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Abstract. Physical Network Coding (PNC) has recently been proposed for multi-antenna Two-
Way Relay Networks (TWRNs) with independent fading channels because the total network
throughput could be significantly improved. However, PNC for multi-antenna TWRNs with
correlated fading channels has not been considered yet. This paper thus considers an important
class of multi-antenna TWRNs with the following properties: single-antenna source nodes and
two-antenna relay; distance between source nodes and the relay is significantly larger than
that between antennas of the relay; and channels between source nodes and the relay are
correlated. For such a system, we first propose a novel correlation model that facilitates an
easy method to create fading channels with certain correlation properties. We then propose a
novel receiver design for correlated fading TWRNs. Simulation results show that the proposed
receiver design provides much better error performance than the well-known Log-Likelihood
Ratio (LLR) algorithm proposed in the literature.

Introduction

Network coding (NC) has been proposed in the literature to improve the throughput of
wireless sensor networks, wireless ad-hoc networks, wireless multicast and broadcast networks.
To examine these networks, bi-directional relaying or two-way relay networks (TWRNs) are
used as a basic model where information is exchanged between source nodes in both directions.
TWRNs have been intensively examined, such as in [1]– [2]. There are three main transmission
protocols, namely conventional protocol, network coding, and physical network coding (PNC),
for TWRNs as depicted in Fig. 1(a). The conventional protocol involves totally four time slots
(or phases), while network coding [2]–[5] involves only three phases. In network coding, original
bits q1 and q2 from source nodes must be individually decoded before the message q3 = q1 ⊕ q2
can be created. PNC is the most efficient protocol in terms of maximizing the total throughput
of the network since it only involves two steps, given that channels between nodes are half-
duplex and the same radio carrier frequency is used by all nodes in the TWRN4. In PNC
[6]–[10], the original bits q1 and q2 are not recovered. Instead, the message q3 = q1 ⊕ q2 is
directly estimated based on the sum of the noisy signals received by the relay from two source
nodes (the superimposed signal). The waveform x3 corresponding to the message q3 can be
created directly from the superimposed waveform x1 + x2, based on a certain physical network
mapping algorithm. Since adding the waveforms and mapping this sum to the waveform x3 can
be done directly in the PHY layer.

4If channels are full-duplex, i.e. nodes can transmit and receive signals simultaneously, e.g. over different
frequency bands such as in multiband-OFDM ultra-wideband systems [11]–[13], the conventional and NC pro-
tocols might require as few as two steps, eliminating the difference in the number of time slots between all three
protocols.



3

1 2

x1=M(q1)

3

1 2

x1

3

1 2

x2=M(q2)

3

1 2

x2

3

1 2

x1=M(q1)

3

1 2

x2=M(q2)

3

1 2x3=M(q1    q2)

3

1 2

x1=M(q1)

3

1 2

x3=C(x1+x2)

x2=M(q2)

Conventional Network Coding Physical Network Coding

1

2

3

4

Time Slots

Notations
q1, q2: bits from source nodes
x1, x2: wave forms from source nodes
x3: wave form from relay
M: modulation
C: physical network mapping

(a)

Node

1

Node

2

Node

3

h1a h1b h2a h2b

a b

(b)

Fig. 1: (a) Three transmission protocols for TWRNs; (b) Multi-antenna TWRN with correlated
fading channels.

Although PNC has been intensively examined, correlation between fading channels has not
been considered in all aforementioned works. Examples of channel correlation include, but are
not limited to, the correlation of fading channels between a) a base station in a mobile cellular
network and two mobile users; between two antennas of a base station and an individual mobile
user; b) Earth station and multiple antennas of the satellite in a satellite communications
system; c) a satellite and two end users in a terrestrial mobile satellite communications system;
and d) two WLAN (wireless local area network) equipments and their access point. Note that
two end-users might not be able to communicate directly with each other, but via the relay,
even when the two users are relatively close to each other (thus correlation exits), compared
to the relay, due to, for instance, the authorization, security, or confidential issues. Channel
correlation could significantly degrade the performance of TWRNs.

Given that PNC for multi-antenna TWRNs or for truly MIMO TWRNs has received increas-
ing attention, a convenient mathematical correlation model and an efficient physical network
mapping technique for correlated fading TWRNs are specially desired. An efficient detection
algorithm for TWRNs with correlated fading channels seems to be missing in the literature.
Therefore, in this paper, we first derive a novel mathematical model for channel correlation
in TWRNs, which facilitates not only an easy way to generate correlated fading channels cor-
responding to certain correlation properties, but also the derivation of our novel detection
technique for PNC in multi-antenna TWRNs with correlated fading channels.

The paper starts with the derivation of a mathematical model for channel correlation in
TWRNs. Based on this model, a novel receiver design is proposed for PNC TWRNs in correlated
fading channels, followed by two case studies for correlated TWRNs and insightful discussions
over these cases. Simulation results are then provided. The conclusion concludes the paper.

System Model of Correlated TWRNs

We consider a multi-antenna TWRN in Fig. 1(b) where Nodes 1 and 2 are the source nodes
with one antenna each, and Node 3 is the relay equipped with two antennas a and b. This
is an important class of generally defined MIMO TWRNs since each source node might only
be equipped with a single antenna, rather than multiple antennas, due to its portable, tiny
size. Denote hik and dik, i ∈ {1, 2}, k ∈ {a, b}, to be the complex channel coefficients and the
distances between Node i and the k-th antenna of Node 3, respectively. We emphasize an impor-
tant property of a TWRN with physical network coding that the source nodes transmit/receive



signals on the same radio carrier frequency at the same time to/from the relay. Further to this
fact, we assume that

• Distance dik (i ∈ {1, 2}, k ∈ {a, b}) is significantly larger than the distance d12 between
Node 1 and Node 2, and much larger than the distance dab between two antennas of Node
3. Consequently, d1a ≈ d1b, d2a ≈ d2b. An typical example is a satellite system, where
Node 3 is the satellite and Nodes 1 and 2 are two terrestrial mobile users or two nearby
Earth stations;

• There exists correlation between all channel coefficients hik in the network;

• Channels are reciprocal and are (block) flat Rayleigh fading channels.

Given the above fact and assumptions, it is reasonable to assume that

• Energies of the channels between Node 1 and two antennas of Node 3 are equal, i.e.
|h1a| = |h1b|. Small difference in their magnitudes (e.g. due to small-scaled fading effects)
is considered to be negligible.

• The phase difference between h1a and h1b (e.g. due to the small difference between d1a
and d1b, or small-scaled fading effects) is necessary to be considered. Thus we write h1b =
ejθ1h1a, where h1a is assumed to follow CN (0, 1), and θ1 is an uniform random variable
(RV) following the distribution U [θ1min, θ1max].

• Similarly, energies of the channels between Node 2 and two antennas of Node 3 are
assumed to be identical, while their phase difference is non-negligible. Thus we could
write h2b = ejθ2h2a, where θ2 ∼ U [θ2min, θ2max].

• Energy of the channels between Nodes 2 and 3 might be different from that of the channels
between Nodes 1 and Node 3 (e.g. due to the difference between the distances d1k and
d2k), resulting in non-negligible differences in their large-scaled (e.g. shadowing) and small-
scaled fading effects. This energy difference shall be presented by a factor r (r is a positive
real number) between |h2a| and |h1a|, i.e. |h2a| = r|h1a|. Both scenarios where r is either
a constant or a RV are considered in this paper.

• Beside, the phase difference between h2a and h1a might also exist, i.e. h2a = rejθ3h1a,
where θ3 ∼ U [θ3min, θ3max].

As a result, the correlated channels could be presented by the following relations

h1b = ejθ1h1a, h2b = ejθ2h2a, h2a = rejθ3h1a. (1)

If |h1a| is a Rayleigh distributed RV and r is a constant, it is easy to realize |h1b|, |h2a| and |h2b|
are also Rayleigh RVs. Further, these channels are mutually correlated. Particularly, from (1),
we have h2b = rej(θ2+θ3−θ1)h1b := rejθ4h1b, where θ4 := θ2 + θ3 − θ1. It is possible to prove that
θ4 can be approximated by a Gaussian RV. Specially, if θ1, θ2, and θ3 follow the distribution
U [−π/2, π/2], then θ4 ∼ N (0, 2.47). (The proof is not mentioned here due to the limited space.
Instead, the probability distribution function and histogram of the sum of three uniform RVs
each of which follows U [−π/2, π/2] is presented in Fig. 2(a) for illustration).

If we denote θ to be a uniformly distributed RV within the range [θmin, θmax], v a complex
Gaussian RV v ∼ CN (0, 1), z := ejθ, and w := ejθv, then the expected value E{z} is

E{z} =
ejθmax − ejθmin

j(θmax − θmin)
. (2)
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Fig. 2: (a) Probability distribution function (solid curve) and histogram of θ4; (b) Proposed
MRC-like receivers for source nodes and relay node in correlated fading TWRNs.

Since v ∼ CN (0, 1), we have E{v} = E{v∗} = 0 and var{v} = 1. Further

E{w} = E{vejθ} = E{v}E{ejθ} = 0, (3)

because v and θ are mutually independent. Therefore

var{w} = E{ww∗} − E{w}E{w∗} = E{vv∗} = 1. (4)

Correlation coefficient between w and v is defined as

ρ(w, v) =

∣∣∣∣E{wv∗} − E{w}E{v∗}√
var(w)var(v)

∣∣∣∣. (5)

From (3), (4), and (5), we have

ρ(w, v) = |E{wv∗}| = |E{vejθv∗}| = |E{vv∗}E{ejθ}| = |E{eiθ}|. (6)

From (2) and (6), we can write

ρ(w, v) =

∣∣∣∣
√

(cos θmax − cos θmin)2 + (sin θmax − sin θmin)2

θmax − θmin

∣∣∣∣. (7)

Thus two RVs v and w = vejθ have the same expected and variance values, and their correlation
is presented by the correlation coefficient in (7). Similarly, for w = rvejθ, where r is a positive
real coefficient, we have E{w} = 0 and var{w} = r2. The correlation between v and w is still
presented by the correlation coefficient in (7).

Applying (7), the correlation coefficients between the pairs of channels (h1a, h1b), (h2a, h2b),
and (h1a, h2a) are calculated as

ρl =

∣∣∣∣
√

(cos θlmax − cos θlmin)2 + (sin θlmax − sin θlmin)2

θlmax − θlmin

∣∣∣∣ (8)

for l ∈ {1, 2, 3}, respectively. Specially, if θlmax = −θlmin, (8) turns into

ρl =

∣∣∣∣sin(θlmax)

θlmax

∣∣∣∣ = |sinc(θlmax)|, (9)



By adjusting θlmin and θlmax, the mutual correlation coefficients between channels can be ad-
justed, and hence the desired correlation coefficients can be easily achieved.

Meanwhile, if we denote θ4 ∼ N (0, σ2
θ4
), it is possible to prove that the correlation coefficient

between (h1b, h2b) is calculated as

ρ4 = |ejµθ4
+ 1

2
j2σ2

θ4 | = |e−
1
2
σ2
θ4

+jµθ4 |. (10)

The novel presentation of correlated fading channels in the considered TWRN as mentioned
in (1) allows us to derive a novel detection technique for this multi-antenna physical network
coding TWRN in correlated fading channels as below.

MRC-Like Receiver For Correlated TWRNs

We denote x1 and x2 to be the modulated signals transmitted from Nodes 1 and 2 respec-
tively. BPSK modulation is used for the illustration of the proposed concept. Thus the possible
values of x1 and x2 are ±1. Received signals at the receive antennas of Node 3 are written as

za = h1ax1 + h2ax2 + wa, zb = h1bx1 + h2bx2 + wb,

where wa and wb are noise terms affecting the antennas a and b of Node 3. We consider the
following term

T =
za
(
h∗
1a + h∗

2a

)
|h1a|2 + |h2a|2︸ ︷︷ ︸

T1

+
zb
(
h∗
1b + h∗

2b

)
|h1b|2 + |h2b|2︸ ︷︷ ︸

T2

, (11)

where (.)∗ denotes the complex conjugate. We will then calculate the real part of the expectation
value E{T}, denoted as ℜ

{
E{T}

}
, with respect to (w.r.t) hik. If noise terms are omitted, T1

can be written as

T1 :=
P1

Q1
=

(
h1ax1 + h2ax2

)(
h∗1a + h∗2a

)
|h1a|2 + |h2a|2

+ wT1 =
|h1a|2x1 + |h2a|2x2 + h2ah

∗
1ax2 + h∗2ah1ax1

|h1a|2 + |h2a|2
+ wT1 ,

(12)

where P1 and Q1 present the numerator and denominator which are bivariate non-independent

RVs w.r.t hik, and wT1 =
wa

(
h∗
1a+h∗

2a

)
|h1a|2+|h2a|2 . It is well-known that E{T1} = E

{
P1

Q1

}
̸= E{P1}

E{Q1} even if

P1 and Q1 are independent RVs. Specifically, E{T1} can be estimated (see Eq.(4) in [14]) by a
second-order Taylor expansion around E{P1} and E{Q1} as follows

E

{
P1

Q1

}
≈ E{P1}

E{Q1}
− cov{P1, Q1}

(E{Q1})2
+

var{Q1}E{P1}
(E{Q1})3

(13)

Because Q1 is a positive real RV, we have

cov{P1, Q1} = E{(P1 − E{P1})(Q1 − E{Q1})∗} = E{P1Q1} − E{P1}E{Q1} (14)

For illustration, we assume the channel coefficients follow Eq.(1), h1a ∼ CN (0, 1), and θl ∼
U [−θlmin, θlmax] for l ∈ [1, 2, 3]. We could prove that

E{Q1} = 2, E{P1} = x1 + x2 + E{eiθ3}x2 + E{e−iθ3}x1,

E{P1Q1} = 4E{P1}. (15)

From (14) and (15), we have

cov{P1, Q1} = 4E{P1} − 2E{P1} = 2E{P1}. (16)



Table 1: Mapping from x1 + x2 to q1 ⊕ q2.
q1 q2 x1 x2 x1 + x2 q1 ⊕ q2
0 0 1 1 2 0
0 1 1 -1 0 1
1 0 -1 1 0 1
1 1 -1 -1 -2 0

Substitute (15) and (16) into (13), we have

E{T1} ≈ E{P1}
E{Q1}

− 2E{P1}
4

+
4E{P1}

8
=

E{P1}
E{Q1}

(17)

Clearly, from (17), E{T1} can be well approximated by E{P1}
E{Q1} when T1 is defined in (12) al-

though, in general, E{T1} ≠ E{P1}/E{Q1}.
Denote

Φ = E{|h1a|2 + |h1b|2} (18)

Ψ = E{h2ah
∗
1a}; Ω = E{h2bh

∗
1b}, (19)

where Φ is a positive real number and Ψ,Ω are complex numbers. Further, if the following
conditions are satisfied

E{|h1a|2 + |h1b|2} = E{|h2a|2 + |h2b|2}, (20)

E{|h1a|2 + |h2a|2} = E{|h1b|2 + |h2b|2} = Ξ, (21)

where Ξ is a positive real number, and given x1 and x2, from (17), we will have

E{T1} ≈ E{|h1a|2x1 + |h2a|2x2 + h2ah
∗
1ax2 + h∗

2ah1ax1}
E{|h1a|2 + |h2a|2}

=
E{|h1a|2x1 + |h2a|2x2}

Ξ
+
Ψx2 +Ψ∗x1

Ξ
.

(22)
Note that the condition (20) shall be guaranteed if channels follow (1) with r = 1, but not
strictly guaranteed if r ̸= 1. Both scenarios will be discussed in more detail in Section .

Similarly, we can write E{T2} in (11) as

E{T2} ≈ E{|h1b|2x1 + |h2b|2x2}
Ξ

+
Ωx2 + Ω∗x1

Ξ
(23)

From (22) and (23), we have

E{T} = E{T1}+ E{T2} ≈ Φ(x1 + x2) + (Ψ + Ω)x2 + (Ψ + Ω)∗x1

Ξ
.

This results in

ℜ
{
E{T}

}
=

[
Φ + ℜ{(Ψ + Ω)}

]
Ξ

(x1 + x2).

Alternatively, the superimpose waveform is

x1 + x2 =
Ξℜ

{
E{T}

}
Φ + ℜ{(Ψ + Ω)}

. (24)

From (24), by releasing the expectation operation in E{T}, Ψ and Ω, to account for the in-
stantaneous channel coefficient, we propose the estimate of (x1 + x2) as follows

x̂1 + x2 =
Ξℜ{T}

Φ + ℜ{h2ah∗
1a + h2bh∗

1b}
, (25)



where T is calculated by (11), and Φ and Ξ are calculated by (18) and (21) respectively.
If q1 (q2) denotes the original binary bit transmitted from Node 1 (Node 2) then, unlike the

conventional NC where q1 and q2 must be completely recovered from xa and xb at the relay
before the message q3 = q1 ⊕ q2 is broadcasted to Nodes 1 and 2, in PNC, q3 = q1 ⊕ q2 is
formed directly from x̂1 + x2. Table I shows the mapping from the superimposed signal x1+x2

to q1 ⊕ q2. Clearly, this is a multi-to-one mapping (e.g. x̂1 + x2 = 2 and x̂1 + x2 = −2 might be
both mapped to q3 = 0). Note that multi-to-one mapping is a well-known drawback of PNC.

We propose the following simple mapping rule

q1 ⊕ q2 =

{
0, if |x̂1 + x2| > Υ;
1, otherwise.

For the ease of comparison, the threshold Υ is selected to be the same as the optimal threshold
in the well-known LLR (Log-Likelihood Ratio) method [6], Υ = 1 + N0

2
ln(1 +

√
1− e−4/N0),

where N0 is the noise variance (Υ = 1.3443 for N0 = 1). In other words, the BPSK signal x3

should be directly created based on the following proposed mapping rule

x3 =

{
+1, if |x̂1 + x2| > Υ;
−1, otherwise.

where x̂1 + x2 is calculated by (25). The BPSK signal x3 will be now broadcasted through the
antennas a and b of Node 3 to Nodes 1 and 2. Since channels are reciprocal and block flat
fading, the channel coefficients from these antennas to Nodes 1 and 2 are still assumed to be
h1a, h2a, h1b and h2b. Received signals at Nodes 1 and 2 can be written as

z1 = h1ax3 + h1bx3 + w1, z2 = h2ax3 + h2bx3 + w2.

The estimate of x3, denoted as x̂3, will be created at Node 1 (Node 2) based on the following
MRC (Maximum Ratio Combining) rule

x̂3 =
z1(h

∗
1a + h∗

1b)

|h1a|2 + |h1b|2

(
or x̂3 =

z2(h
∗
2a + h∗

2b)

|h2a|2 + |h2b|2

)
(26)

The MRC-like detecting algorithms proposed in (11), (25) and (26) is shown more clearly in
Fig. 2(b).

The message q3 = q1⊕ q2 will be estimated, denoted as q̂1 ⊕ q2, by these nodes based on the
rule

q̂1 ⊕ q2 =

{
0, if x̂3 ≥ 0;
1, otherwise.

Finally, the message q2 (q1) transmitted from Node 2 (Node 1) will be received by Node 1 (Node
2) as

q̂1 = q2 ⊕ (q̂1 ⊕ q2); q̂2 = q1 ⊕ (q̂1 ⊕ q2)

The above analysis has been derived for a two-antenna relay. Generation for a multi-antenna
relay is straightforward.

Case Studies and Discussions

Case 1 : This case considers the channel conditions in (1) with r = 1, i.e.

h1b = ejθ1h1a, h2b = ejθ2h2a, h2a = ejθ3h1a, (27)



and θ1, θ2 and θ3 being independent uniform RVs following the distribution U [−π/2, π/2]. Note
that the below analysis also holds for an arbitrary range [θlmin, θlmax], for l ∈ [1, 2, 3].

From (27), we have
h2ah

∗
1a = ejθ3 , h2bh

∗
1b = ej(θ3+θ2−θ1). (28)

In our simulation, h1a ∼ CN (0, 1). From (18), (21) and (27), we have Φ = Ξ = 2. The proposed
estimate (25) becomes

x̂1 + x2 =
2ℜ{T}

[2 + cos(θ3) + cos(θ3 + θ2 − θ1)]

Discussion: Practically, the conditions (27) mean the differences in magnitudes of channel
coefficients due to small-scaled fading effects are negligible, and only phase differences are con-
sidered. The phase differences between each pair of channel coefficients are totally arbitrary.
A reasonable example is a satellite system where the distances from Node 3 to Nodes 1 and 2
are significantly larger than both the distances between two antennas at Node 3 and between
Nodes 1 and 2. In such a system, the distances dik (i ∈ {1, 2}, k ∈ {a, b}) can be consid-
ered to be roughly equal. It is recalled that, although Nodes 1 and 2 might be closer to each
other, compared to the relay, as the general assumption of network coding, these two nodes
cannot communicate directly with each other (e.g. due to obstruction, security, and/or network
administration issues).

Case 2 : We consider more generalized channel conditions as follows

h1b = ejθ1h1a, h2a = rejθ3h1a, h2b = ejθ2h2a = rej(θ3+θ2)h1a, (29)

where θl ∼ U [−π/2, π/2] for l ∈ [1, 2, 3] and r is an arbitrary positive real number. In this case,
if r ̸= 1, the condition (20) does not hold anymore since

|h1a|2 + |h1b|2 = 2|h1a|2; |h2a|2 + |h2b|2 = 2r2|h1a|2.

The difference between these two terms is presented by the term ∆ defined as

∆ =

∣∣∣∣(|h2a|2 + |h2b|2)− (|h1a|2 + |h1b|2)
|h1a|2 + |h1b|2

∣∣∣∣ = |r2 − 1|.

The term ∆ is referred to as the mismatch factor hereafter. Equivalently, we have r =
√
1±∆.

Without loss of generality, we could assume that r > 1, i.e. the energies of the channels between
Node 2 and Node 3 are assumed to be greater than those between Node 1 and Node 3, if ∆ > 0.
Alternatively, r can be calculated as

r =
√
1 + ∆. (30)

Discussion: Unlike Case 1, channel coefficients in (29) might have different magnitudes and
phases. A reasonable example could be a satellite system, where dik are significantly larger
than the antenna spacing dab at Node 3, and than the distances between Nodes 2 and 3, d2k
(k ∈ {a, b}), are considerably different from those between Nodes 1 and 3, d1k. In such a
system, it is reasonable to assume that |h1a| ≈ |h1b|, |h2a| ≈ |h2b| within the channel coherent
time window, thus if |h2a| = r|h1a|, then |h2b| = r|h1b|. The difference in the phases of the
pair h1a and h1b (or h2a and h2b) exists, while the difference in the magnitudes of this pair is
neglected. Clearly, this is a more generalized scenario than Case 1. Since the estimate (25) is
derived assuming that the condition (20) is guaranteed (i.e. r = 1 strictly), the estimate shall
perform poorer in this case, compared to the case r = 1. Different values of ∆ will be used to
present different mismatch levels in the condition (20) and the tolerance and robustness of the
proposed estimate will be evaluated accordingly via simulations.
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Fig. 3: Proposed algorithm vs. LLR [6]. Correlated channels are created based on (a) Eq.(27);
(b) Eq.(29) with a fixed mismatch factor ∆ = 30% and r is a random variable; and (c) Eq.(29)
with different mismatch conditions and r is a random variable.

Simulation Results

To illustrate the efficiency of the proposed mapping algorithm, Monte-Carlo simulations are
run for 10,000 binary bits transmitted from each source node over each among 100 channel
realizations. Channel coding used at nodes is a rate-1/2 convolutional encoder.

Fig. 3(a) presents the performances of the proposed mapping technique and of the well-
known LLR method [6] in both cases of completely independent channels as well as correlated
channels following (27) (i.e. r = 1, ∆ = 0). While the LLR method (dotted curve) works
relatively well in the case of independent channels, it performs poorly in the case of correlated
channels (marked solid curve). This is simply because the LLR method was not derived for the
case of correlated fading channels. The proposed MRC-like algorithm, on the contrary, performs
extremely well in this scenario. Its performance is even better than that of the LLR method in
the case of independent channels by approximate 2dB.

Fig. 3(b) presents the performance of the proposed algorithm when channel coefficients are
correlated following (29). The mismatch factor ∆ is assumed to be 30%, while r is a real
Gaussian RV (rather than a constant r = 1), r ∼ N (r̄, σ2

r), where r̄ is calculated by (30)
(i.e. r̄ = 1.14 for ∆ = 30%). The standard deviation values σr = 0, 0.15, 0.25, and 0.3 are
considered. Clearly, the proposed algorithm still outperforms the LLR algorithm in the same
channel conditions, though the former is slightly more sensitive to σr than the latter.

Similarly to Fig. 3(b), Fig. 3(c) illustrates the proposed algorithm in comparison with the
LLR method in correlated fading channels (29). However, different combinations of the pair of
mismatch level ∆ (10% or 50%) and standard deviation σr (0.1 or 0.2) are considered. It is
shown that, although the proposed estimate (25) is derived based on the condition (20) (i.e.
∆ = 0 - the total energy of the channels between Nodes 2 and 3 is assumed to be the same as
that between Nodes 1 and 3), the proposed algorithm is still very robust, compared to LLR,
even when this condition is not strictly guaranteed.

Conclusions

This paper examines TWRNs with: a) single-antenna source nodes and multi-antenna relay;
b) the distances between the source nodes and the antennas of the relay being significantly
larger than that between the antennas of the relay; and c) channels being reciprocal and block
flat Rayleigh fading ones and correlation existing between these channels. For such networks,
we have proposed for the first time the correlation model between fading channels, which



facilitates not only an easy way to generate correlated fading channels with certain correlation
coefficients, but also our derivation of a novel receiver design which outperforms the well-known
LLR algorithm [6]. Our future work would be the modification of the proposed algorithm to
tailor for higher density modulation constellations and for truly MIMO TWRNs.
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