
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part A 

Faculty of Engineering and Information 
Sciences 

1-1-2013 

A novel formulation for optimum conceptual design of buildings of A novel formulation for optimum conceptual design of buildings of 

rectangular shapes rectangular shapes 

Pezhman Sharafi 
University of Wollongong, psharafi@uow.edu.au 

Muhammad Hadi 
University of Wollongong, mhadi@uow.edu.au 

Lip H. Teh 
University of Wollongong, lteh@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/eispapers 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Sharafi, Pezhman; Hadi, Muhammad; and Teh, Lip H., "A novel formulation for optimum conceptual design 
of buildings of rectangular shapes" (2013). Faculty of Engineering and Information Sciences - Papers: 
Part A. 2093. 
https://ro.uow.edu.au/eispapers/2093 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F2093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F2093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F2093&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/2093?utm_source=ro.uow.edu.au%2Feispapers%2F2093&utm_medium=PDF&utm_campaign=PDFCoverPages


A novel formulation for optimum conceptual design of buildings of rectangular A novel formulation for optimum conceptual design of buildings of rectangular 
shapes shapes 

Abstract Abstract 
In many optimum design cases, we look for a set of design variables selected from a given list which 
assure the optimum of objective function together with satisfaction of the constraints. That is, optimum 
conceptual design mostly consists of selecting the best combination of a finite number of structural 
elements and the available parameters. In this paper a novel technique is presented for the conceptual 
design optimization of framed buildings with a rectangular plan. The method supports all the buildings 
with grid pattern column layout. To that end, we take advantage of the knapsack problem as a basic 
applied combinatorial optimization problem. The objective is to find a rectangular column layout of 
maximum profit for the frames that also satisfy the imposed geometric constraints. The method is 
presented in a general form and is not confined to optimization under a certain type of action effect and/
or geometrical constraints. It gives the methodology the ability of being formulated for various objective 
functions and constraints and different structural systems. Civil-Comp Press, 2013. 

Keywords Keywords 
optimum, conceptual, rectangular, design, shapes, formulation, novel, buildings 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Sharafi, P., Hadi, M. N. & Teh, L. H. (2013). A novel formulation for optimum conceptual design of buildings 
of rectangular shapes. Proceedings of the Fourteenth International Conference on Civil, Structural And 
Environmental Engineering Computing United Kingdom: Civil-Comp Press. 

This conference paper is available at Research Online: https://ro.uow.edu.au/eispapers/2093 

https://ro.uow.edu.au/eispapers/2093


1 

Abstract 
 
This paper presents a description of a new methodology for the optimum 
preliminary layout design of reinforced concrete multi-span beams considering the 
relevant cost elements. First, a new objective function is presented, as an alternative 
to traditional cost functions for reinforced concrete beams. The ability of being 
easily employed in layout optimization problems, gives the new cost function a 
distinct advantage over its alternatives. Examples are included to illustrate the 
performance of the new methodology. 
 
Keywords: cost optimization; layout optimization; reinforced concrete; multi-span 
beam; Ant colony optimization. 
 

1  Introduction 
 
The design process can be divided into four stages: the formulation of functional 
requirements stage, the conceptual (preliminary) design stage, the optimization stage 
and the detailing stage. An iterative procedure for the four stages is often required 
before achieving the final solution. In what is named optimal design, the required 
structural behaviour together with the design loads and geometrical constraints are 
initially specified and then, the cost or the objective function is defined. In a 
comprehensive structural optimization process, selecting an appropriate preliminary 
geometric layout design of structures is of great importance, as it influences all the 
subsequent stages of the design procedure. The aim of this computational effort is to 
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determine the preliminary geometry so that the desired behaviour is achieved at the 
lowest possible cost. The outcome can be considered as an optimum starting point, 
in a comprehensive optimization design process of reinforced concrete continuous 
beams. 
Preliminary design, as the earliest phase of the design process, commences with a 
set of initial concepts. Designers at this early stage must understand the many factors 
affecting the project being designed, including account for efficiency, construction 
cost, operation cost, quality and comfort of the built project, and the potential for 
revenue generation. Significant complexity comes from the need to determine the 
relative benefits of all of these various quantities and qualities [1]. In fact, generally 
there is not a single layout design solution having optimal performance with respect 
to all requirements because the objective criteria are often conflicting, and designers 
must evaluate different competing criteria with the view to achieve a good 
compromise design. That is, the selection of a suitable layout design involves 
making informed subjective compromises between conflicting objective criteria. 
The phase of preliminary layout design is usually carried out according to the 
architectural requirements without considering the relative costs of concrete, 
reinforcing steel, formwork or other relevant costs. In fact, the phases of the detailed 
design and optimization, only deal with a predefined layout plan and the effects of 
the preliminary layout design on the total costs are mainly neglected. Albeit, 
designers often are intended to spend most of their working time on the detailed 
design phase, where the scope for improvement is much less [2]. On the other hand, 
in contrast to steel structures, where the cost optimization can, more or less, be 
formulated as a weight minimization problem; for concrete structures, the 
optimization problem needs to be formulated as a cost minimization problem; 
because different materials are involved. In practice, a minimum weight design may 
not lead to a minimum cost design in concrete structures.  Ideally, the optimization 
problem should be considered in terms of costs of materials, fabrication, erection, 
maintenance, and disassembling the structure at the end of its life cycle as the cost 
elements.   
A number of methods have been developed as general methods for the layout 
optimization of structures [3-5].  In literature, topology or layout optimization 
methods rarely consider the cost factors and the objective function is optimized 
regardless of the involving cost elements. Therefore the topology optimization 
methods may result in a sub-optimal solution.  
Sharafi et al.[6-11], Govindaraj and Ramasamy [12] have attempted to make use of 
evolutionary methods, to deal with the problem in a discretized form. Muc and 
Gurba [13] described the concept of using Genetic Algorithm in layout optimization 
of composite structures. Wang and Liu [14] described a methodology for optimizing 
both weight and cost for composite structures. Hadi [15] employed a Neural 
Network (NN) method to deal with the cost optimization of RC beams. Recently, 
using new heuristics, some different methods have been employed for the layout 
optimization of structures by Nimtawat and Nanakorn [16, 17], Zhu et al. [18], Shaw 
et al. [19]. Zou [20] described a multiobjective life-cost optimization approach for 
topologically predefined reinforced concrete frames. Liu and Qiao [21] presented a 
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technique for topology optimization of structures with different tensile and 
compressive properties in layout design of bridges. 
Nevertheless, the applications of these methods are limited to either cost 
optimization of structures with predefined shapes or layout optimization of 
structures without considering the relevant costs. Therefore, there is a need to study 
topology optimization methods that can take cost into account. This study describes 
a developed approach for optimization of preliminary layout that considers all cost 
elements and is applicable for multi-span RC beams. 
At first, a new cost function is proposed to deal with the cost optimization problem 
of rectangular RC beams, which can be used in layout optimization of multi-span 
RC beams as well as considering the cross-sectional action effects. Then, some 
numerical examples demonstrate the methodology.  
  

 

2  Problem Definition 
 
When designing concrete structures, the designer is faced with four classes of design 
variables. The first class is material design variables such as the type of concrete to 
be used. The second class is topological design variables such as the number of 
spans in a frame. The third class is geometric layout variables such as the length of 
spans in a continuous beam; and finally, cross section design variables such as the 
dimensions of a concrete section [22]. In most occasions, in optimization process, 
the designer is not free to set the pre-assigned parameters and design variables, and 
the existing circumstances may dictate to the designer what to do. Exploiting 
experience, nevertheless, one may shift from one set of variables to another that 
causes a new definition for the objective function (cost function in this case). 
Moreover, any changes in choosing design variables may lead to changes in 
constraints and even vary their nature from design variables to behaviour ones and 
vice versa. In other words, depending on the nature of the optimization problem, the 
process of achieving an optimum feasible solution may be much quicker, shifting 
from one design space to another by changing design variables as the space 
dimensions.  
The selection of the cost function can be considered the most important decision in 
the entire optimal design process. Therefore, it is essential to introduce a cost 
function that represents the most influential cost components and more importantly, 
is applicable for a variety of similar optimization problems. Furthermore, it must be 
capable of matching the explicit constraints of structures, which are often given by 
formulas in design codes.  
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Figure 1: An arbitrary section of a rectangular RC beam [10, 9] 
 
A cost function generally includes the cost of materials, transportation, fabrication 
and even maintenance costs, in addition to repair and insurance costs, which can be 
presented by a weighted sum of a number of properties. The effect of these factors in 
optimal cost can be imposed on the weighted coefficients of the cost function. In 
concrete structures, at least three different cost items should be considered in 
optimization: costs of concrete, steel, and the formwork. So, the general cost 
function for a reinforced concrete beam can be expressed in the following form [10, 
9]: 

C =Cc+Cs+Cf                                                    (1) 

where C, Cc ,Cs and Cf  are the total cost, cost of concrete, cost of steel and cost of 
the formwork, respectively. Obviously, for pre-stressed and fibre reinforced concrete 
sections the relevant costs for these two items are added to the total cost. 
Considering the unit costs per parameter and the fact that, unit costs of longitudinal 
reinforcement steel usually differ from shear steel; Eq. (1) can be written as 

C =cc Ac + csl Asl + csv Asv + cf Pf                                  (2) 

Where cc, csl, csv and cf are the unit costs of concrete, longitudinal steel, shear steel 
and formwork respectively and Ac, Asl, Asv and Pf are their corresponding quantities. 
In most published optimization studies [23], the costs are calculated for a member 
such as a beam, and coefficients and quantities are presented based on members or 
the unit length of each member in Eq. (2). If such a classic cost function for a beam 
optimization problem is used, some or all of the parameters Ac, Asl, Asv and Pf are 
considered the design variables. Then, based on explicit constraints, which are 
presented in codes and/or implicit behavior constraints of the problem, the optimum 
values of the design variables will be found using optimization techniques. In other 
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words, most existing cost optimization functions deal only with cross-sectional 
variables.  
 

 

Figure 2: A multi-span rectangular RC beam 
 
 
In case of the multiobjective optimization of structures including a combination of 
material, geometrical layout, topological and cross-sectional design variables, using 
currently available formulation leads to a significant number of design variables and 
constraints. This is because each of the stated conditions might require a 
complicated trial and error procedure. In fact, the design variables of this kind, even 
in the traditional methods of design, require sound engineering judgment to be 
chosen, and it can be extremely time-consuming to determine their solution for each 
section of each member. Therefore, unless alternative design variables are selected 
for the cost function, the multiobjective optimization procedure might be too 
unwieldy in such cases.  
In the problem of preliminary layout optimization of multi-span RC beams, 
parameters like cross-sectional area, perimeter of concrete section or area of 
reinforcement steel are not truly suitable as design variables, because such variables 
are not obtained from an explicit mathematical procedure. These parameters are 
mainly calculated using suggested relations in design codes, which do not uniquely 
provide the exact values for these parameters. Furthermore, in order to determine 
such parameters, the first step is to complete the structural analysis procedure. Then, 
using the structural analysis outputs such as forces and moments together with 
design code requirements, the cross-sectional characteristics of the concrete beam 
are primarily determined. In such a case, each step of the layout optimization, as in 
an iterative procedure, includes both analysis and design processes, and besides the 
classic cross-sectional variables, the layout of a structure and consequently the 
outputs of structural analysis would be variables of the problem. Therefore, 
designers have to repeat the design procedure to achieve the optimal cross-sectional 
variables that are usually functions of other analysis outputs.     
Consider Eq. (3) as a potential alternative cost function to Eq. (2) in an arbitrary 
beam cross-section. 

                                         C =c1 + c2 + c3 Vu                                       (3) 
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where  and 	   are the positive and negative bending moment capacities and Vu  
is the shear capacity of the section. If an appropriate set of {c1, c2, c3} could be 
found, such that Eq. (3) represents the cost of the section, the design variables would 
shift from Ac, Asl, Asv and Pf to ,	 	 and Vu. In fact, due to the relationship 
between the capacity factors of the section and structural analysis outputs in design 
codes, the aim of using cost functions such as Eq. (3) is to use structural analysis 
outputs instead of structural design factors. 
Using structural analysis outputs, say internal action effects of a beam, as design 
variables, has some advantages over using structural design outcomes such as cross-
sectional characteristics of a beam. Firstly, design action effects of each section can 
be easily obtained from structural analysis, and in an iterative mathematical 
procedure, re-analyzing a structure is considerably less time-consuming and more 
precise than re-designing the structure. If Eq. (2) is used for finding the optimum 
layout of a large structure with respect to the involved cost elements, the 
optimization tool needs to deal with both structural analysis and structural design in 
each step in order to move towards an optimum solution. Besides, in the process of 
obtaining Ac, Asl, Asv and Pf, in the first step, one needs to have access to the relevant 

,	 	and Vu. Therefore, using ,	 	and Vu as optimization variables seems to 
be a shortcut in finding the optimum cost in the layout optimization of multi-span 
beams.  
Moreover, in Eq. (3), the cost function is considered in a section rather than a 
member. Such ability is an advantage, as it enables the designer to select a number 
of sections for each member and in the entire structure to control the cost, and there 
is no necessity to conduct the optimization process over the entire member. Since 
the cross-sectional characteristics of a member, say a RC beam, such as Ac, Asl, Asv 
and Pf varies along the member, in order to come up with an accurate cost function 
for a member, one needs to have a clear idea about the probable distribution of 
bending moments and shear forces. Such a requirement makes the formulation 
extremely complicated and sometimes impractical for some multi-objective 
problems. 
The rest of this paper describes how to find an appropriate set of coefficients that 
make Eq. (3) a viable alternative to Eq. (2) for layout optimization of reinforced 
concrete continuous beams. Using the proposed cost function, a method to find the 
optimum lengths of spans in a multi-span beam in order to minimize the cost is 
formulated.   
 

3  Mathematical Formulation 
 
In formulating the cost optimization of a beam and the relevant constraints, the 
Australian design standard for reinforced concrete structures, AS-3600 [24] is used, 
which is based on limit states design method of concrete structures. The evaluation 
of the area of steel reinforcement and the area of concrete section are based on the 
strength limit states of the section that can occur in either concrete or steel.  
Consider an arbitrary section of a rectangular reinforced concrete beam as shown in 
Figure 1. The dimensions of the section are b and h, the areas of tension and 



7 

compression reinforcement steel are Ast, Asc respectively and the area of shear 
reinforcement steel in a unit length of beam is Asv/s.   
The capacity or the ultimate strength of the section in negative and positive flexure 
and shear are ,	 	and Vu respectively, which can be obtained from Eq. (4) 
through Eq. (6) in a balanced section in which both tension and compression steel 
yield [9, 10].  

   	 	≅ Asc fyl d(1- 0.5γku)                                         (4) 

 ≅  Asc fyl d(1- 0.5γku) + (Ast -Asc) fyl (d - a/2)                       (5) 

   Vu ≅	fyv d Asv /s + β bd ( f'c)
(1/2)                                     (6) 

where fyl and  fyv are the yield strength of the longitudinal reinforcement steel and the 
shear reinforcement steel respectively, f'c is the characteristic compressive cylinder 
strength of concrete at 28 days, and β is a coefficient based on the standard. 
Parameters ku and γ are the neutral axis parameter and the ratio of the depth of the 
assumed rectangular compressive stress block to kud. Other parameters are shown in 
Figure 1.  
In order to shift from Eq. (2) to Eq. (3) and come up with the set of {c1, c2, c3}, the 
first step is to determine how variations of Ac, Asl, Asv and Pf  affect ,	 	 and Vu 
and vice versa. That is, the reciprocal relationships between these two sets of 
variables need to be identified, and to be found out how increasing or decreasing the 
amount of each cross-sectional parameter influences the section strength capacities 
and how one should change the cross-sectional parameters to vary section capacities.  
As stated above, given the unit costs cc, csl, csv and cf , the cost function can be 
defined using Eq. (2) for each section. If any of cross-sectional parameters Ac, Asl, 
Asv or Pf changes, the cost function varies in a section as follows 

ΔC =cc ΔAc + csl ΔAsl + csv ΔAsv + cf ΔPf                                    (7) 

On the other hand, using Eq. (3) variations in section capacities would change the 
cost function as follows 

 ΔC = c1Δ + c2 Δ + c3 ΔVu                                         (8) 

Eqs. (7) and (8) show the contribution of each factor to cost changes and sensitivity 
of the cost to each term. For example, changing a unit of Ac causes a change of cc 
units in cost. Therefore, if the effect of variations of Ac, Asl, Asv and Pf on variations 
of ,	 	 and Vu are determined, the contribution of each section capacity to cost 
changes, that is the set of {c1, c2, c3}, can be found out.  
In order to simplify the calculations, two assumptions are made. First, since we 
intend the section to remain in a balanced condition, any changes for compression 
steel are considered equal to those of tension steel. 

    ΔAst =ΔAsc = ΔAsl                                                     (9) 
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This means, in case of the layout optimization of multi-span beams in which, the 
aim is to find the optimum spans lengths, variation of steel quantities for 
compression and tension steel in a balanced section can be considered equal in each 
step of an iterative process. Such an assumption causes a section to remain in 
balanced condition in every step and results in a balanced section at the end of the 
optimization procedure. The second assumption is that the depth of the compressive 
region of concrete, the parameter a, is not considerably affected by variations of the 
section width b. The width of a beam section is generally constrained by a number 
of factors including architectural constraints, standards' limitations and limitations of 
columns and joints. All these constraints cause the width of the section to have a 
minor variation during the optimization process.  It does not mean that the variation 
of width is ignored, but in practice, such a variation is so limited that it has a 
negligible effect on the depth of the compressive region.  
Considering the fore mentioned assumptions and using Eqs. (4) through (7), if As 
varies: 

≅ 1 0.5 	→ 	 	≅ 	 1 0.5 	 	 	

≅ 	 1 0.5 → 	 	≅ 	 	 1 0.5 	 	 		
	 ≅ 0	 → 	 	 	 	 	 	 	 																								

 (10) 

 
If Av varies, the variation of the section capacity will be as follow: 

	 	 	 	 	 	 	 															

	 	 	 	 	 	 	 																

≅ 		 → 		 ≅ 	 	 	 	 	 															

         (11) 

If the area of section, i.e. bd varies: 

    ΔAc = Δ(bd) =b Δd + d Δb + Δb Δd                                     (12) 

 is not a function of b and based on the second assumption we made, the 
dependence of M+

u on changes of b is neglected. Moreover, the first term of Vu is 
not dependent on b as well. So, the variations of the section capacities due to 
variation of section area are as follow: 

∆
≅

	
                                                (13) 
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≅ 1 0.5 → 	 ≅ 	 1 0.5 	 										

≅ 0.5 → 	 ≅ 	 0.5 	

≅ 	 / 	→ 	 	≅ 	 	 / 	 	 			

  (14) 

The variation of the perimeter of a rectangular section, which determines the 
variation of formwork, affects the section capacity as follow: 

∆ 2∆                                                 (15) 

∆ ∆
≅ 	0.5 1 0.5 	→ 	 ≅ 2 1 0.5 	 	 							

∆ ∆
≅ 	0.5 0.5 	→ ≅ 2 0.5 	 	 	

∆ ∆
≅

	 / 	 / → ≅
	 	

	 		

 (16) 

Multiplying both sides of Eqs. (10) by csl /2, Eqs. (11) by csv , Eqs. (14) by cc /3 and 
Eqs. (16) by cf /3, and adding them up will result in: 

	 	 	 	 		 				 	 	

																											
																																															 	 	

																																														 	 	 	 	

    (17) 

Comparing Eq. (17) with Eqs. (8) and (9) results in: 

 	

	 	

                                 (18) 

The coefficients c1, c2 and c3 determine how the parameters ,	  and Vu 
contribute to the cost function. Now, in order to re-analyze a rectangular beam to 
achieve the optimum criteria, one can use Eq. (3) in lieu of Eq. (2). For this purpose, 
the cost will be the sum of cost functions of all selected sections in the structure.  

  ∑ ∑ _                    (19) 

where Ct is the total cost of the structure and NS is the number of selected sections to 
control the cost.  
The strength constraints on each selected section i in the structure under a load case 
may be written as 
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∅ 	 	 ∗

∅ 	 	 ∗

∅ 	 	 	 | ∗|

               for i={1,2,…NS}                      (20) 

in which,  ∗ , ∗ and  | ∗| are positive and negative flexure and shear action 
effects of section i. ∅  and ∅  are strength reduction factors in flexure and shear 
respectively. The serviceability requirements limit the maximum deflection umax on 
the entire member to Δmax under the serviceability load case. So, for all sections: 

 umax i  Δmax i                   for i={1,2,…NS}                    (21) 

Other constraints for durability, fire resistance, minimum cover and minimum 
flexural strength, can be easily added to the problem as well, based on the relevant 
design codes.  
Now, consider a multi-span RC beam with N spans and a total constant length of L, 
under the arbitrary loading system f(x) as shown in Figure 2. The aim is to re-design 
the beam to determine the optimum span lengths in order to minimize the cost. 
According to Eqs. (19) and (20), the total cost is a function of the beams' action 
effects under the loading system, which in turn are functions of the span lengths in a 
structural analysis.  The general formulation of the problem is: 

min				 , , … , ∑ 												 	 1,2, …
, , … , 																																																																																																																																										

																																																				

	 . 											

																																																	

∅ ∗ 																																										

∅ ∗ 																																										
∅ 	 | ∗|																																															

																																										
																																

	 	 	 	

																																																								

     (22)             

where the first constraint is the behavior constraint of the structural optimization 
problem determining the relation between design action effect ∗ , ∗  and 

∗ , and spans lengths based on general formulation of the displacement method 
in which, [K] is the global stiffness matrix of the structure, {U} is the displacement 
vector and {F} is the externally load vector obtained from f(x). Using the Euler-
Bernoulli beam element for finite element analysis of structures, the dimension of 
the above vectors will be 2N; where N is the number of spans. The dimension of 
other variable constraint vectors, say { }, { }, is NS; because the other 
constraints and cost function will be evaluated in NS critical sections. Furthermore, 
the length of each span can be constrained between lmin and lmax in order to satisfy 
architectural considerations [9, 10].  
.  
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4  Numerical Examples 
 
Example 1: consider a three-span beam with geometry details, live, and dead loads 
shown in Figure 3. The beam supports a slab of thickness 120 mm in the interior of a 
residential building. The material properties and relative cost factors are:  f'c=25 
MPa, fyl= fyv =400 MPa, cc=1, csl= csv =66, cf=0.42. The ratio of effective span to 
the maximum total deflection should not be less than 250. The aim is to find the 
optimum l1, l2, and l3, so that the cost is minimized.  
 

 

Figure 3: Example 1- A three-span beam with uniformly distributed loads 
 
 
A similar problem given l1 = 7000 mm, l2 =5000 mm and l3 =4000 mm, has been 
solved by Kanagasunda and Karihaloo [25]. This design is used as the initial design 
to start the optimization process for the spans. It should be added that every initial 
design based on preliminary judgment of the designer and/or using approximate 
charts or formulas, which meet the design code requirements, can be used as the 
initial design and as the starting point of optimization process. According to their 
solution for the seven selected sections A through G, based on AS3600 (2009), and 
considering the abovementioned costs, the primary cost of the structure based on Eq. 
(2) equals 4648 units  
It should be noted that, the number of selected sections completely depends on the 
number of critical or control ones, and one may choose more sections to achieve 
much accurate results. Using Eqs. (10), (11), (14) and (16) the values of K1 to K8, 
and using Eq. (18) the values of c1, c2 and c3 for sections A to G are obtained. 
Having the necessary coefficients, the cost function can be defined, based on Eq. 
(19).         
The optimum lengths are l1 = 4740 mm, l2 =5980 mm and l3 =5280 mm resulting in 
a total cost of 3817 units based on Eq. (2). That means the recent layout with the 
obtained spans lengths suggest around 18% less cost compared to the initial layout.  
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Figure 4: Example 2 - A five span beam and selected sections to control the cost 
 
 
Example 2: A five-span continuous beam with a total length of 25000 mm is 
considered as shown in Figure 4. The material properties and relative cost factors 
are:  f'c=25 MPa, fyl=500 MPa, fyv =250 MPa, cc=1, csl=75, csv =64, cf=0.45. The 
aim is to find the optimum l1, through l5, so that the cost is minimized. The eleven 
sections A through K, are taken as the control sections.   
The preliminary design of the beam comprised five equal spans, which results in a 
total cost of 5949 units. The optimum lengths are l1 = 3450 mm, l2 =4600 mm, l3 
=5400 mm, l4 =4400 mm and l5 =5350 mm resulting in a total cost of 5220 units.  
 
5  Conclusion 
 
The main objective of this study is to propose an appropriate model for cost 
optimization of RC beams layout design. This model considers the effects of layout 
design on total cost, and suggests an optimization method for layout design of multi-
span beams. Using action effects instead of cross-sectional properties of structures, 
the proposed model simplifies the process of cost and layout optimization of multi-
span beams, and is applicable to various topology optimization problems of RC 
beams when the cost elements are considered. The presented examples show that the 
proposed algorithm using the new cost optimization function provides acceptable 
results, and can be easily employed to optimally design the preliminary layout of RC 
continuous beams.  
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