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Self Matching in bnαc

Martin W. Bunder∗,
School of Mathematics and Applied Statistics

University of Wollongong
Wollongong NSW 2522 AUSTRALIA
email: martin bunder@uow.edu.au

Abstract

For an arbitrary real number α with convergents p0

q0
, p1

q1
, p2

q2
, . . ., b(n+qi)αc−bnαc

is equal to pi, and so is independent of n, except at a small specified number of values
of n. For fixed n, this relation holds for all or for all except a finite number of values
of i.

1 Introduction

Bunder and Tognetti noted in [3] that any section of the graph of bnτc (where τ =
1
2
(
√

5− 1)) is “matched” for larger values of n. More precisely they proved:

b(n + Fi)τc − bnτc = Fi−1

except at n = kFi+1 + bkτcFi where

b(n + Fi)τc − bnτc = Fi−1 − (−1)i.

In this paper we will generalise this result to:

b(n + qi)αc − bnαc = pi (possibly− (−1)i)

where α is an arbitrary positive irrational number and p0

q0
, p1

q1
, p2

q2
, . . . are the convergents

of α - just as F0

F1
, F1

F2
, F2

F3
, . . . are the convergents of τ .

∗The author wishes to thank the anonymous referees for their suggestions and, in particular, for the
references to Ostrowski [6] and Allouche and Shallit [1]
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2 Continued Fractions and Convergents

Definition 1 If α is any real number and α = [a0, a1, a2, . . . ] in continued fraction
form, then the ith convergent of α is given by:

pi

qi

= [a0, a1, a2, . . . , ai ].

We quote the following properties of convergents from Khintchine [5]:

Lemma 1 If α = [a0, a1, a2, . . . ] then

(i) p−1 = q−2 = 1 and p−2 = q−1 = 0.

(ii) For i ≥ 0:

(a) pi = aipi−1 + pi−2

(b) qi = aiqi−1 + qi−2.

3 The Main Result

We will be using work of Fraenkel, Levitt and Shimshoni [4] (their result assumes 1 <
α < 2, but holds for α ≥ 0). In particular they use a generalisation of the Zeckendorf
expansion of an integer (used in [3]). This generalization, as pointed out in Allouche and
Shallit [1], is in fact due to Ostrowski 1922 (see [6]).

Theorem 1 Given a positive irrational α with convergents p0

q0
, p1

q1
, p2

q2
, . . ., every positive

integer n can be represented uniquely by the Ostrowski α-numeration:

n =
m∑

i=h

kiqi

where kh 6= 0, m ≥ h ≥ 0 and the ki satisfy the following conditions:
(i) For each i, 0 ≤ ki ≤ ai+1.
(ii) If i > 0 and ki = ai+1, ki−1 = 0.
(iii) If h = 0, kh < a1.

Note In the remainder of the paper, every such representation of an integer will be
assumed to be an Ostrowski α-numeration.

Theorem 2 Given a positive irrational α with convergents p0

q0
, p1

q1
, p2

q2
, . . ., if

n =
m∑

i=h

kiqi
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then

bnαc =
m∑

i=h

kipi + (−1 if h is odd).

Proof Let α = α′ + r where 1 < α′ < 2 and r is an integer ≥ −1. The convergents for

α′ are
p′
0

q0
,

p′
1

q1
,

p′
2

q2
, . . . where p′i + rqi = pi.

Theorem 1 gives us the unique numeration for n, which is the same for α and for α′, and
by Fraenkel, Levitt and Shimshoni [4]:

bnα′c =
m∑

i=h

kip
′
i + (−1 if h is odd).

So,
bnαc = nr + bnα′c

=
m∑

i=h

rkiqi +
m∑

i=h

ki(pi − rqi) + (−1 if h is odd)

=
m∑

i=h

kipi + (−1 if h is odd).

We can now prove our main result.

Theorem 3 If α is a positive irrational with convergents p0

q0
, p1

q1
, p2

q2
, . . . and n =

m∑
i=h

kiqi,

then

b(n + qj)αc − bnαc =
{

pj if h ≤ j or j + h is even,
pj + (−1)j if j < h and j + h is odd.

Proof Let n =
m∑

i=h

kiqi. In each of the cases below we find the corresponding Ostrowski

α-enumeration of n + qj and then use Theorem 2.
Case 1 If j < h− 1 or j = h− 1 and kh < ah+1 then

n + qj = qj +
m∑

i=h

kiqi.

Then b(n + qj)αc − bnαc = pj + (−1 if j is odd) +(1 if h is odd), which gives the result.

Case 2 If j = h− 1 and kh = ah+1,

n =
r∑

k=0

ah+2k+1qh+2k +
m∑

i=h+2r+1

kiqi

where r ≥ 0, kh+2r+1 < ah+2r+2, and kh+2r+2 < ah+2r+3 or m = h + 2r. Then

n + qj = (kh+2r+1 + 1)qh+2r+1 +
m∑

i=h+2r+2

kiqi.
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Then j + h is odd and:

b(n + qj)αc − bnαc = ph+2r+1 + (−1 if h is even)−
r∑

k=0

ah+2k+1ph+2k + (1 if h is odd)

= pj + (−1)j.

Case 3 If m ≥ j ≥ h and either 0 < kj < aj+1 − 1, 0 < kj = aj+1 − 1 and kj−1 = 0, or

kj = 0 and kj+1 < aj+2, then,

n + qj =
j−1∑
i=h

kiqi + (kj + 1)qj +
m∑

i=j+1

kiqi

and
b(n + qj)αc − bnαc = pj.

Case 4 If m ≥ j ≥ h, kj = aj+1 − 1, kj+1 < aj+2 and kj−1 > 0 then,

n + qj =
j−2∑
i=h

kiqi + (kj−1 − 1)qj−1 + (kj+1 + 1)qj+1 +
m∑

i=j+2

kiqi

and
b(n + qj)αc − bnαc = −pj−1 + pj+1 − kjpj = pj.

Case 5 If m ≥ j = h = 0 and k0 = a1 − 1,

n = (a1 − 1)q0 +
r∑

k=1

a2k+1q2k +
m∑

i=2r+1

kiqi

where k2r+1 < a2r+2 and r ≥ 0 (as h = 0, k0 > 1). Then,

n + qj = (k2r+1 + 1)q2r+1 +
m∑

i=2r+2

kiqi

and

b(n + qj)αc − bnαc = p2r+1 − 1− (a1 − 1)p0 −
r∑

k=1

a2k+1p2k = p1 − 1− a1p0 + p0 = p0

Case 6 If m ≥ j ≥ h, kj = aj+1 − 1 and kj+1 = aj+2 then aj+1 = 1 and

n =
j−1∑
i=h

kiqi +
r∑

k=0

aj+2k+2qj+2k+1 +
m∑

i=j+2r+2

kiqi

where r ≥ 0 and kj+2r+2 < aj+2r+3 or j + 2r + 1 = m, then,

n + qj =
j−1∑
i=h

kiqi + (kj+2r+2 + 1)qj+2r+2 +
m∑

i=j+2r+3

kiqi,
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and

b(n + qj)αc − bnαc = pj+2r+2 −
r∑

k=0

aj+2k+2pj+2k+1 = pj.

Case 7 If m ≥ j ≥ h and kj = aj+1 then j > 0 and kj−1 = 0 or j = h and

n =
j−2r−2∑

i=h

kiqi +
r+s∑
k=0

aj+2k−2r+1qj+2k−2r +
m∑

i=j+2s+1

kiqi

where r, s ≥ 0, h ≤ j − 2r − 2 or h = j − 2r, and j + 2s ≤ m, there are several cases. If
m = j +2s, the last summation is zero. If m > j +2s, kj+2s+1 < aj+2s+2. If j−2r−2 < h
the first summation is zero. If j − 2r − 2 ≥ h, kj−2r−2 < aj+2r−1. If j − 2r = 0, as
q−1 = 0, the second summation sums to qj+2s+1, i.e. h = j + 2s + 1, which is impossible.
So j− 2r > 0. If j− 2r > 1, kj−2r−2 +1 < aj−2r−1 or kj−2r−2 +1 = aj−2r−1, j− 2r− 2 > 0
and either kj−2r−3 = 0 or h = j − 2r − 2,

n + qj =
j−2r−3∑

i=h

kiqi + (kj−2r−2 + 1)qj−2r−2 + (aj−2r − 1)qj−2r−1+

r∑
k=1

aj−2r+2kqj−2r+2k−1 + (kj+2s+1 + 1)qj+2s+1 +
m∑

i=j+2s+2

kiqi.

If h = j − 2r > 1, we have the same but with zero for the first summation and kj−2r−2.
Then in these cases:

b(n + qj)αc − bnαc =

pj−2r−2+(aj−2r−1)pj−2r−1+
r∑

k=1

aj−2r+2kpj−2r+2k−1+pj+2s+1−
r+s∑
k=0

aj+2k−2r+1pj+2k−2r = pj.

If j − 2r > 1, kj−2r−2 + 1 = aj−2r−1, h ≤ j − 2r − 3 and kj−2r−3 > 0,

n+qj =
j−2r−4∑

i=h

kiqi+(kj−2r−3−1)qj−2r−3+
r∑

k=0

aj−2r+2kqj−2r+2k−1+(kj+2s+1+1)qj+2s+1+
m∑

i=j+2s+2

kiqi.

If h = j − 2r − 2 = 0 and k0 + 1 = a1, the expansion of n + qj is the same but with zero
for the first sum and for the qj−2r−3 term.
In these cases:

b(n + qj)αc − bnαc =

−pj−2r−3 +
r∑

k=0

aj−2r+2kpj−2r+2k−1 + pj+2s+1−
r+s∑
k=0

aj+2k−2r+1pj+2k−2r− kj−2r−2pj−2r−2 = pj.

If j − 2r = 1, h is 1,

n + qj = (a1 − 1)q0 +
r∑

k=1

a2k+1q2k + (k2r+2s+2 + 1)q2r+2s+2 +
m∑

i=2r+2s+3

kiqi
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and

b(n + qj)αc − bnαc = (a1 − 1)p0 +
r∑

k=1

a2k+1p2k + p2r+2s+2 −
r+s∑
k=0

a2k+2p2k+1 + 1 = pj.

Case 8 If j > m+1 or j = m+1 then n+qj =
m∑

i=h

kiqi +qj and b(n+qj)αc−bnαc = pj.

Case 9 If j = m + 1 and am+2 = 1 then n + qj =
m−1∑
i=h

kiqi + (km − 1)qm + qm+2 and

b(n + qj)αc − bnαc = −pm + pm+2 = pj.

4 The Mismatch Points

It follows that the values of n (called j-mismatch points in [3]) where b(n+qj)αc−bnαc 6=

pj are those with n =
m∑

i=j+2r+1

kiqi, where r ≥ 0.

If n =
m∑

i=h

kiqi is fixed, b(n+qj)αc−bnαc 6= pj only when j = h−1, h−3, . . ., h−2bh−1
2
c−1.

If h = 0, b(n + qj)αc − bnαc = pj for all j.

5 A Special Case

In the special case where ai is a constant i.e., α = [a, a, a, . . .] = 1
2

(a + (a2 + 4)1/2), it is
easy to show from Lemma 1 that pi = qi+1.

We now show that the numbers n where

b(n + qj)αc − bnαc = pj + (−1)j

(the j-mismatch points) are exactly the numbers of the form

n = kqj+1 + bkαcqj.

First we need a lemma:

Lemma 2 If α = [a, a, a, . . .] and t, i ≥ 0 then qiqt + qi+1qt+1 = qi+t+2.

Proof qiqt + qi+1qt+1 = qiqt + (aqi + qi−1)qt+1

= qi−1qt+1 + qi(aqt+1 + qt)
= qi−1qt+1 + qiqt+2
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= qi−2qt+2 + qi−1qt+3

= . . .

= q−1qt+i+1 + q0qt+i+2

= qi+t+2 as q−1 = 0 and q0 = aq−1 + q−2 = 1.

Theorem 4 Given α = [a, a, a, a . . .] =1
2

(a + (a2 + 4)1/2),

(a) If n is not of the form kqj−1 + bkαcqj, then b(n + qj)αc − bnαc = pj.

(b) If n is of the form kqj−1 + bkαcqj, then b(n + qj)αc − bnαc = pj + (−1)j.

Proof (a) If n =
m∑

i=h

kiqi and b(n + qj)αc − bnαc 6= pj, then j < h and j + h (and so

h− j) is odd by Theorem 3.

Let k =
m∑

i=h

kiqi−j−1, then by Theorem 3, using pi−j−1 = qi−j and Lemma 2,

kqj−1 + bkαcqj =
m∑

i=h

ki(qj−1qi−j−1 + qjqi−j)

=
m∑

i=h

kiqi = n.

Hence if n is not of the form kqj−1 + bkαcqj then b(n + qj)αc − bnαc = pj.

(b) Let k =
m∑

i=h1

kiqi, then, as above, if n = kqj−1 + bkαcqj

n =
m∑

i=h1

kiqi+j+1 + (−qj if h1 is odd).

If h1 is even we have j < h1 + j + 1 = h(for n) and j + h is odd.

If h1 is odd qh1+j+1 − qj = a
h1+j∑

r=j+1

qr so h(for n) = j + 1 > j and j + h is odd.

So in either case, by Theorem 3:

b(n + qj)αc − bnαc = pj + (−1)j.

The j-mismatch points for α = [b, a, a, a, ...] can be shown to be kqj−1 + bk(α + a− b)cqj,
but the result does not generalize, in an obvious way, to αs representable as other repeated
continued fractions.
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6 An Alternative to Theorem 2

The 0 < α < 1, and so p0 = 0, case of the following alternative to Theorem 2 appears in
Brown [2] and in Allouche and Shallit [1]. It follows easily from our Theorems 2 and 3.

Theorem 5 If α is a positive irrational number with convergents p0

q0
, p1

q1
, p2

q2
, . . . and n

has Ostrowski α-numeration
m∑

i=h

kiqi, then b(n + 1)αc =
m∑

i=h

kipi + p0.

Proof By Theorems 3 and 2, as q0 = 1:

b(n + 1)αc = bnαc+
{

p0 if h is even,
p0 + 1 if h is odd.

=
m∑

i=h

kipi + p0

The results in Theorems 2 and 5 look quite different, however we could have used (the
0 < α < 1 case of) the latter, instead of Theorem 2, to prove Theorem 3 in a similar way
to the above.
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