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This paper presents a theoretical study on the velocity distribution and the friction factor of
boundary layer flows with polymer additives starting from the concept of “stress deficit.” A novel
method of order of magnitude analysis is developed, which converts the governing equations of
boundary layer flow into a solvable ordinary differential equation, thus the total shear stress
distribution is obtained, then the formulas for the mean velocity profiles and the friction factor for
a boundary layer flow are derived after introducing appropriate expressions for the “effective
viscosity” and the thickness of viscous sublayer. The derived velocity equation is able to depict the
velocity from a solid wall to the outer edge of boundary layer with or without polymer additives
using only one fitted parameterD* that is a function of polymer species, its concentration, and
Reynolds number. By integrating the velocity profiles, the friction factor and the thickness of
boundary layer development are obtained. Experimental data agree well with the theoretical
results. ©2005 American Institute of Physics. fDOI: 10.1063/1.1924650g

I. INTRODUCTION AND BACKGROUND

It is well known that the addition of a small amount of
macromolecular polymer to the Newtonian fluid can lead to
dramatic reductions of fluid resistance and form a drag-
reduction flow. Such phenomenon, first discovered by Toms,1

can be utilized to give beneficial effect in engineering and in
saving energy resources. Scientists and engineers in the
fields of chemistry, physics, and fluid mechanics have hence
paid great attention to study it, many experimental and
theoretical studies have been carried out to investigate
the effects of polymer on a modification of the velocity
distributions.

Although this phenomenon has been known for a long
time and thousands of research studies and publications have
been devoted to the subject over the last 50 years, because of
the complexity of the problem, the physical mechanism that
causes this drag reduction has still not been clearly identi-
fied. The experimental studies on drag reduction flows have
been mainly conducted in pipes and channels by researchers
such as Virk,2–4 Seyer and Metzner,5 James and Acosta,6

Reischman and Tiederman,7 Rudd,8 etc. It has been found
from experiments that the drag-reducing effect starts at a
certain Reynolds number; below this threshold the flow be-
haves like a Newtonian fluid, i.e., there is no drag reduction
in the flow of dilute polymer solutions, the flow resistance is
similar to that of water in the absence of additives and fol-
lows the well-known Prandtl–Karman relationship, i.e.,

1
Îf

= 4.0 log10sReÎfd − 0.4, s1d

in which f is Fanning’s friction factor, 2u*
2/V2; Re=2Vr /n

whereu* is the shear velocity that is also called “friction”

velocity andV is the mean velocity in the flow direction;r is
the pipe radius; andn is the kinematical viscosity of the
fluid. In other words, the velocity profile in the absence of
drag reduction agent can be expressed by

u+ = y+, y+ , 11.6, s2d

u+ = 2.5 lny+ + 5.5, y+ . 11.6, s3d

whereu+=u/u* , y+=u*y/n, y is the distance from a wall, and
u is the streamwise velocity. The viscous-sublayer velocity
given by Eq. s2d applies only foru*y/n,5, but often is
applied up to its intersection with Eq.s3d at 11.6.

When the Reynolds number is larger than the threshold,
it is found that in the turbulent core of polymer solution, the
log law is shifted by an amountDB, with no change of slope,
thus the velocity follows

u+ = 2.5 lny+ + 5.5 +DB. s4d

Experiments also show that a dilute polymer solution has a
state of maximum drag reductionsMDRd. Virk4 found addi-
tionally that all the dilute polymer systems have an
asymptotic behavior: Maximum drag reduction is limited by
the so-called Virk’s MDR asymptote. Virk believed that this
asymptote must be a feature of the turbulent flow; it is this
hypothesis that makes the drag-reducing effect so extremely
interesting from the view point of turbulent research.

Virk4 proposed that there is an elastic region between the
viscous sublayer and the turbulent core, with the ultimate
velocity profile that is

u+ = 11.7 lny+ − 17. s5d

Virk’s three-layer model includes the viscous sublayer, buffer
layer, or elastic layer and the turbulent core. In the elastic
region, Reischman and Tiederman7 alternatively suggested
that the velocity profile follows
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u+ = 7.687 lny+ − 8. s6d

Undoubtedly, dividing the velocity profile of drag-reducing
flow into three regions would be useful to empirically ex-
press the velocity distribution for the flow of polymer solu-
tion. This is probably why Virk’s model has been widely
adopted by researchers, such as by Larson,9 Min et al.,10,11

Gasljevicet al.,12 etc.
Turbulent structures in drag-reduction flows have also

been observed and reported. Early one-dimensional laser-
Doppler-anemometersLDA d measurement in polymer drag-
reducing flows was carried out by Rudd,8 then followed by
Reischman and Tiederman,7 Berner and Scrivener,13

Berman,14 etc. Two-component LDA measurements were
conducted by Durstet al.,15 Willmarth et al.,16 Luchik and
Tiederman,17 Harder and Tiederman,18 Wei and Willmarth,19

etc. Other researchers20,21applied particle image velocimetry
sPIVd to a channel flow with polymer additives. These ex-
perimental results show that the Reynolds shear stress and
the normal velocity fluctuations decrease after a polymer is
added. Of particular interest is the existence of “stress defi-
cit” in the drag-reducing flow as reported by Willmarthet
al.,16 Gyr and Tsinober,22 Den Toonderet al.,23 Warholic et
al.,20 etc. They found that the total shear stress in drag-
reduction flow is greater than the sum of viscous shear stress
s=ndu/dyd and the measured Reynolds shear stresss=
−u8v8d. Gyr and Tsinober22 defined the deficit in the follow-
ing form:

Gsyd =
t

r
− Fn

du

dy
+ s− u8v8dG , s7d

whereGsyd is the stress deficit,t is the total shear stress, and
−u8v8 is the Reynolds shear stress.

For turbulent flows of a Newtonian fluid the influence of
the viscous shear stress decreases with the wall distance and
can be neglected at or above a wall distance of about 80 in
viscous units or about 0.15 in distance scaled with the pipe
radius,24 andGsyd must be equal to zero. But for flows with
polymer additives, experimental researchers found thatGsyd
is essentially non-negligible, regardless of pipe flows or
boundary layer flowsfsee Figs. 1sad and 1sbdg. Typical re-
sults from pipe flows are shown in Fig. 1sad, in which the
Reynolds shear stress in Newtonian fluid flows denoted by
the void symbols was measured by Wei and Willmarth,19

while the shear stress in flows with polymer additives was
measured by Luchik and Tiederman.17 Min et al.10 used the
data shown in Fig. 1sad to verify the existence of “stress
deficit” caused by polymer. Obviously,Gsyd can be repre-
sented by the difference of measured Reynolds shear stresses
shown in Fig. 1sad whenu*y/n is greater than 80. Fontaine
et al.25 also observed similar stress deficit phenomenon in a
boundary layer flow with polymer injection, the results are
presented in Fig. 1sbd.

These results indicate that the stress deficit orGsyd is
mostly positive due to the elastic effect of polymer; Gyr and
Tsinober22 expressed it as follows:

Gsyd = neff
du

dy
, s8d

where neff is the effective viscosity. The shear deficit indi-
cates that the viscoelasticity should be the most important
property of a dilute polymer solution, the importance of
shear deficit shown in Eq.s8d has been realized by direct
numerical simulation modelers, such as Minet al.10,11

It can be seen that the current studies provide valuable
insights into polymer drag reduction, yet there still are no
available phenomenological equations that can predict the
drag reduction by polymer agents. Beginning with the study
of Wells and Spangler,26 it is widely agreed that the polymer
must be in the near-wall region for drag reduction to occur.
Tiedermanet al.27 confirmed experimentally that the drag
reduction occurs only when the polymer appears in the re-
gion near a boundary, thus the application of polymer drag
reduction to boundary layer flowssor a marine systemd could
be very useful in the theoretical development and practice.
Petrieet al.28 reported that the turbulent friction of boundary
layer flows could be reduced as much as 60%, thus the drag-
reducing applications for ocean-going vessels could poten-
tially result in saving energy resources.

FIG. 1. Measured Reynolds shear stress in Newtonian and drag-reduction
flows sad pipe flow andsbd boundary layer flow.
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However, the theoretical and experimental attempts
made on the velocity distribution and the friction factor in
boundary layer flows with polymer additives are extremely
lacking relative to pipe/channel flows,28 except Larson’s
study9 in which reasonable conclusions have been obtained
but have not been verified by experimental data.

This study deals theoretically with the mean velocity
profile and the friction factor of the boundary layer flow with
polymer additives, starting from Eq.s7d in which the residual
stress or stress deficit caused by polymer additives is ex-
pressed by Eq.s8d.

The effective viscosity could be approximately related to
a characteristic velocitys=u*d and a characteristic length29

s=rd, i.e.,

neff = a*u*r , s9d

where a* is the apparent viscoelasticity depending on the
type of polymer and its concentration. Equations9d is a phe-
nomenological representation of viscoelastic effects, it may
be simplistic relative to numerical simulations, such as those
by Min et al.,10,11 Ptasinskiet al.,30 Housiadas and Beris,31

and De Angeliset al.,32 who have indicated a much more
complicated mechanism that causes the drag reduction, and
these models show that the drag is reduced due to the action
of viscoelasticity on modifying the structure of large eddies
in the flow. Thus, it is necessary to investigate whether the
apparent viscoelasicitya* is a constant or a function of the
distance from the wallsu*y/n or u*r /nd.

Substituting Eqs.s8d and s9d into Eq. s7d, one obtains

t

r
= sn + neffd

du

dy
− u8v8 = nD*

du

dy
− u8v8, s10d

whereD* is the drag-reduction parameter, and

D* = 1 +a*
u*r

n
. s11d

It can be seen that the parameterD* contains the effects of
polymer species, concentration, and Reynolds number.

For a pipe flow, the total shear stress is expressed as
t /r=u*

2s1−y/ rd. The main objectives of this study include
the following: s1d to obtain the expression of total shear
stress in a boundary layer flow, herein a novel method of
order of magnitude analysis is developed;s2d to obtain the
velocity profile in boundary layer flows with polymer addi-
tives by solving the governing equations;s3d to discuss the
friction factor and the boundary layer thickness; ands4d to
verify the theoretical results with experimental data available
in the literature.

II. MEAN VELOCITY DISTRIBUTION

One of the most interesting features in turbulent drag
reduction of a dilute polymer solution is the stress deficit, as
mentioned above. For a two-dimensionals2Dd flow, Min
et al.11 derived the total shear stress from an Oldroyd-B
model: t=rndu/dy−r u8v8+tp and they termedtp as the
time averaged stress deficit. It can be seen thattp is identical
to Gsyd in Gyr and Tsinober’s expression22 shown in Eq.s7d.
Substituting this relationship into the governing equation of
boundary layer flow, one has

u
]u

]x
+ v

]u

]y
= n

]2u

]y2 −
]u8v8

]y
+

]tp

r ] y
, s12d

]u

]x
+

]v
]y

= 0, s13d

wherev is the wall-normal velocity iny direction andx is the
streamwise direction.

The boundary conditions are the following: at the bed
where y=0, u=v=−u8v8=0; at the outer boundary edge
whereyùd, u=U`, −u8v8=]u/]x=]u/]y=0, in which d is
the thickness of the boundary layer;u=U` is the free stream
velocity. Thus, the left-hand sidesLHSd of Eq. s12d equals
zero aty=0 and y=d. Using the boundary conditions the
LHS can be approximately expressed as follows:

u
]u

]x
+ v

]u

]y
= a1y

nsd − ydm, s14d

in which a1 is a coefficient,n and m are exponents to be
determined.

Equations14d shows a way of order of magnitude analy-
sis and it provides a mathematical framework to simplify the
governing equation. By analyzing the velocity in laminar
flow, we found that the assumption ofn=1.5 andm=1 yields
reasonable results for the streamwise and wall-normal ve-
locities ssee Tables I and IId, this means that the shear stress
distribution in a laminar boundary layer flow has been cor-
rectly modeled. These exponents, i.e.,n andm, could be also
extended to the turbulent boundary layer flow with polymer
additives, because the profiles oft /ru*

2 in the laminar and
turbulent flows should be similar to each other. This can be
seen clearly from the pipe flows, in which the dimensionless
shear stresses for both the laminar flow and the turbulent
flow with polymer additives obey an identical law, i.e.,
t /ru*

2=1−y/ r, in other words polymer will not modify the
profile of total shear stress,t /ru*

2. Therefore by substituting
Eq. s14d into Eq. s12d, one gets

065104-3 Drag reduction in a flat-plate boundary layer flow Phys. Fluids 17, 065104 ~2005!



a1y
3/2sd − yd =

]

]y
Sn

]u

]y
− u8v8 +

tp

r
D =

1

r

]t

]y
. s15d

Integrating Eq.s15d with respect toy yields

t

r
= a1y

7/2S2

5

d

y
−

2

7
D + a2, s16d

wherea2 is an integration constant. At the solid wall where
y=0, t=ru*

2, then coefficienta2 in Eq. s16d is determined as

a2 = u*
2. s17d

At the outer edge of boundary layer wherey=d, t=0, Eq.
s16d gives

a1 = −
35

4

u*
2

d3.5. s18d

Substituting Eqs.s17d ands18d into Eq.s16d, one obtains the
profile of total shear stress

t

ru*
2 = 1 −

7

2
S y

d
D2.5

+
5

2
S y

d
D3.5

. s19d

Inserting Eq.s10d into s19d, one gets

nD*
du

dy
− u8v8 = u*

2F1 −
7

2
S y

d
D2.5

+
5

2
S y

d
D3.5G . s20d

Similarly, in a turbulent boundary layer flowD* can be writ-
ten asa*u*d.

TABLE I. Velocity distribution in laminar boundary layer flows.

y/Îxn /U` y/ d Howarth’sul /U` Equations39d Errors s%d y/Îxn /U` y/d Howarth’sul /U` Equations39d Errors s%d

0 0 0 0 2.8 0.519 0.812 0.805 0.9

0.2 0.037 0.0664 0.0666 0.3 3.0 0.555 0.846 0.840 0.7

0.4 0.074 0.133 0.133 0 3.2 0.593 0.876 0.873 0.3

0.6 0.111 0.199 0.199 0 3.4 0.63 0.902 0.902 0

0.8 0.148 0.265 0.264 0.4 3.6 0.667 0.923 0.926 0.3

1.0 0.185 0.33 0.329 0.3 3.8 0.704 0.941 0.946 0.5

1.2 0.222 0.394 0.391 0.8 4.0 0.741 0.955 0.963 0.8

1.4 0.259 0.456 0.453 0.7 4.2 0.778 0.967 0.976 0.9

1.6 0.296 0.517 0.508 1.7 4.4 0.815 0.976 0.986 1.0

1.8 0.333 0.575 0.569 1.0 4.6 0.852 0.983 0.992 0.9

2.0 0.37 0.63 0.622 1.3 4.8 0.889 0.988 0.997 0.1

2.2 0.407 0.681 0.673 1.2 5.0 0.926 0.992 0.999 0.7

2.4 0.444 0.729 0.720 1.2 5.2 0.963 0.994 0.999 0.5

2.6 0.482 0.772 0.765 0.9 5.4 1 0.996 1 0.4

TABLE II. Comparison of Eq.s41d with Howarth’s solution on the wall-normal velocityvÎx/nU` in the laminar boundary layer.

y/Îxn /U` y/d Howarth’sv /ÎnU` /x Equations41d Errors s%d y/Îxn /U` y/d Howarth’sv /ÎnU` /x Equations41d Errors s%d

0 0 0 0 2.8 0.519 0.5206 0.5168 0.71

0.2 0.037 0.0033 0.0033 0.13 3.0 0.555 0.5706 0.5679 0.47

0.4 0.074 0.0132 0.0132 0.02 3.2 0.593 0.6171 0.6193 0.34

0.6 0.111 0.0298 0.0297 0.17 3.4 0.63 0.6595 0.6658 0.96

0.8 0.148 0.0528 0.0525 0.45 3.6 0.667 0.6972 0.7082 1.58

1.0 0.185 0.0821 0.0814 0.78 3.8 0.704 0.7301 0.7458 2.15

1.2 0.222 0.1172 0.1159 1.10 4.0 0.741 0.7581 0.7780 2.62

1.4 0.259 0.1578 0.1556 1.41 4.2 0.778 0.7815 0.8047 2.96

1.6 0.296 0.2032 0.1998 1.67 4.4 0.815 0.8007 0.8255 3.10

1.8 0.333 0.2525 0.2478 1.85 4.6 0.852 0.8160 0.8408 3.04

2.0 0.37 0.3047 0.2988 1.92 4.8 0.889 0.8280 0.8509 2.76

2.2 0.407 0.3588 0.3520 1.88 5.0 0.926 0.8372 0.8565 2.30

2.4 0.444 0.4136 0.4065 1.71 5.2 0.963 0.8441 0.8587 1.73

2.6 0.482 0.4679 0.4628 1.09 5.4 1 0.8491 0.8590 1.17
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If, as Dou33,34 postulated, that, similar to Prandtl’s
mixing-length theorem, the velocity at an eddy center re-
mains unchanged along a certain distance and the size of
eddy follows the Gaussian distribution, then the following
Reynolds shear stress is obtained:

− u8v8 =
k

2
u*y

t

r

du

dy
−

k2

d
s2d*y − y2dS1 −

y

8
D t

r
Sdu

dy
D2

, s21d

wherek is the Karman constant=0.4 andd* is the thickness
of viscous sublayer.

Substituting Eq.s21d into s20d, one has

k2

8
s2d*y − y2dS1 −

y

d
DF1 −

7

2
S y

d
D2.5

+
5

2
S y

d
D3.5GSdu

dy
D2

− Hk

2
u*yF1 −

7

2
S y

d
D2.5

+
5

2
S y

d
D3.5G + nD*Jdu

dy

+ F1 −
7

2
S y

d
D2.5

+
5

2
S y

d
D3.5Gu*

2 = 0. s22d

The velocity gradientdu/dy can be determined as follows:

du

dy
=

k

2
u*yF1 −

7

2
S y

d
D2.5

+
5

2
S y

d
D3.5G + nD*

k2

4
s2d*y − y2dS1 −

y

d
DF1 −

7

2
S y

d
D2.5

+
5

2
S y

d
D3.5G

331 −Î1 −

k2u*
2

2
s2d*y − y2dS1 −

y

d
DF1 −

7

2
S y

d
D2.5

+
5

2
S y

d
D3.5G2

Sk

2
u*yF1 −

7

2
S y

d
D2.5

+
5

2
S y

d
D3.5G + nD*D2 4 . s23d

Strictly speaking, Eq.s22d is quadratic and has two
roots, herein only the root shown in Eq.s23d is discussed
because the other root generates unreasonable results. Ex-
pressing the square root in Eq.s23d by the Taylor series and
keeping only the first three terms, one obtains

du

dy
=

u*
2F1 −

7

2
S y

d
D2.5

+
5

2
S y

d
D3.5G

nD* +
k

2
u*yF1 −

7

2
S y

d
D2.5

+
5

2
S y

d
D3.5G

+
k2

8

3

s2yd* − y2ds1 − y/dd3u*
4F1 −

7

2
S y

d
D2.5

+
5

2
S y

d
D3.5G3

HnD* +
k

2
u*yF1 −

7

2
S y

d
D2.5

+
5

2
S y

d
D3.5GJ3

.

s24d

Equations24d could be easily integrated, but the result
would be too laborious to be used. A simplification could be
done as follows: in the near-wall region 1−7sy/dd2.5/2
+5sy/dd2.5/2<1 for y!d; and in the restsbut yÞdd, nD* is
very small relative to another term, thus it can be neglected.

Therefore, the factor 1−7sy/dd2.5/2+5sy/dd2.5/2 in the two
terms on the right-hand side of Eq.s24d can be dropped, and
Eq. s24d is simplified as

du

dy
=

u*
2

nD* +
k

2
u*y

+
k2

8

s2yd* − y2ds1 − y/ddu*
4

SnD* +
k

2
u*yD3 . s25ad

Inserting Eq.s25ad into Eq. s20d, one obtains the Reynolds
shear stress

−
u8v8

u*
2 = 1 −

7

2
S y

d
D2.5

+
2

5
S y

d
D3.5

−
1

1 + ky+/s2D*d

− S1 −
y

d
D k2

8D*
2

2y+d*
+ − y+2

f1 + ky+/s2D*dg2 , s25bd

whered*
+=u*d* /n.

Integrating Eq.s25ad with respect toy yields

u

u*
=

1

k
11 −

2d*
+ +

6D*

k

d+ 2lnS1 +
ky+

2D*
D +

1

2
S d*

+

D*
+

1

k
D

3S1 +
2D*

kd+DS y+

2D* /k + y+D2

+
1

k
S1 +

2d*
+ + 4D* /k

d+ D
3S y+

2D* /k + y+D +
1

k

y

d
+ c, s26d
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whered+=u*d /n, c is an integration constant; using the non-
slip condition aty+=0, u=0, thenc=0.

As mentioned above, for Newtonian fluid flows, the ac-
tual limit of the viscous sublayer occurs at abouty+=5, in
other words, turbulence affects the velocity distribution in
the boundary layer fromy+=5 outward. However, as com-
mented by Crowe, Elger, and Roberson,35 the effect is not
appreciable up toy+=11.6 where the velocity-distribution
curves for the viscous sublayerfor Eq. s2dg and the logarith-
mic velocity distributionfor Eq.s3dg intersect. In derivations
and analyses involving the turbulent boundary layers, it is
not uncommon to assume that the thickness of viscous sub-
layer isd*

+=u*d* /n=11.6.
For turbulent flows with polymer additives, Lumley36

found that the only difference in the boundary layer turbu-
lence structure between the Newtonian flows and the drag-
reducing flows is that polymer molecules are expanded in the
flow outside the viscous sublayer due to possible stretching
of the polymer moleculesif the strain rate in the turbulent
flow is larged, this causes an increase in the effective viscos-
ity, which in turn damps dissipative eddies. This effectively
leads to a thickening of the viscous sublayer leading to a
decrease in the velocity gradient at the wall. Consequently,
the Reynolds shear stress at the wall decreases, thus leading
to a reduction in the drag.37 Based on some experimental
observations, Dou38 expressed the thickening of the viscous
sublayer with the following relationship:

u*d*

n
= 11.6D*

3. s27d

Finally, the mean velocity for drag-reducing boundary
layer flow is obtained as follows:

u

u*
= 2.5S1 −

23.2D*
3 + 15D*

d+ DlnS1 +
y+

5D*
D

+ s5.8D*
2 + 1.25dS1 +

5D*

d+ DS y+

5D* + y+D2

+ 2.5S1 +
23.2D*

3 + 10D*

d+ DS y+

5D* + y+D
+ 2.5

y

d
. s28d

Equations28d becomes the equation of velocity distribution
for Newtonian fluid boundary layer flows whenD* =1.

Similarly, Eq. s25bd can be rewritten as follows:

−
u8v8

u*
2 = 1 −

7

2
S y

d
D2.5

+
2

5
S y

d
D3.5

−
1

1 + y+/s5D*d

− S1 −
y

d
D0.464y+D* − 0.02sy+/D*d2

f1 + y+/s5D*dg3 . s29d

Figures 2sad and 2sbd show the Reynolds shear stress distri-
bution calculated from Eq.s29d, in which Klebanoff’s ex-
perimental data39 in a Newtonian fluid flow are included for
comparison, and good agreements have been achieved. The
Reynolds shear stress distribution in the whole boundary
layer is shown in Fig. 2sad. However, according to Lumley’s

theory the presence of walls plays a major role for drag-
reducing flows, and the Reynolds shear stress at wall de-
creases due to the thickening of viscous sublayer, thus the
Reynolds shear stress in the near-wall region is particularly
plotted in Fig. 2sbd that clearly shows that, as assumed by
Lumley36 and Thirumalai and Bhattacharjee,37 the Reynolds
shear stress at the wall decreases with the increase ofD* or
the thickening of viscous sublayer.

In the region near the solid wall wherey+!5D* , one has

lnS1 +
y+

5D*
D <

y+

5D*
; 1 +

y+

5D*
< 1;

FIG. 2. Reynolds shear stress distribution in boundary layersad main flow
region andsbd near-wall region.
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y

d
< 0; S y+

5D*
D2

< 0;

then Eq.s28d becomes

u

u*
=

u*y

nD*
. s30ad

Equations30ad states that the velocity distribution in the re-
gion very near the wall is linear. In the turbulent core where
u*y/ s5nD*d@1, Eq. s28d can be rewritten as

u

u*
= 2.5S1 −

23.2D*
3 + 15D*

d+ DlnS y+

5D*
D + s5.8D*

2 + 1.25d

3S1 +
5D*

d+ D + 2.5S1 +
23.2D*

3 + 10D*

d+ D + 2.5
y

d
.

s30bd

Equations30bd states that far away from the boundary, the
velocity u/u* is proportional to the logarithmic distancey+,
its slope and intercept depend on the drag-reduction param-
eter D* and u*d /n. Becauseu*d /n generally is higher than
3000, we takeu*d /n=3000 as an example; Eq.s30bd can be
approximately represented by

u

u*
= 2.43 lny+ + 5.7 +DB, s31d

where

DB = 5.8sD*
2 − 1d − 2.5 lnD* . s32d

It can be seen thatDB in Eq. s4d has been theoretically ex-
pressed; it is obvious thatDB vanishes whenD* =1 or
a* =0.

The free stream velocityU` can be determined from Eq.
s28d using the conditionu=U` at y=d,

U`

u*
= 2.5 lnS1 −

23.2D*
3 + 15D*

d+ DlnS1 +
d+

5D*
D

+ s5.8D*
2 + 1.25dS1 +

5D*

d+ DS d+

5D* + d+D2

+ 2.5S1 +
23.2D*

3 + 10D*

d+ DS d+

5D* + d+D + 2.5. s33d

The velocity defect can be expressed as

U` − u

u*
= 2.5S1 −

23.2D*
3 + 15D*

d+ DlnS5D* + d+

5D* + y+D
+ s5.8D*

2 + 1.25dS1 +
5D*

d+ DHS d+

5D* + d+D2

− S y+

5D* + y+D2J + 2.5S1 +
23.2D*

3 + 10D*

d+ D
3S d+

5D* + d+ −
y+

5D* + y+D + 2.5S1 −
y

d
D . s34d

In the turbulent core wherey+@5D* , Eq. s34d can be sim-
plified as

U` − u

u*
= 2.5S1 −

23.2D*
3 + 15D*

d+ DlnSd

y
D + 2.5S1 −

y

d
D

< 2.5 lnSd

y
D + 2.5S1 −

y

d
D . s35d

It can be seen from Eq.s35d that in the turbulent core the
velocity defect depends only ony/d, and polymer agents
have no influence on the velocity defect in this region.

Virk’s experimental data3,4 show that no drag reduction
occurs in laminar flows, thereforeD* =1 and −u8v8=0.
Hence Eq.s20d can be expressed as

n
dul

dy
= u*

2F1 −
7

2
S y

d
D5/2

+
5

2
S y

d
D7/2G , s36d

where ul is the velocity in a laminar flow. Integrating Eq.
s36d with respect toy yields

ul

u*
= y+F1 −S y

d
D5/2

+
5

9
S y

d
D7/2G . s37d

The relationship between the free stream velocityU`

and the thickness of laminar boundary layerd can be deter-
mined from Eq.s37d using the conditionu=U` at y=d,

U`

u*
=

5

9

u*d

n
, s38d

thus, Eq.s37d can be rewritten as follows by introducing Eq.
s38d:

ul

U`

=
9

5
F y

d
− S y

d
D7/2

+
5

9
S y

d
D9/2G . s39d

Equations39d expresses the velocity distribution of laminar
flow in a drag-reducing boundary layer. A comparison of Eq.
s39d with the numerical solution of Howarth29 is shown in
Table I, in whichd=5.4sxn /U`d0.5 fsee Eq.s51dg is applied.
It can be seen from Table I that the maximum relative error
of Eq. s39d is only 1.7%, this indicates that Eq.s39d is ac-
ceptable to express the velocity for laminar flow of a New-
tonian fluid flow, and, by assumption, even when polymer
additives are present.

The wall-normal velocity in a laminar boundary flow can
be determined from Eq.s13d as follows:

v
U`

= −E
0

y ]

]x
S ul

U`
Ddy. s40d

Substituting Eq.s39d andd=5.4sxn /U`d0.5 into Eq.s40d, one
obtains

v
U`

=
4.86

ÎU`x/n
F1

2
S y

d
D2

−
7

9
S y

d
D9/2

+
5

11
S y

d
D11/2G . s41d

Comparison of Eq.s41d with Howarth’s numerical solution is
shown in Table II.

Table II shows that the maximum relative error of Eq.
s41d is only 3.1%. The good agreements shown in Tables I
and II indicate that the order assessment and exponents used
in Eq. s14d, i.e., n=1.5 andm=1, are acceptable.

In the transitional region from the laminar to the turbu-
lent state, Schlichting29 observed that the velocity profile fol-
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lows the law of laminar flow during one period but shifts to
the log law during another period; in other words, the veloc-
ity profile in the region sometimes corresponds to the lami-
nar distribution and sometimes to the turbulent one, the al-
ternative duration depending on the Reynolds number.40

To express the velocity distribution in the region of the
laminar to the turbulent transition, Dou38 suggested

ut

u*
= r l

ul

u*
+ s1 − r ld

u

u*
, s42d

where ut is the velocity in the region of laminar-turbulent
transition,ul is determined by Eq.s37d, andu is determined
by Eq. s28d. The parameterr l is the probability of laminar
occurrences which depends on the relative Reynolds number
dk

+/d+ and can be estimated by the following equation:

r l = 51

eFo
n=1

`
n

n!
Sdk

+

d+D2nG for d+ ù dk
+,

1 for d+ , dk
+,
6 s43d

wheredk
+ is the critical Reynolds number at which the lami-

nar flow becomes unstable. Therefore the velocity distribu-
tion in the transitional region can be determined by Eq.s42d
after the velocity profiles in the laminar and fully turbulent
regions are determined. It is obvious that whend+,dk

+, r l

=1, Eq.s42d becomes Eq.s37d; and whend+@dk
+, r l =0, Eq.

s42d becomes Eq.s28d, therefore Eq.s42d covers the velocity
distributions in laminar, transitional, and turbulent regions.

Figures 3 and 4 show the mean velocity profiles in drag-
reducing boundary layer flows measured by Whiteet al.,21

Fontaineet al.,25 Kumor and Sylevstor,41 and Sedov.42 White
et al.21 conducted the velocity measurement in a water tunnel
with a cross sectional dimension of 0.3630.13 m2, a PIV
system was applied, and the polymer solutions of polyethyl-
ene oxide sPEOd with a mean molecular weight of 3.8
3106 were injected into the boundary layer of flat plate
through a spanwise slot 0.15 mm wide located near the lead-
ing edge. Fontaineet al.25 measured the velocity profiles in a
turbulent boundary layer with slot-injected polymer, laser

Doppler velocimetersLDV d was applied for the experiment,
polyethylene oxide solutions were injected, and the polymer
averaged molecular weight was 53106, the injection slot
was located 0.292 m downstream of the plate leading.
Sedov42 also injected PEO solutions into a flat-plate bound-
ary layer through a slot near the leading edge and the mo-
lecular weight of polymer was 0.33106. All these measured
velocity profiles are replotted in Fig. 3 in which the drag-
reducing parameterD* is determined by the best fit of mea-
sured data when Eq.s28d is applied, the drag reductionsDRd
shown in the legend is defined as the ratio of wall shear
deficit to the wall shear of flow without polymer injection,
DB is defined in Eq.s4d. In Fig. 3, Virk’s3 and Reischman
and Tiederman’s7 ultimate velocity profiles shown in Eqs.s5d
ands6d, respectively, are also included for comparison. Thus
it can be concluded that Eq.s28d is valid in Newtonian and
drag-reducing flows. It can be seen that the measured veloc-
ity profiles and Eq.s28d are in good agreement, which indi-
cates that the concept of “effective viscosity” proposed by
Gyr and Tsinober22 in Eq. s8d is workable.

In this study, a crucial assumption has been made in Eq.
s27d that statesd*

+=u*d*n=11.6D*
3. This assumption greatly

changes the velocity profile near the bed, particularly the
slope in the buffer zone, resulting to a velocity profile that
moves upward parallel to the classical logarithmic law of
Newtonian fluid flow. It is necessary to check the validity of
this assumption using experimental data. Kumor and
Sylevstor41 especially measured the velocity profile in a tur-
bulent boundary layer. They conducted the experiment in a
boundary layer flow where the flow of water mixed with
POE solutionssconcentrations of 9, 14, 16, 21, and 24 ppmd
was observed using LDV. As it can be seen from Fig. 4, the
measured velocity profiles in the buffer zone agree well with
Eq. s28d, which indicates that the assumption shown in Eq.
s27d is acceptable.

In order to identify whether the drag-reduction param-
eterD* is indeed constant or a function ofu*y/n, the locally
determinedD* values versusu*y/n are plotted in Fig. 5sad, in
which D* is obtained in the following method: at a given

FIG. 3. Comparison of measured velocity distribution in boundary layer
flows with polymer additive measured with Eq.s28d.

FIG. 4. Comparison of measured velocity distribution in a buffer region
with Eq. s28d.
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level from the wall, i.e.,u*y/n, the theoretical velocity in Eq.
s28d fully depends onD* , thus by adjusting the parameterD* ,
one can match the theoretical and the measured point
velocities.21,42Then the obtainedD* versus its locationu*y/n
can be plotted and analyzed. It can be seen that for the region
whereu*y/n.100, the parameterD* does not significantly
vary with u*y/n, in other wordsD* can be retreated as a
constant in the main flow region. However, Fig. 5sad also
shows that in the near-wall region whereu*y/n,100, the
calculatedD* is higher than the value obtained from the main
flow region. Noticing that for Newtonian fluid flows Eq.s28d
does not predict measurement values by Whiteet al.21 in the
near-wall regionsu*y/n,100d very well ssee Fig. 4d. One
may attribute the variation ofD* in the near-wall region
su*y/n,100d to the systematical error because due to the
technical difficulty, the measured velocity near a wall is

highly uncertain relative to the measurement in the main
flow region. The relationship between the measured drag re-
duction sDR%d shown in Fig. 5sad and parameterD* is
shown in Fig. 5sbd. As it can be seen there, the drag reduc-
tion sDR%d is almost proportional to the drag-reduction pa-
rameterD* .

III. FLOW RESISTANCE

The momentum thicknessd2 of a flat-plate boundary
layer flow is defined as follows:

d2 =E
0

d u

U`
S1 −

u

U`
Ddy s44d

and the total resistance acting on the plate is expressed as

Dsxd =E
0

x

t*sxdbdx, s45d

wheret* is the bed shear stress,b denotes the width of the
plate; the relationship between the wall shear and the mo-
mentum thickness is

t*sxd = rU`
2 dd2

dx
. s46d

Inserting Eq.s46d into Eq. s45d yields

Dsxd = rU`
2d2b. s47d

The dimensionless coefficient for the total skin friction is
expressed as

cf =
Dsxd

r

2
U`

2xb

. s48d

Substituting Eq.s47d into Eq. s48d, one obtains

cf =
2d2

x
. s49d

For laminar flow, substituting Eq.s39d into Eq. s44d yields

d2 = 0.121 168d. s50d

By comparing Eq.s50d with the theoretical result ofd2

=0.664sxn /U`d, one gets

U`d

n
= 5.4ÎU`x

n
. s51d

Inserting Eqs.s50d and s51d into Eq. s49d, one has

cf =
1.3085
ÎU`x/n

. s52ad

Equations52ad is the friction factor in laminar flows which is
very close to the theoretical results:29

cf =
1.328

ÎU`x/n
. s52bd

For fully turbulent flows in the flat-plate boundary layer with
polymer additive, the friction factorcf can be determined

FIG. 5. Relationship between parameterD* and dimensionless distance
u*y/v sad and drag reduction DR%sbd.
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using the similar way mentioned, and Eq.s44d can be written
in a dimensionless form

U`d2

n
=E

0

d+ u

u*
dy+ −E

0

d+ S u

u*
D2YSU`

u*
Ddy+. s53d

Let f1sd+d=U` /u* ; f2sd+d=e0
d+

su/u*ddy+; f3sd+d
=e0

d+
su/u*d2dy+. Equations53d can be rewritten as follows:

U`d2

n
= f2sd+d − f3sd+d/f1sd+d. s54d

From Eq.s46d, the relationship forx andd+ can be derived,

x =E
0

d+

f1
2sd+d

dd2

dd+dd+. s55d

dd2/dd+ can be determined from Eq.s54d in the following
form:

dSU`d2

n
D

dd+ =
f3sd+d
f1
2sd+d

df1sd+d
dd+ . s56d

Inserting Eq.s56d into Eq. s55d, one obtains

U`x

n
= f3sd+df1sd+d −E

0

d+

f38sd
+df1sd+ddd+ s57d

for

f38sd
+d = f1

2sd+d, s58d

therefore, one has

U`x

n
= f3sd+df1sd+d − f4sd+d, s59d

where

f4sd+d =E
0

d+ SU`

u*
D3

dd+. s60d

Inserting Eqs.s54d and s59d into Eq. s49d, one obtains the
formula of friction factor for the boundary layer flows,

cf = 2
f2sd+d − f3sd+d/f1sd+d
f1sd+df3sd+d − f4sd+d

. s61d

The free stream velocityU` /u* in f1 and f4 can be obtained
from Eqs.s33d, s39d, ands42d as follows:

U`

u*
= r l

5

9
d+ + s1 − r ldH2.5S1 −

23.2D*
2 + 15

d+ DlnS1 +
d+

5
D

+ s5.8D*
2 + 1.25dS1 +

5

d+DS d+

5 + d+D2

+ 2.5S1 +
23.2D*

2 + 10

d+ DS d+

5 + d+D + 2.5J , s62d

where, when the flow is laminar,r l =1; and in the fully de-

FIG. 6. Skin friction coefficient vs
Reynolds number for the boundary
layer of a Newtonian fluidsD* =1 or
a* =0d and data from Schlichting
sRef. 29d.

FIG. 7. Skin friction coefficient vs Reynolds number for the boundary layer
flow with polymer additivessa* .0d and data from SedovsRef. 41d.
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veloped turbulent region,r l =0; in the laminar-turbulent tran-
sition, 0, r l ,1.

The mean velocityu/u* in f2 and f3 can be determined
using the aforementioned equations, i.e., Eq.s42d. Thus one
is able to calculate the friction factorcf using Eq.s61d nu-
merically, and the obtained results can cover the laminar,
transitional, and fully turbulent flow regions for both New-
tonian and drag-reducing fluid flows because Eqs.s42d and
s62d can cover these three regions.

A comparison between Eq.s61d and the measured data is
shown in Fig. 6 in Newtonian fluid boundary layer flows, in
which the experimental data were collected by Schlichting,29

the theoretical results shown in Fig. 6 are calculated on the
basis of three input conditions, i.e.,r l =0 sfull turbulenced;
r l =1 sfully laminar statusd; and 0, r l ,1. For the condition
0, r l ,1, the critical Reynolds numbersdk

+=78.4 orU`x/n
=400 000d is assumed andr l is calculated using Eq.s43d. It
can be seen from Fig. 6 that the predicted skin friction for

Newtonian fluids is in good agreement with experiments
over a wide range of Reynolds number. Larson9 conducted a
similar study. His model can also provide a reasonable agree-
ment with Schlichting’s data29 over a range of Reynolds
number spanning from 105 to 109, but his model cannot pre-
dict the skin friction in the laminar-turbulent transition.

Equations61d is then applied to the turbulent boundary
layer flows sr l =0d with polymer additives; the results are
shown in Fig. 7, in which the experimental data were com-
piled by Sedov.42

Figure 7 shows clearly that with increasing polymer con-
centration the friction coefficient is reduced gradually, and
the theoretical results and the experimental data are in good
agreement.

The boundary thickness development in a Newtonian
fluid flow is calculated using Eq.s59d. The obtainedU`d /n
versusU`x/n is plotted in Fig. 8; in the calculation the criti-
cal Reynolds numberdk

+ is equal to 78, similar to that in Fig.

FIG. 8. Boundary layer thickness de-
velopment in a Newtonian fluid
boundary layer.

FIG. 9. Comparison of boundary layer
thickness development in drag-
reduction flow.
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6, this value is also used to calculate the probabilityr l. The
theoretical results show that near the leading edge, the Rey-
nolds number is less than the critical Reynolds number and
the flow is laminar, thus Eq.s51d can be used for the calcu-
lation. As the Reynolds number increases, the flow becomes
unstable in the region of laminar-turbulent transition. It is
seen from Fig. 8 that the calculated results gradually ap-
proach their asymptote—the well-known Prandtl’s
1/7th-power law—i.e.,U`d /n=0.38sU`x/nd0.8; this indi-
cates that Eq.s51d is reasonable and also implies that
Prandtl’s law is invalid whenU`x/n,83107.

The boundary thickness development in drag-reduction
flows is shown in Fig. 9. The drag-reduction parametera*

obtained from Fig. 7 is used in the calculation. It can be seen
that with the increment of parametera* , the boundary thick-
ness U`d /n becomes thinner relative to Newtonian fluid
flows, the conclusion is consistent with Larson’s study.9

IV. CONCLUSIONS

By applying the concept of stress deficit and developing
a novel method of order of magnitude analysis for a drag-
reducing boundary layer flow, the formulas for mean veloc-
ity, friction factor, and boundary layer thickness are obtained.
The theoretical results are in good agreement with the mea-
sured data available in the literature using only one fitting
parameterD* that is a function of polymer species, its con-
centration, and Reynolds number. The following conclusions
can be drawn from the study.

s1d The stress deficit can be assumed to be proportional to
the velocity gradient and the effective viscosity; the lat-
ter can be expressed in a form similar to the eddy vis-
cosity. The parameterD* obtained from the concept of
stress deficit increases linearly with Reynolds number.

s2d The velocity profile in drag-reducing boundary layer
flows can be divided into three zones as Virk3 did, i.e.,
viscous sublayer, buffer zone, and turbulence core, but
the velocity profile in these three zones can be expressed
by Eq. s28d. In the buffer zone the slope of velocity
profile in a semilogarithmic plot is variable, but in the
turbulent core, the slope is constant though its intercept
moves upward by an amount ofDB. This study gives a
theoretical expression ofDB that is only related to the
parameterD* . A good agreement between the measured
and predicted velocity profiles is achieved using the fit-
ted parameterD* .

s3d Based on the theoretical velocity profile developed in
this study, the formula for friction factor in a boundary
layer flow is derived, which covers the friction factor in
laminar, laminar-turbulent transition, and fully turbulent
flows. It provides a good agreement with the experimen-
tal data using only one fitted parameter.

s4d The development of boundary layer thickness has been
numerically calculated. The results show that near the
leading edge of a flat plate, the boundary layer is lami-
nar. It is found that the boundary layer thickness gradu-
ally approaches its asymptote—the well-known
Prandtl’s 1/7th-power law—but Prandt’s law overesti-

mates the boundary layer thickness when the Reynolds
number is less than 83107.

s5d This study shows that the introduction of polymer in a
Newtonian fluid flow attenuates the thickness of bound-
ary layer relative to that in a Newtonian fluid flow.
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