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Abstract
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optimal estimate for this waiting time, which gives a quantified feeling for the magnitude to which the
maximum principle fails. We are also able to control the maximum of the multiplicity of the curve along the
evolution. A corollary of this estimate is that initially embedded curves satisfying the hypotheses of the global
existence theorem remain embedded. Finally, as an application we obtain a rigidity statement for closed planar
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ON THE CURVE DIFFUSION FLOW OF CLOSED PLANE

CURVES

GLEN WHEELER

Abstract. In this paper we consider the steepest descent H−1-gradient flow

of the length functional for immersed plane curves, known as the curve diffusion

flow. It is known that under this flow there exist both initially immersed curves
which develop at least one singularity in finite time and initially embedded

curves which self-intersect in finite time. We prove that under the flow closed

curves with initial data close to a round circle in the sense of normalised L2

oscillation of curvature exist for all time and converge exponentially fast to

a round circle. This implies that for a sufficiently large ‘waiting time’ the

evolving curves are strictly convex. We provide an optimal estimate for this
waiting time, which gives a quantified feeling for the magnitude to which the

maximum principle fails. We are also able to control the maximum of the

multiplicity of the curve along the evolution. A corollary of this estimate is
that initially embedded curves satisfying the hypotheses of the global existence

theorem remain embedded. Finally, as an application we obtain a rigidity

statement for closed planar curves with winding number one.

1. Introduction

Suppose γ : S1 → R2 is an immersed closed plane curve of period P and consider
the energy

L(γ) =

∫ P

0

|γu| du,

where γu = ∂uγ. We wish to deform γ towards a minimiser of L, and for this
purpose we shall consider the steepest descent gradient flow of L in H−1. There
are some advantages in choosing H−1 instead of L2. One is that for any initial
curve the signed area is constant under the flow, which implies that if the signed
area of the initial curve is non-zero, then the flow is never asymptotic to a lower
dimensional subset of R2.

The Euler-Lagrange operator of L in H−1 is

gradH−1L(γ) = kss,

where k = 〈γss, ν〉 is the curvature of γ, ν a unit normal vector field on γ, and s de-
notes arc-length. The curve diffusion flow is the one-parameter family of immersed
curves γ : S1 × [0, T )→ R2 with normal velocity equal to −gradH−1(L(γ)), that is

(CD) ∂⊥t γ = −kss.
The curve diffusion flow is a degenerate system of quasilinear fourth order parabolic
partial differential equations, and as such it is not expected that a maximum or
comparison principle holds. Indeed, Giga and Ito [25] provided the first example of
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2 GLEN WHEELER

a simple, closed, strictly embedded planar curve which develops a self-intersection in
finite time under the flow. They also gave [26] the first example of a simple, closed,
strictly convex planar curve which becomes non-convex in finite time. Furthermore,
Elliot and Maier-Paape showed [15] that the curve diffusion flow may drive an initial
graph to become non-graphical in finite time. It was eventually shown by Blatt [8]
that non-preservation of convexity and non-preservation of embeddedness is a basic
property of a large class of general higher order hypersurface flows.

It is also known (see Polden [36] for the first example and Escher-Ito [16] for
many others) that the curve diffusion flow can from smooth immersed initial data
develop finite time curvature singularities. In contrast, our goal in this paper is to
demonstrate a new class of initial data (generalising [14, Theorem 6.1]) which gives
rise to an immortal solution converging exponentially fast to a simple round circle.

The curve diffusion flow has been considered for some time in the literature.
The first point to note is that for regular enough initial data γ0 : S1 → R2 there
is a maximal T ∈ (0,∞] and corresponding solution γ : S1 × [0, T ) → R2 which
satisfies (CD). Local existence, although technical and sometimes tricky, is by
now standard—in this paper we state a version (Theorem 2.1) which is a combina-
tion of Elliot-Garcke [14] and Dziuk-Kuwert-Schätzle [11, Theorem 3.1], although
similar results appeared earlier, see [6, 9, 14, 39] for example. It is also quite stan-
dard regardless: as mentioned, the evolution equation (CD) is a degenerate fourth-
order quasilinear parabolic system, and local existence can be obtained for example
through the method of semigroups (Angenent [4], Amann [1, 2, 3], Escher-Meyer-
Simonett [17, 19], and Lunardi [35] are good references), the Nash-Moser inverse
function theorem (see Hamilton [27, 28], and Gage-Hamilton [22]) or through more
classical methods such as can be found in Polden [36] and Huisken-Polden [29] (see
also Sharples [37] and the books [12, 13, 21]). The local existence theorem we use
requires that the curvature of γ lies in L2. One should note that there are local
existence results which do not require any control of curvature, instead requiring
Lipschitz with small Lipschitz constant or slightly more regularity than C1 for the
initial data, see Koch-Lamm [30], Escher-Mucha [18], and Asai [5] for example.

The analysis we present here is direct and geometric in nature, and should be
compared with [7, 10, 11, 28, 31, 32, 33, 36, 40]. It rests on the observation that
the normalised oscillation of curvature

Kosc
(
γ(·, t)

)
= L

(
γ(·, t)

) ∫
γ

(k − k)2ds,

where k denotes the average of the curvature, is in many respects a natural ‘energy’
for the flow. The only stationary solutions of (CD) are lines and multiply covered

circles, for which Kosc = 0. Further, for arbitrary smooth initial data
∫ t
0
Kosc dτ ≤

L4(γ(·, 0))/16π2 (see Lemma 3.2), that is, Kosc ∈ L1
(
[0, T )

)
.

We prove that if Kosc is initially small and the isoperimetric ratio I = L2/4πA is
initially close to one, then they remain so. This is enough to begin a ‘bootstrapping’
style procedure, in which we use interpolation inequalities as in [11] to obtain
uniform bounds for all higher derivatives of curvature. These observations and
some extra arguments give the global existence result of this paper.
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Theorem 1.1. Suppose γ0 : S1 → R2 is a regular smooth immersed closed curve
with A(γ0) > 0 and

(1)

∫
γ0

k ds = 2π.

There exists a constant K∗ > 0 such that if

(2) Kosc(γ0) < K∗, and I(γ0) < exp
(K∗

8π2

)
,

then the curve diffusion flow γ : S1 × [0, T )→ R2 with γ0 as initial data exists for

all time and converges exponentially fast to a round circle with radius
√

A(0)
π .

Remark 1.2. One advantage of our direct method is that we are able to easily
find an allowable choice for the constant K∗ above; in particular, one may select

K∗ =
2π + 12π2 − 4π

√
3π
√

1 + 3π

3
' 1

18
.

Remark 1.3. So long as A(γ0) 6= 0, one may always guarantee A(γ0) > 0 by
reversing the orientation of ν, since (CD) is invariant under change of orientation.

Remark 1.4. As can be seen from the proof of Proposition 3.7, the smallness
condition (2) could be weakened to

Kosc(γ0) + 8π2 log
√
I(γ0) ≤ 2K∗ − δ,

for any δ > 0. We do not expect this to be optimal, however. At this time, it is not
known if there exists any smooth plane curve satisfying (1) which gives rise to a
curve diffusion flow with finite maximal existence time. Without at least one such
singular example, it is difficult to even conjecture on what an optimal form of (2)
may be.

It is clear that Theorem 1.1 implies k(·, t) →
√

π
A(0) , and so after a fixed time

translation we have
k(·, t) ≥

√
c > 0

for any c ∈ (0, π
A(0) ) (cf. [31, Lemma 5.5] and [41] for the Willmore flow and surface

diffusion flow of surfaces respectively). In other words, after some finite time the
curvature becomes positive and remains so. This can be thought of as ‘eventual
positivity’, and is reminiscent of the situation considered in [20, 23, 24]. There, using
very different techniques, eventual local positivity and other related qualitative
properties are observed for biharmonic parabolic equations under certain conditions.
To further quantify the size of the ‘waiting time’, we present the following.

Proposition 1.5. Suppose γ : S1 × [0, T ) → R2 solves (CD) and satisfies the
assumptions of Theorem 1.1. Then

L
{
t ∈ [0,∞) : k(·, t) 6> 0

}
≤
(L(γ0)

2π

)4
−
(A(γ0)

π

)2
.

In the above, k(·, t) 6> 0 means that there exists a p such that k(p, t) ≤ 0. This
estimate is optimal in the sense that the right hand side is zero for a simple circle.

It is not clear at all from Theorem 1.1 if initially embedded curves remain so, nor
even if we can control the maximum of the multiplicity (the number of times the
curve intersects itself in one point) of the evolving curve. We do have good control
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of the oscillation of curvature however, and in the spirit of [34, Theorem 6] (see
also the monotonicity formula in [38] and appendix of [33]) present the following
theorem to address this issue.

Theorem 1.6. Suppose γ : S1 → R2 is a smooth immersed curve with winding
number ω and let m denote the maximum number of times γ intersects itself in any
one point; that is ∫

γ

k ds = 2ωπ and m(γ) = sup
x∈R2

|γ−1(x)|.

Then

Kosc(γ) ≥ 16m2 − 4ω2π2.

When combined with Proposition 3.7 we obtain the following.

Corollary 1.7. Any curve diffusion flow γ : S1 × [0, T ) → R2 with initial data
γ0 : S1 → R2 satisfying the assumptions of Theorem 1.1 with

K∗ < 64− 4π2 ' 24.5

remains embedded for all time.

Note that in particular the allowable choice for K∗ given in Remark 1.2 is smaller
than 64− 4π2.

Theorem 1.1 gives a one-parameter family of smooth diffeomorphisms connecting
the initial data γ0 with a round circle. This implies the following rigidity result.

Corollary 1.8. Let γ : S1 → R2 be a regular closed immersed curve satisfying the
assumptions of Theorem 1.1. Then γ is diffeomorphic to a round circle.

This paper is organised as follows. In Section 2 we fix our notation, state the
local existence theorem, and prove some elementary Sobolev-Poincaré-Wirtinger
inequalities. Section 3 contains estimates for the curvature in L2 and the isoperi-
metric ratio under various assumptions, which forms the bulk of the work involved
in proving Theorem 1.1. The theorem itself and Proposition 1.5 are proved in Sec-
tion 4. We finish the paper by proving Theorem 1.6 and Corollary 1.7 in Section
5.
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2. Preliminaries

Suppose γ : R → R2 is a regular smooth immersed plane curve. We say that γ
is periodic with period P if there exists a vector V ∈ R2 and a positive P such that
for all m ∈ N

γ(u+ P ) = γ(u) + V, and ∂mu γ(u+ P ) = ∂mu γ(u).



ON THE CURVE DIFFUSION FLOW OF CLOSED PLANE CURVES 5

If V = 0 then γ is closed. In this case γ is an immersed circle, γ : S1 → R2. The
length of γ is

L(γ) =

∫ P

0

|γu| du,

and the signed enclosed area is

(3) A(γ) = −1

2

∫ P

0

〈γ, ν〉 |γu| du,

where ν is a unit normal vector field on γ. Throughout the paper we keep γ
parametrised by arc-length s, where ds = |γu|du. Integrals over γ are to be inter-
preted as integrals over the interval of periodicity.

Consider the one-parameter family of immersed curves γ : S1× [0, T )→ R2 with
normal velocity equal to −gradH−1(L(γ)), that is

(CD) ∂⊥t γ = −kss.
The following theorem is standard. The uniqueness below is understood modulo

the natural group of invariances enjoyed by (CD): rotations, translations, changes
of orientation, and so on, as is customary for geometric flows.

Theorem 2.1 (Local existence). Suppose γ0 : R → R2 is a periodic regular curve
parametrised by arc-length and of class C1∩W 2,2 with ‖k‖2 <∞. Then there exists
a T ∈ (0,∞] and a unique one-parameter family of immersions γ : R× [0, T )→ R2

parametrised by arc-length such that

(i) γ(0, ·) = γ0;
(ii) ∂⊥t γ = −kss;

(iii) γ(·, t) is of class C∞ and periodic of period L(γ(·, t)) for every t ∈ (0, T );
(iv) T is maximal.

Theorem 2.1 justifies the use of smooth calculations in the derivation of our
estimates. When we use the expression “γ : S1 × [0, T ) → R2 solves (CD)” we are
invoking Theorem 2.1 in the special case where the initial data is assumed to be
closed, but not necessarily embedded..

We will need the following elementary Sobolev-Poincaré-Wirtinger inequalities.

Lemma 2.2. Suppose f : R→ R is absolutely continuous and periodic with period

P . Then if
∫ P
0
f dx = 0 we have∫ P

0

f2dx ≤ P 2

4π2

∫ P

0

|fx|2dx,

with equality if and only if f(x) = a sin(2xπ/P + b).

Proof. Expand f as a Fourier series and then use Parseval’s identity. �

Corollary 2.3. Under the assumptions of Lemma 2.2,

‖f‖2∞ ≤
P

2π
‖fx‖22.

Proof. As f has zero average, there exist p1, p2 such that f(p1) = f(p2) = 0 and
0 ≤ p1 < p2 < P . Thus, since f is absolutely continuous and periodic,

f2(x) =

∫ x

p1

f(u)fx(u) du−
∫ p2

x

f(u)fx(u) du.
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Therefore

f2(x) ≤
∫ p2

p1

|f(u)fx(u)| du ≤
∫ P

0

|f(u)fx(u)| du.

Now Hölder’s inequality and Lemma 2.2 above implies

‖f‖2∞ ≤ ‖f‖2‖fx‖2 ≤
P

2π
‖fx‖22,

as required. �

As most of our analysis is based on integral estimates, it is efficient to first
compute the derivative of an integral along the flow in general.

Lemma 2.4. Suppose γ : S1× [0, T )→ R2 solves (CD), and f : S1× [0, T )→ R is
a periodic function with the same period as γ. Then

d

dt

∫
γ

fds =

∫
γ

ft + fkkss − fs(∂>t γ)ds.

Proof. First note that τ = γu/|γu| = γs is a unit tangent vector field along γ. We
compute

∂

∂t
|γu|2 = 2 〈γut, γu〉 = 2

〈
∂u
(
(∂⊥t γ)ν + (∂>t γ)τ

)
, |γu|τ

〉
= 2∂⊥t γ 〈∂uν, |γu|τ〉+ 2|γu|∂u∂>t γ

= −2∂⊥t γ|γu| 〈k|γu|τ, τ〉+ 2|γu|∂u∂>t γ

= −2k∂⊥t γ|γu|2 + 2(∂s∂
>
t γ)|γu|2.

Therefore

∂

∂t
ds = kkssds+ (∂s∂

>
t γ)ds.

Using this we differentiate the integral to find

d

dt

∫
γ

fds =
d

dt

∫ P

0

f |γu|du

=

∫ P

0

ftds+

∫ P

0

f(kkss + ∂s∂
>
t γ)ds+ f(P, t)|γu(P )|P ′

=

∫
γ

ft + fkkss − fs(∂>t γ)ds.

We obtained the last equality using integration by parts and the periodicity of γ
with the identity

∂>t γ(u, t)− ∂>t γ(u+ P (t), t) = |γu(u, t)|P ′(t),

which in turn follows from the definition of γ. (Note in particular that the tangential
velocity ∂>t γ is not periodic.) �
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3. Curvature estimates in L2 and the isoperimetric ratio

The evolution equation (CD) is particularly natural as solutions decrease in
length while keeping enclosed area fixed. This is only necessarily true for curves
immersed in R2, and in fact this is the chief reason why we consider plane curves
as opposed to curves in Rn or immersed in a manifold.

Lemma 3.1. Suppose γ : S1 × [0, T )→ R2 solves (CD). Then

d

dt
L = −

∫
γ

k2sds, and
d

dt
A = 0.

In particular, the isoperimetric ratio decreases in absolute value with velocity

d

dt
I = −2I

L

∫
γ

k2sds.

Proof. Lemma 2.4 with f ≡ 1 gives

d

dt
L =

∫
γ

kkssds = −
∫
γ

k2sds,

where we used integration by parts and the periodicity of the curve. For the area,
we first note that

(4) τs = kν, νs = −kτ, νt = ksssτ − (∂>t γ)kτ.

The first two relations are immediate from differentiating 〈τ, ν〉 = 0 and using the
definition of the curvature. For the third, we first compute the commutator of the
arc-length and time derivatives:

∂ts = ∂t
(
|γu|−1∂u

)
= |γu|−1∂tu − |γu|−2

(
∂t|γu|

)
∂u

= ∂st + k
(
∂⊥t γ

)
∂s −

(
∂s∂
>
t γ
)
∂s

= ∂st − kkss∂s −
(
∂s∂
>
t γ
)
∂s.(5)

Using this and the first two equalities in (4) we compute the evolution of the unit
tangent vector field τ .

∂tτ = ∂tsγ

= ∂s
(
(∂⊥t γ)ν + (∂>t γ)τ

)
− kkssγs −

(
∂s∂
>
t γ
)
γs

= −ksssν − kssνs + (∂>t γ)γss − kkssγs
= −ksssν + (∂>t γ)γss.(6)

Noting that |ν|2 = 1 implies νt has no normal component, we obtain the final
equality in (4) by differentiating 〈ν, τ〉

〈∂tν, τ〉 = −〈ν, ∂tτ〉 = −
〈
ν,−ksssν + (∂>t γ)γss

〉
= ksss − k(∂>t γ).
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Returning to the area functional, we can now directly evaluate the derivative.

d

dt
A = −1

2

d

dt

∫
γ

〈γ, ν〉 ds

= −1

2

∫
γ

−kss + 〈γ, νt〉+ 〈γ, ν〉 kkss − (∂>t γ) 〈γ, νs〉 ds

= −1

2

∫
γ

〈
γ, ksssτ − k(∂>t γ)τ

〉
+ 〈γ, ν〉 kkss − (∂>t γ) 〈γ,−kτ〉 ds

= −1

2

∫
γ

−kss − 〈γ, τs〉 kss + 〈γ, ν〉 kkssds

= 0,

where we used Lemma 2.4 with f = 〈γ, ν〉 in the second line and integration by
parts, the periodicity of γ and the formulae (4) throughout.

�

We now turn our attention to the scale-invariant quantity

Kosc = L

∫
γ

(
k − k

)2
ds,

where

k =
1

L

∫
γ

kds.

Note that we have (and will continue to) suppressed the dependence of Kosc and L
on γ(·, t). When we must indicate the dependence of Kosc and L on γ(·, t), we shall
use the notation Kosc(t) = Kosc

(
γ(·, t)

)
and L(t) = L

(
γ(·, t)

)
.

A fundamental observation is that Lemmas 3.1 and 2.2 together imply Kosc ∈
L1([0, T )).

Lemma 3.2. Suppose γ : S1 × [0, T )→ R2 solves (CD). Then

‖Kosc‖1 < L4(0)/16π2.

Proof. Applying Lemma 2.2 with f = k − k and recalling Lemma 3.1 we have

Kosc ≤
L3

4π2
‖ks‖22 = − 1

16π2

d

dt
L4,

so ∫ t

0

Kosc dτ ≤
L4(0)

16π2
. �

The above lemma holds regardless of initial data, and appears to indicate that
the quantity Kosc is a natural ‘energy’ for the flow.

Remark 3.3. A similar argument as above also shows that ‖ks‖22 ∈ L1([0, T )) with
the estimate ‖‖ks‖22‖1 ≤ L(0). Although we will not need this fact, it does suggest
that ‖ks‖22 is another well-behaved quantity under the flow.

There exists an ω ∈ R satisfying

(7)

∫
γ

k ds

∣∣∣∣
t=0

= 2ωπ.

In the case where the solution is a family of closed curves, ω is the winding number
of γ(·, 0). Since the solution is a one-parameter family of smooth diffeomorphisms,
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and the winding number is a topological invariant, the winding number of the curves
γ(·, t) remains constant. This can also be directly proven as in the lemma below.

Lemma 3.4. Suppose γ : S1 × [0, T )→ R2 solves (CD) and

∫
γ

k ds

∣∣∣∣
t=0

= 2ωπ.

Then ∫
γ

k ds = 2ωπ.

In particular, the average curvature increases in absolute value with velocity

d

dt
k =

2ωπ

L2
‖ks‖22.

Proof. Differentiating |ν|2 = 1 and |τ |2 = 1 gives that 〈νt, τs〉 = 0 and 〈ν, τss〉 = 0.
Using this and (4), (6), we compute the evolution of the curvature as

∂

∂t
k = ∂t 〈ν, γss〉 = 〈∂tν, γss〉+ 〈ν, ∂tγss〉

= 〈ν, ∂tτs〉

=
〈
ν, ∂sτt − kkssτs −

(
∂s∂
>
t γ
)
τs
〉

= −k2kss − k
(
∂s∂
>
t γ
)

+ 〈ν, ∂sτt〉

= −k2kss − 〈ν, ∂s(ksssν)〉+ (∂>t γ) 〈ν, γsss〉

= −kssss − k2kss + (∂>t γ)ks.(8)

Therefore, applying Lemma 2.4 with f = k we have

d

dt

∫
γ

kds = −
∫
γ

kssss + k2kss − k2kss + (∂>t γ)ks − (∂>t γ)ksds = 0,

using integration by parts and the periodicity of γ. This completes the proof. �

We now compute the evolution of Kosc.

Lemma 3.5. Suppose γ : S1 × [0, T )→ R2 solves (CD). Then

d

dt
Kosc +Kosc

‖ks‖22
L

+ 2L‖kss‖22

= 3L

∫
γ

(k − k)2k2sds+ 6kL

∫
γ

(k − k)k2sds+ 2k
2
L‖ks‖22.
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Proof. This is a direct computation.

d

dt
Kosc = −

∫
γ

k2sds

∫
γ

(k − k)2ds+ 2L

∫
γ

(k − k)
(
− kssss − k2kss + (∂>t γ)ks

)
ds

+ L

∫
γ

kkss(k − k)2 − 2ks(k − k)(∂>t γ)ds

= −Kosc
‖ks‖22
L
− 2L‖kss‖22 + 2L

∫
γ

k2k2sds+ 4L

∫
γ

k(k − k)k2sds

− L
∫
γ

(k − k)2k2sds− 2L

∫
γ

k(k − k)k2sds

= −Kosc
‖ks‖22
L
− 2L‖kss‖22 + 4L

∫
γ

k2k2sds− 2kL

∫
γ

kk2sds

− L
∫
γ

(k − k)2k2sds.

Rearranging, we have

d

dt
Kosc +Kosc

‖ks‖22
L

+ 2L‖kss‖22

= 4L

∫
γ

k2k2sds− 2kL

∫
γ

(k − k)k2sds− 2k
2
L

∫
γ

k2sds− L
∫
γ

(k − k)2k2sds

= 3L

∫
γ

(k − k)2k2sds+ 6kL

∫
γ

(k − k)k2sds+ 2k
2
L

∫
γ

k2sds.

This proves the lemma. �

Although Kosc is a priori controlled in L1, we need much finer control on Kosc be-
fore we can assert control on other curvature quantities and deduce global existence.
(Indeed, global existence is not true in the class of solutions given by Theorem 2.1.)

While Kosc is small, we do have the desired control. The following proposition
gives us a pointwise estimate.

Proposition 3.6. Suppose γ : S1 × [0, T ) → R2 solves (CD). If there exists a T ∗

such that for t ∈ [0, T ∗) we have

Kosc(t) ≤
4π + 24π2ω2 − 8π

√
3π
√
ω2 + 3πω4

3
= 2K∗,

then during this time the estimate

Kosc + 8ω2π2 logL+

∫ t

0

Kosc
‖ks‖22
L

dτ ≤ Kosc(0) + 8ω2π2 logL(0)

holds.

Proof. Lemma 3.4, Corollary 2.3 and Hölder’s inequality implies

3L

∫
γ

(k − k)2k2sds ≤
3L

2π
Kosc‖kss‖22,

and

6kL

∫
γ

(k − k)k2sds ≤ 6ωL
√
Kosc‖kss‖22.
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Thus, by Lemma 3.5

d

dt
Kosc +Kosc

‖ks‖22
L

+
(

2−Kosc
3

2π
− 6
√
Koscω

)
L‖kss‖22 ≤ 2k

2
L‖ks‖22.

Now from Lemmas 3.1 and 3.4 we know

2k
2
L‖ks‖22 =

8ω2π2

L
‖ks‖22 = −8ω2π2 d

dt
logL.

Using the smallness of Kosc and integrating finishes the proof. �

It is clear that even with Kosc initially small, the estimate given by Proposition
3.6 is useless if we can not also exert good control on the ratio L(0)/L(t). In
particular, we require that it remains only slightly larger than one. This is easily
achieved in the case we are interested in, that of closed curves with ω = 1, by an
application of the isoperimetric inequality and Lemma 3.1. Observe

L(0)

L(t)
≤ L(0)√

4πA(t)
=

L(0)√
4πA(0)

=
√
I(0),

and this can be made arbitrarily close to one.

Proposition 3.7. Suppose γ : S1 × [0, T ) → R2 solves (CD) and satisfies (1).
Then

Kosc(0) < K∗, and I(0) < exp
(K∗

8π2

)
,

implies

Kosc ≤ 2K∗

for all t ∈ [0, T ).

Proof. From Theorem 2.1 and the smallness assumption there exists a maximal
T ∗ > 0 such that Kosc(t) ≤ 2K∗ for t ∈ [0, T ∗). Suppose T ∗ < T . Applying Propo-
sition 3.6, Lemma 3.1, the isoperimetric inequality and the smallness assumption
we have

Kosc ≤ Kosc(0) + 8π2 log
√
I <

3K∗

2
,

for all t ∈ [0, T ∗). Taking t → δ we arrive at a contradiction, and so δ = T . This
finishes the proof. �

4. Global existence

We shall first prove Theorem 1.1. There are two parts to this theorem: long
time existence (T = ∞) and convergence (γ(S1) approaches a round circle expo-
nentially fast). Given Proposition 3.7 and the blowup criterion from [11], it is rather
straightforward to conclude the first part of Theorem 1.1.

Corollary 4.1. Suppose γ : S1× [0, T )→ R2 solves (CD) and satisfies the assump-
tions of Theorem 1.1. Then T =∞.

Proof. Suppose T <∞. Then by [11, Theorem 3.1], ‖k‖22 →∞ as t→ T . However

Kosc = L

∫
γ

(k − k)2ds = L‖k‖22 − L2k
2

= L‖k‖22 − 4π2,

and since 2
√
πA(γ0) ≤ L ≤ L(γ0), this means Kosc → ∞ as t → T . This is in

direct contradiction with Proposition 3.7. �
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It remains to classify the limit. First observe that if we can show Kosc → 0
then we will obtain the desired convergence result (in a weaker topology), as curves
with constant curvature in the plane are either circles or straight lines. Lemma 3.2
and Corollary 4.1 imply Kosc ∈ L1([0,∞)), and since Kosc ≥ 0, to conclude this a
sufficient condition is that K ′osc is uniformly bounded.

Proposition 4.2. Suppose γ : S1 × [0, T ) → R2 solves (CD) and satisfies the
assumptions of Theorem 1.1. Then there exists a constant c1 ∈ [1,∞) depending
only on γ0 such that

‖ks‖22 ≤ c1.

Proof. Let us assume there exist δ0 ≥ 0, δ0 < δ1 such that ‖ks‖22 > 1 for t ∈ [δ0, δ1].
(Note that δ0 = 0 is allowed.) Outside of such intervals we may take c1 = 1. We
apply Lemma 2.4 to k2s to obtain

d

dt

∫
γ

k2sds =

∫
γ

(k2s)t + kkssk
2
s − (k2s)s(∂

>
t γ)ds.

Now the interchange formula (5) and the evolution of the curvature (8) imply

kst = kts − kkssks − (∂>t γ)sks

= (−kssss − k2kss + (∂>t γ)ks)s − kkssks − (∂>t γ)sks

= −ksssss − 2kkskss − k2ksss + (∂>t γ)sks + (∂>t γ)kss − kkssks − (∂>t γ)sks

= −ksssss − 2kkskss − k2ksss + (∂>t γ)kss − kkssks.

Therefore

d

dt

∫
γ

k2sds =

∫
γ

(k2s)t + kkssk
2
sds

= −2

∫
γ

ksksssss + 2kk2skss + k2ksksssds−
∫
γ

kk2skssds

= −2‖ksss‖22 +
5

3

∫
γ

k4sds− 2

∫
γ

k2ksksssds

= −2‖ksss‖22 +
5

3

∫
γ

k4sds+ 2

∫
γ

k2k2ssds+ 4

∫
γ

kk2skssds.(9)

Since ∫
γ

k4sds = −3

∫
γ

kk2skssds ≤
1

2

∫
γ

k4sds+
9

2

∫
γ

k2k2ssds

we have

5

3

∫
γ

k4sds+ 4

∫
γ

kk2skssds ≤ 27

∫
γ

k2k2ssds.

Combining this with (9) gives

d

dt

∫
γ

k2sds ≤ −2‖ksss‖22 + 27

∫
γ

k2k2ssds.
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Rewriting the second term, integrating by parts, and using Lemma 2.2 we have∫
γ

k2k2ssds =

∫
γ

(k − k)2k2ssds+ 2k

∫
γ

kkssds− k
2
∫
γ

k2ssds

≤ 2

∫
γ

(k − k)2k2ssds+ 2k
2
∫
γ

k2ssds

≤ Kosc
π
‖ksss‖22 + 2k

2‖ks‖2‖ksss‖2

≤ Kosc
π
‖ksss‖22 +

1

54
‖ksss‖22 + 54k

4‖ks‖22

≤ Kosc
π
‖ksss‖22 +

1

54
‖ksss‖22 +

27k
4√
LKosc
π

‖ksss‖2

≤ ‖ksss‖22
( 1

27
+
Kosc
π

)
+

273k
8
LKosc

2π2
.

Noting that Kosc <
π
27 by Proposition 3.7 (in fact Kosc . 0.106) we find

d

dt

∫
γ

k2sds+ ‖ksss‖22 ≤
273k

8
LKosc

2π2
.

Observe that Lemma 3.2, the isoperimetric inequality, and ‖ks‖22 ≥ 1 imply∫ t

δ0

273k
8
LKosc

2π2‖ks‖22
≤
∫ t

δ0

273k
8
LKosc

2π2
≤ c‖Kosc‖1 ≤ c,

where c = c(γ0) is a universal constant. Lemmas 2.2, 3.1 and Proposition 3.7
combined with the above and integrating now gives∫

γ

k2sds ≤ ce
− 16π4

L4(0)
(t−δ0),

where t ∈ [δ0, δ1]. �

As Proposition 4.2 gives us good control over a quantity so long as it is larger
than one, we name it a dissipation estimate. With this in hand, convergence to a
round circle now follows quite easily.

Corollary 4.3. Suppose γ : S1× [0, T )→ R2 solves (CD) and satisfies the assump-

tions of Theorem 1.1. Then γ(S1) approaches a round circle with radius
√

A(0)
π .

Proof. Corollary 4.1 implies T = ∞, and Lemma 3.2 gives Kosc ∈ L1([0,∞)), so
if K ′osc is bounded, we shall be able to directly conclude Kosc → 0 and obtain the
desired statement. Recall Lemma 3.5 and estimate∣∣∣∣ ddtKosc

∣∣∣∣ ≤ 3L

∫
γ

(k − k)2k2sds+ 6kL

∫
γ

|k − k|k2sds+ 2k
2
L‖ks‖22

≤ 3L2(0)

2π
‖ks‖42 + 12ωπ

√
L(0)

2π
‖ks‖32 + 6ωπ

√
ωπA(0)‖ks‖22

≤ c(ω,L(0), A(0))(c1 + c21),

where we used Proposition 4.2. This finishes the proof. �

Combining the convergence result with a short computation allows us to estimate
the measure of the set of times during which the curvature is not strictly positive.
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Proof of Proposition 1.5. Rearranging γ in time if necessary, we may assume that

k(·, t) 6> 0, for all t ∈ [0, t0)

k(·, t) > 0, for all t ∈ [t0,∞)

where t0 >
(
L(0)
2π

)4
−
(
A(0)
π

)2
, otherwise we have nothing to prove. However in

this case we have

d

dt
L = −‖ks‖22 ≤ −

π2

L2
‖k‖22 ≤ −

4π4

L3
, for t ∈ [0, t0),

where we used the fact that γ is closed and that the curvature has a zero. This
implies

L4(t) ≤ −16tπ4 + L4(0), for t ∈ [0, t0),

and thus L4(t0) < 16π2A2(0). This is in contradiction with the isoperimetric
inequality. �

In the spirit of classical interpolation, we now obtain exponential decay of the
L2 norm of kss.

Proposition 4.4. Suppose γ : S1 × [0, T ) → R2 solves (CD) and satisfies the
assumptions of Theorem 1.1. Then there exists a constant c2 ∈ [1,∞) depending
only on γ0 such that

‖kss‖22 ≤ c2e
− 4π4

L4(0)
t
.

Proof. We compute and estimate

d

dt

∫
γ

k2ssds = −2

∫
γ

k2ssssds+ 3

∫
γ

k2k2sssds+ 2

∫
γ

k2ksskssssds

≤ −
∫
γ

k2ssssds+ 3‖k‖2∞
∫
γ

k2sssds+ ‖k‖4∞
∫
γ

k2ssds

≤ −1

2

∫
γ

k2ssssds+
11

4
‖k‖4∞

∫
γ

k2ssds

≤ −1

4

∫
γ

k2ssssds+
121‖k‖8∞

16L
Kosc.

After a fixed time translation we have ‖k‖8∞ ≤ 2
(
ωπ
A(0)

)4
≤ c and so

d

dt

∫
γ

k2ssds ≤ −
4π4

L4(0)

∫
γ

k2ssds+ cKosc,

where we also used Lemma 2.2. Since Kosc ∈ L1([0,∞)), we apply Gronwall’s
inequality to obtain ∫

γ

k2ssds ≤ c2e
− 4π4

L4(0)
t
,

as required. �

We finish by giving uniform estimates for the higher derivatives of curvature.
For this there are two obvious approaches. With the previous estimate in hand, we
have in fact shown that ‖ks‖∞ → 0 along a subsequence of times tj → ∞. This
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allows us to employ classical methods to obtain the exponential convergence; see
[14] for example.

However, the desired decay estimates also follow by combining our work here
with the powerful interpolation inequalities in [11]. Although not as transparent
and elementary as our analysis above, it is very efficient.

Proposition 4.5. Suppose γ : S1 × [0, T ) → R2 solves (CD) and satisfies the
assumptions of Theorem 1.1. Then for each m ∈ N there exist constants cm, c

′
m ∈

(0,∞) depending only on γ0 such that

‖∂ms k‖22 ≤ cme−tc
′
m , and ‖∂ms k‖∞ ≤

√
L(0)cm+1e

− t2 c
′
m+1 .

Proof. Recall equation (3.2) in [11]:

(10)
d

dt

∫
γ

(∂ms k)2ds+

∫
γ

(∂m+2
s k)2ds ≤ c‖k‖4m+10

2 ,

where c is a constant depending only on m. Noting that Proposition 4.2 and
Corollary 4.3 imply ‖k‖22 is uniformly bounded, we combine (10) with the simple
interpolation inequality

‖∂ms k‖22 ≤ c(‖∂m+2
s k‖22 + ‖k‖22)

to obtain
d

dt

∫
γ

(∂ms k)2ds+ c

∫
γ

(∂ms k)2ds ≤ c0,

where c and c0 are absolute constants depending only on m and m, γ0 respectively.
Therefore ∫

γ

(∂ms k)2ds ≤ c0e−ct,

and the L∞ estimates follow immediately. �

The proof of Theorem 1.1 is now complete.

5. Controlling density with Kosc

We first treat a self-intersection as a singularity and ‘pull’ information from it
in a manner analogous to the proof of Simon’s monotonicity formula [38]. See also
Theorem 6 in [34] and the appendix of [33].

Lemma 5.1. Suppose γ : S1 → R2 is a smooth immersed curve with x ∈ γ(S1).
Then

8|γ−1(x)| =
∫
γ

(k2 − k20)|γ|ds

where

k0 = 2
∣∣∣ 〈γ, ν〉|γ|2

+
k

2

∣∣∣.
Proof. The right hand side of the equality above is translation invariant, so we
may assume without loss of generality that x = (0, 0) is the origin. Let ε > 0 and
consider the test function η : S1 → R defined by

η(s) = min
{1

ε
,

1

|γ(s)|

}
.
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Note that ∫
γ

η2sds ≤
∫
γ

1

|γ|4
ds ≤ L

ε4
<∞,

and so

(11)

∫
γ

ηs 〈γ, γs〉 ds = −
∫
γ

η 〈γ, γs〉s ds.

Computing, we have∫
γ

ηs 〈γ, γs〉 ds = −
∫
γ−1({|γ|≥ε})

〈γ, γs〉2

|γ|3
ds

and

−
∫
γ

η 〈γ, γs〉 ds = −
∫
γ−1({|γ|<ε})

1 + k 〈γ, ν〉
ε

ds−
∫
γ−1({|γ|≥ε})

1 + k 〈γ, ν〉
|γ|

ds.

Inserting these into (11) and simplifying gives

L(|γ| < ε)

ε
+

1

ε

∫
γ−1({|γ|<ε})

k 〈γ, ν〉 ds =

∫
γ−1({|γ|≥ε})

〈γ, γs〉2

|γ|3
− 1 + k 〈γ, ν〉

|γ|
ds

=

∫
γ−1({|γ|≥ε})

−〈γ, ν〉
2

|γ|3
− k 〈γ, ν〉

|γ|
ds

= −
∫
γ−1({|γ|≥ε})

(
〈γ, ν〉
|γ|2

+
k

2

)2

|γ|ds+
1

4

∫
γ−1({|γ|≥ε})

k2|γ|ds.

Since k 〈γ, ν〉 = 〈γ, γss〉 we have

L(|γ| < ε)

ε
+

1

ε

∫
γ−1({|γ|<ε})

k 〈γ, ν〉 ds =
〈γ, γs〉
ε

∣∣∣
∂(|γ|<ε)

.

Thus

(12)
4 〈γ, γs〉

ε

∣∣∣
∂(|γ|<ε)

=

∫
γ−1({|γ|≥ε})

(k2 − k20)|γ|ds.

Noting that γ is C1 in (0, 0) and taking ε→ 0 finishes the proof. �

Remark 5.2. The above proof requires only that γ ∈W 2,2, as then (using Corol-
lary 2.3 for example) γ ∈ C1 and the L2 norm of k and k0 is well-defined.

We shall also need the following well-known inequality for the i-th elementary
symmetric functions

Πi(li, . . . , ln) =
∑

1≤k1<···<ki≤n

lk1 · · · lkn .

Lemma 5.3 (Newton’s inequality). Let l ∈ Rn be a vector of positive real numbers.
Then

Πi+1(l)

Πi+2(l)
≥ Πi(l)

Πi+1(l)

(
n
i+1

)2(
n
i

)(
n
i+2

) .
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Proof of Theorem 1.6. Since γ is compact, there exists an x0 ∈ R2 such that

m(γ) = sup
x∈R2

|γ−1(x)| = |γ−1(x0)|.

Applying Lemma 5.1 in x0 we have

(13) 8m = 8|γ−1(x0)| =
∫
γ

(k2 − k20)|γ|ds ≤
∫
γ

k2|γ|ds.

We now decompose γ into m closed arcs γi, . . . , γm, each smooth outside of the
point x0. Let li denote the length of the arc γi. Our goal is to apply (13) to each
arc γi, however these curves are not regular enough at x0. To ameliorate this point,
consider an associated curve γ̃i : [0, li)→ R2, also with length li, which is without
self-intersections, smooth outside x0 and satisfies

γ̃i(0) = γi(0) = x0

lim
ε↘0

∂sγ̃i(ε) = lim
ε↘0

∂sγi(ε)∫
γ̃i

k̃2|γ̃|ds ≤
∫
γi

k2|γi|ds.

This is realised for example by reflecting γi across the line

x0 + r rotπ/2

(
∂sγi(0) + ∂sγi(li)

)
, r ∈ R.

We now consider the extension γ̃i of each arc γi : [0, li)→ R2 defined by

γ̂i(s) =

{
γi(s) for s ∈ [0, li),

γ̃i(s− li) for s ∈ [li, 2li).

Note that m(γ̂i) = 2, and |γ̂i| ≤ li/4. Applying (13) to γ̂i we have

8 ≤
∫
γ̂i

k̂2|γ̂i|ds ≤ 2

∫
γi

k2|γi|ds ≤
li
2

∫
γi

k2ds.

Therefore

(14)

∫
γ

k2ds =

m∑
i=1

∫
γi

k2ds ≥ 16

m∑
i=1

1

li
= 16

Πm−1(l1, . . . , lm)

Πm(l1, . . . , lm)
.

Iterating Lemma 5.3 (m− 1)-times over gives the estimate

Πm−1(l1, . . . , lm)

Πm(l1, . . . , lm)
≥ m2

Π1(l1, . . . , lm)
.

Since Π1(l1, . . . , lm) = L, combining this estimate with (14) implies

L

∫
γ

k2ds = Kosc + 4π2ω2 ≥ 16m2,

as required. �
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