously, the coke matrix
became weaker when the carbon structure transformed
towards the graphite structure. This can be explained by
the carbon structure model which describes the structure
of the non-graphitic carbon as a strong system of cross-
lined crystallites and the structure of graphite as parallel
orientated crystallites.[36] Upon the heat treatment in the
temperature range of 1673 K to 2273 K (1400 �C to
2000 �C), the microstructure of cokes transformed from
a non-graphitic structure towards a graphitic structure;
during this process, the cross-link structure was broken
and the crystallites rearranged to form parallel structure,
which has a weaker resistance to fracture.

IV. CONCLUSIONS

The effect of heat treatment in the temperature range
of 1673 K to 2273 K (1400 �C to 2000 �C) on the
microstructure and microstrength of metallurgical cokes
was studied using XRD, Raman spectroscopy, and
ultra-microindentation. The major findings are

1. In the process of heat treatment, the microstructure
of the metallurgical cokes transformed towards a
graphite-like structure. The graphitization degree of
RMDC was slightly lower than that of IMDC in the
original coke samples; however, the graphitisation
degree of RMDC increased more rapidly with
increasing temperature above 1673 K (1400 �C) and
became significantly higher than that of IMDC after
the heat treatment.

2. Heat treatment in the temperature range of 1673 K
to 2273 K (1400 �C to 2000 �C) significantly
degraded the fracture toughness of metallurgical
cokes. Fracture toughness of RMDC was lower than
that of IMDC, and the effect of heat treatment on
RMDC was greater.

3. The reduction in the microstrength of metallurgical
cokes was attributed to the transformation of carbon
structure from non-graphite to graphite microstruc-
ture during the heat treatment.
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