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Self Matching in |na]

Martin W. Bunder?

School of Mathematics and Applied Statistics
University of Wollongong
Wollongong NSW 2522 AUSTRALIA
email: martin_bunder@Quow.edu.au

Abstract

For an arbitrary real number « with convergents Z—g, %, 2—;, con [(n+gi)a — | na|
is equal to p;, and so is independent of n, except at a small specified number of values

of n. For fixed n, this relation holds for all or for all except a finite number of values
of .

1 Introduction

Bunder and Tognetti noted in [3] that any section of the graph of |n7| (where 7 =
%(\/5 — 1)) is “matched” for larger values of n. More precisely they proved:

|(n+ F)T| — |nT] = F,4
except at n = kF;q + |k7|F; where
L(n+ F)7] = [n7] = Fioy — (=1)"
In this paper we will generalise this result to:

|(n + ¢;)a] — |na] =p; (possibly — (—1)%)

where « is an arbitrary positive irrational number and Z—g, %, Z—;, ... are the convergents
-3 Iy B B
of a - just as P B Foo - - are the convergents of 7.

*The author wishes to thank the anonymous referees for their suggestions and, in particular, for the
references to Ostrowski [6] and Allouche and Shallit [1]



2 Continued Fractions and Convergents
Definition 1 If « is any real number and a = [ag,aq,az,... | in continued fraction
form, then the ith convergent of « is given by:

pi
— = [ao,al,ag,...,ai ]

4d;
We quote the following properties of convergents from Khintchine [5]:

Lemma 1 If a = [ag,ay,as,...] then
i) pr=qo=landpy=q,=0.
(i) Fori>0:

(a) pi = aipi-1 +pi-o

(b) ¢ = a;gi—1 + gi—2.

3 The Main Result

We will be using work of Fraenkel, Levitt and Shimshoni [4] (their result assumes 1 <
a < 2, but holds for @« > 0). In particular they use a generalisation of the Zeckendorf
expansion of an integer (used in [3]). This generalization, as pointed out in Allouche and
Shallit [1], is in fact due to Ostrowski 1922 (see [6]).

Theorem 1 Given a positive irrational o with convergents 22 22 22" " every positive

w0 a1 g2’
integer n can be represented uniquely by the Ostrowski a-numeration:

m
n = Z kiq;
i=h

where ky, # 0, m > h > 0 and the k; satisfy the following conditions:
(i) For each i, 0 < k; < a;41.

(11) If i > 0 and kz = Aj41, ki—l =0.

(i) If h =0, ky, < a;.

Note In the remainder of the paper, every such representation of an integer will be
assumed to be an Ostrowski a-numeration.

Theorem 2 Given a positive irrational o with convergents Z—g, *Z—i, z—j, o if
m
n = Z kiq;
i=h



then .
lna| =Y kipi + (—1if b is odd).
i=h

Proof Let a =a' 4+ r where 1 < o/ < 2 and r is an integer > —1. The convergents for

/ Py PL P /
ol are b, L, 2 where p) + rq; = p;.
Theorem 1 gives us the unique numeration for n, which is the same for « and for o/, and

by Fraenkel, Levitt and Shimshoni [4]:
[na’| =Y kipl + (=1 if his odd).
i=h
So,

|na| =nr + [nd |

= Zrkiq,- + Z/@Z(]oZ —rq;) + (=1 if h is odd)
i=h i=h
=Y kipi + (—1if his odd).
i=h
We can now prove our main result.

m
Theorem 3 If « is a positive irrational with convergents 22 2 B2 and n =Y k;q;
o’ q’ q2’ ~ !

1=

then

Aol _[p; if h <jorj+hiseven,
L+ g)a] = [naf = {pj +(=1)7 if j < hand j+ his odd.

Proof Letn= Z k;q;. In each of the cases below we find the corresponding Ostrowski
i=h
a-enumeration of n 4 ¢; and then use Theorem 2.

Casel Ifj<h—1lorj=h-—1andk, <ap. then
n+q=q+ > kig.
i=h
Then [(n+ g¢j)a] — |na] =p; + (—1if j is odd) +(1 if h is odd), which gives the result.
Case2 Ifj=h—1andk, = a1,
n=> Gniok1Ghrok + O, ki
k=0 i=ht2r+1

where r Z O, kh+27«+1 < Qp492r+2, and kh+27~+2 < Qp49r4+3 OF T = h + 2r. Then

n+q; = (knorpr + Dansorn + D Kigie
i=h+2r+42



Then 7 + h is odd and:

|[(n+gj)a] — [no] = pryorsr + (=1 if h is even) — Z apsoks1Phiok + (1 if A is odd)
k=0
= pj +(=1).
Case 3 If m > j > hand either 0 < kj <a;j;1 —1,0<k; =a;41 —1and k;j—y =0, or

k; =0 and ki1 < ajto, then,

n+q; = Zkz% + (kj + 1)g; + Z kig;

i=j+1

and
L(n + g¢j)a] — [na] = p;.
Case4 Ifm Z] > h7 k’j = Qjy1 — 1, kj+1 < Qjy2 and kj—l >0 then,

J— m
ntq = kigi+ (kjr =g+ (B + Vg + Y kigs
i=h i=j+2

and
L(n + Qj)od — |na = —pj—1 + pj+1 — kjpj = p;.
Case 5 If m>j=h=0and kg =a; — 1,

n=(a; —1) QO+Za2k+IQ2k+ Z kigi
= 1=2r+1

where ko,11 < ag,42 and 7 >0 (as h = 0, kg > 1). Then,

n+q; = (kors1 + 1)gor1 + Z kiq;
i=2r 42

and

L(” + C_Ij) J Lnozj =pory1 — 1 — (al - 1 po Z Aok4+1P2k = P1 — 1 — a1po + po = po
k=1

Case 6 Ifm Z] Z h7 kj = Q541 — 1 and kj-i—l = Qj42 then Ajy1 = 1 and

j—1 r m
n=>> kigi+ Y GjiopraQiramir+ Y, kig
i=h k=0 i=j2r2

where r > 0 and kjj2,42 < @jyor43 O j + 2r + 1 = m, then,

- m
n+q; =Y kigi + (kjporre + Dajrora + Y Kigi,
= i=j+2r+3



and
,

[(n+q;)a] — [na] = pjroria — Z j4+2k+2Dj+2k+1 = Dj-
k=0

Case 7 Ifm>j>handk; =aj;; then 7 >0andkj_; =0o0r j=~hand

Jj—2r—2 r+s m
n = Z kiq; + Z j42k—2r+1Gj+2k—2r + Z kiqi
i=h k=0 i=j+2s+1

where r,s >0, h < j—2r—2or h=j —2r, and j + 2s < m, there are several cases. If
m = j+2s, the last summation is zero. If m > j+2s,kj 0541 < @jyos12. f j—=2r—2<h
the first summation is zero. If j —2r —2 > h, kj 9,9 < ajpor—1. If j —2r =0, as
¢—1 = 0, the second summation sums to gjis+1, i.e. h = j + 25 + 1, which is impossible.
S0j—=2r>0.Ifj—2r>1,kj_9p o+1<ajg_10rkj_gp o+1l=a_9_1,7—2r—2>0
and either k;_o,_3=0o0r h =7 —2r —2,

j—2r—3
n+q; = Z kiqi + (kj—or—2 + 1)qj—2r—2 + (aj_2r — 1)qj_2r—1+
i=h

' m
Z QjoriokQj—ort2k—1 + (Kjrost1 + 1)qjros41 + Z kiq;.
k=1 i=j+25+2

If h =7 —2r > 1, we have the same but with zero for the first summation and k;_g,_o.
Then in these cases:

L(n+¢j)a] = [na) =

r 745
Pj—2r—2+ (aj_2r —1)pj_or—1+ Z Qj—2r42kDj—2r+2k—1 T Dj+2s+1 — Z Aj+2k—2r+1Dj+2k—2r = Dj-
k=1 k=0

If] —2r > 1, k’j_gr_g +1= Aj—2r—1, h < j—2r—3 and k’j_gr_g > 0,

j—2r—4

n+q; = Z k’iqz'+(k‘j—2r—3—1)Qj—2r—3+zaj—2r+2k:¢]j—2r+2k—1+(kj+2s+1+1)qg‘+2s+1+ Z kig;.
i=h k=0 1=7+2s5+2

If h=j—2r—2=0and ky + 1 = ay, the expansion of n + ¢; is the same but with zero
for the first sum and for the g;_o,_3 term.
In these cases:

L(n +g¢;)a] = [na] =

r r+s
—Pj—2r—3+ Z j—2r4+2kDj—2r+2k—1 T Pj+2s+1 — Z Aj12k—2r+1Pj+2k—2r — Rj—2r—2Dj—2r—2 = Pj-
k=0 k=0

Ifj—2r=1his 1,

T m
n+q; = (ar — D)o+ Y aokr1Gor + (kzprost2 + V@orrosi2 + Y, kit
k=1 1=2r+2s+3



and

T r+s
[(n+ g;)a) — [na = (a1 — 1)po + Z A2k+1P2k + D2r+2s+2 — Z AopyoPok+1 + 1 = pj.
k=1 k=0

Case 8 Ifj>m+1lorj=m+1thenn+gq => kig+q; and [(n+gq;)a] —|na] = p;.
i=h
m—1
Case 9 If j=m+1and apyo =1thenn+g; = Z kiqi + (km — 1)@m + Gma2 and
i=h

L(n+gj)a] — [na] = —pm + Pmi2 = pj-

4 The Mismatch Points

It follows that the values of n (called j-mismatch points in [3]) where | (n+g;)a] —|na| #

m
p; are those with n = Z kiq;, where r > 0.
i=j+2r+1

I =3 ki is fixed, | (n+q;)a] - [na # p; only when j = h—1,h—3, ..., h—2| 2511,
i=h

If h=0, [(n+qj)a] — |na| = p; for all j.

5 A Special Case

In the special case where q; is a constant i.e., a = [a,a,a,...] = 1 (a+ (a® + 4)V/?), it is
easy to show from Lemma 1 that p;, = ¢;.1.

We now show that the numbers n where
[(n+q;)a) — [na] = p; + (~1)
(the j-mismatch points) are exactly the numbers of the form
n = kqj1 + [ kalg;.
First we need a lemma:
Lemma 2 If a =[a,a,a,...] and £,7 > 0 then ¢;q; + ¢is1¢t41 = Gitrr2-

Proof ¢iq; + ¢iv1q+1 = 6iq + (aqi + ¢i—1) Q1
= Gi—1Gi1 + ¢i(aqp1 + @)
= ¢i—19t+1 T ¢iGi12



= @i—2Gt+2 + ¢i—1q1+3

= ¢-1Gt+i+1 T Qoqt+i+2
= Gitt+2 as ¢-1 =0 and go = ag-1 + ¢2 = 1.

Theorem 4 Given a = [a,a,a,a...] =5 (a+ (a® + 4)'/?),

(a) If nis not of the form kg;_1 + |ka]q;, then [(n + ¢j)a] — [na] = p;.

(b) If n is of the form kg;_; + |ka|g;, then | (n + ¢j)a| — [na] = p; + (—=1)7.

Proof (a) If n =) kiq and [(n+ ¢j)o| — [na] # p;, then j < h and j + h (and so

i=h

h — j) is odd by Theorem 3.

Let k = Z kigi—j—1, then by Theorem 3, using p;_;—1 = ¢;—; and Lemma 2,
i=h

m

kqj—1 + [ka)q; = ki(qj-16i—j—1 + ¢;6—;)
i=h
= Z kigi = n.
i=h

Hence if n is not of the form kq;_1 + [ka|g; then [(n + g¢;)a| — |na] = p;.

(b) Let k= Y kig;, then, as above, if n = kg;_1 + |kaq;

i=h1

n = Z k‘iqi+]’+1 + (—qj if hl is Odd)

i=hy

If hy is even we have j < hy + 7 + 1 = h(for n) and j + h is odd.

hi+j
If by is odd gp,1j11 —qj=a Y ¢ so h(for n) =j+1> jand j+ h is odd.
r=j+1

So in either case, by Theorem 3:
|(n+ ¢j)a] — |na) =p; + (—1).
The j-mismatch points for o = [b, a, a, a, ...] can be shown to be kg;_1 + [k(a+a —b)]qg;,

but the result does not generalize, in an obvious way, to as representable as other repeated
continued fractions.



6 An Alternative to Theorem 2

The 0 < a < 1, and so py = 0, case of the following alternative to Theorem 2 appears in
Brown [2] and in Allouche and Shallit [1]. It follows easily from our Theorems 2 and 3.

Theorem 5 If « is a positive irrational number with convergents Z—g, %, 5—;, ...and n

has Ostrowski a-numeration Z kiqi, then |(n+ 1)a] = Z kip; + po.
i=h i=h

Proof By Theorems 3 and 2, as ¢y = 1:

B Do if h is even,
[(n+ D] = [na] + {po +1 if b is odd.

= kipi + 1o
i=h
The results in Theorems 2 and 5 look quite different, however we could have used (the
0 < a < 1 case of) the latter, instead of Theorem 2, to prove Theorem 3 in a similar way
to the above.
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