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Abstract Abstract 
Background: b-amyloid (Ab) plaques in brain’s grey matter (GM) are one of the pathological hallmarks of 
Alzheimer’s disease (AD), and can be imaged in vivo using Positron Emission Tomography (PET) with 11C 
or 18F radiotracers. Estimating Ab burden in cortical GM has been shown to improve diagnosis and 
monitoring of AD. However, lacking structural information in PET images requires such assessments to 
be performed with anatomical MRI scans, which may not be available at different clinical settings or being 
contraindicated for particular reasons. This study aimed to develop an MR-less Ab imaging quantification 
method that requires only PET images for reliable Ab burden estimations. Materials and Methods: The 
proposed method has been developed using a multi-atlas based approach on 11C-PiB scans from 143 
subjects (75 PiB+ and 68 PiB- subjects) in AIBL study. A subset of 20 subjects (PET and MRI) were used 
as atlases: 1) MRI images were co-registered with tissue segmentation; 2) 3D surface at the GM-WM 
interfacing was extracted and registered to a canonical space; 3) Mean PiB retention within GM was 
estimated and mapped to the surface. For other participants, each atlas PET image (and surface) was 
registered to the subject’s PET image for PiB estimation within GM. The results are combined by subject-
specific atlas selection and Bayesian fusion to generate estimated surface values. Results: All PiB+ 
subjects (N = 75) were highly correlated between the MR-dependent and the PET-only methods with 
Intraclass Correlation (ICC) of 0.94, and an average relative difference error of 13% (or 0.23 SUVR) per 
surface vertex. All PiBsubjects (N = 68) revealed visually akin patterns with a relative difference error of 
16% (or 0.19 SUVR) per surface vertex. Conclusion: The demonstrated accuracy suggests that the 
proposed method could be an effective clinical inspection tool for Ab imaging scans when MRI images 
are unavailable. 
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Abstract

Background: b-amyloid (Ab) plaques in brain’s grey matter (GM) are one of the pathological hallmarks of Alzheimer’s
disease (AD), and can be imaged in vivo using Positron Emission Tomography (PET) with 11C or 18F radiotracers. Estimating
Ab burden in cortical GM has been shown to improve diagnosis and monitoring of AD. However, lacking structural
information in PET images requires such assessments to be performed with anatomical MRI scans, which may not be
available at different clinical settings or being contraindicated for particular reasons. This study aimed to develop an MR-less
Ab imaging quantification method that requires only PET images for reliable Ab burden estimations.

Materials and Methods: The proposed method has been developed using a multi-atlas based approach on 11C-PiB scans
from 143 subjects (75 PiB+ and 68 PiB- subjects) in AIBL study. A subset of 20 subjects (PET and MRI) were used as atlases: 1)
MRI images were co-registered with tissue segmentation; 2) 3D surface at the GM-WM interfacing was extracted and
registered to a canonical space; 3) Mean PiB retention within GM was estimated and mapped to the surface. For other
participants, each atlas PET image (and surface) was registered to the subject’s PET image for PiB estimation within GM. The
results are combined by subject-specific atlas selection and Bayesian fusion to generate estimated surface values.

Results: All PiB+ subjects (N = 75) were highly correlated between the MR-dependent and the PET-only methods with
Intraclass Correlation (ICC) of 0.94, and an average relative difference error of 13% (or 0.23 SUVR) per surface vertex. All PiB-
subjects (N = 68) revealed visually akin patterns with a relative difference error of 16% (or 0.19 SUVR) per surface vertex.

Conclusion: The demonstrated accuracy suggests that the proposed method could be an effective clinical inspection tool
for Ab imaging scans when MRI images are unavailable.

Citation: Zhou L, Salvado O, Dore V, Bourgeat P, Raniga P, et al. (2014) MR-Less Surface-Based Amyloid Assessment Based on 11C PiB PET. PLoS ONE 9(1): e84777.
doi:10.1371/journal.pone.0084777

Editor: Karl Herholz, University of Manchester, United Kingdom

Received July 26, 2013; Accepted November 18, 2013; Published January 10, 2014

Copyright: � 2014 Zhou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Core funding for the AIBL study was provided by the CSIRO (http://www.csiro.au/) Flagship Collaboration Fund and the Science and Industry
Endowment Fund (SIEF http://www.sief.org.au/) in partnership with Edith Cowan University (https://www.ecu.edu.au/), Florey neuro-sciences and Mental Health
Research institutes (http://www.florey.edu.au/), Alzheimer’s Australia (http://www.fightdementia.org.au/), National Age-ing Research Institute (http://www.mednwh.
unimelb.edu.au/), Austin Health (http://www.austin.org.au/), CogState Ltd. (http://cogstate.com/), Hollywood Private Hospital (http://www.hollywood.
ramsayhealth.com.au/), Sir Charles Gardner Hospital (http://www.scgh.health.wa.gov.au/). The AIBL study also receives funding from the National Health and
Medical Research Council (http://www.nhmrc.gov.au/), the Dementia Collaborative Research Centers program (http://www.fightdementia.org.au/victoria/
dementia-collaborative-research-centres-1.aspx), The McCusker Alzheimer’s Research Foundation (http://alzheimers.com.au/) and Operational Infrastructure
Support from the Government of Victoria (http://www.vic.gov.au/), Australia. Pfizer International (http://www.pfizer.com.au/default.aspx) has contributed financial
support to AIBL to assist with analysis of blood samples and to further the AIBL research program. The funders had no role in study design and data analysis,
decision to publish, or preparation of this manuscript.

Competing Interests: Luping Zhou, Olivier Salvado, Vincent Dore, Pierrick Bourgeat, Victor L. Villemagne, Christopher C. Rowe, Jurgen Fripp might be listed as
co-inventor in a patent that has been lodged describing a technology using techniques described in this manuscript. The authors’ patent application name is:
Method and apparatus for the assessment of medical images. The patent application number is: PCT/AU2012/001536. More information could be found from this
link: http://www.google.com/patents/WO2013086580A1?cl = en CogState Ltd. (http://cogstate.com/), Hollywood Private Hospital (http://www.hollywood.
ramsayhealth.com.au/) and Sir Charles Gardner Hospital (http://www.scgh.health.wa.gov.au/) have contributed to the financial support of AIBL study through
the partnership with the Science and Industry Endowment Fund (SIEF http://www.sief.org.au/). Pfizer International (http://www.pfizer.com.au/default.aspx) has
contributed financial support to AIBL to assist with analysis of blood samples and to further the AIBL research program. There are no further patents, products in
development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials, as detailed
online in the guide for authors.

* E-mail: lupingz@uow.edu.au

" Membership of the AIBL Research Group is provided in the Acknowledgments.

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e84777



Introduction

b-amyloid (Ab) plaques are one of the neuropathological

hallmarks of Alzheimer’s disease (AD), which starts accumulating

several years before the clinical phenotype of dementia is

manifested [5], [32–33]. The development of molecular imaging

agents allows assessing Ab deposition in vivo. The most widely

used Ab imaging radiotracer is Pittsburgh Compound B (11C-PiB),

which binds with high affinity and high specificity to Ab plaques

[15]. It has been shown that AD patients tend to have 50% to 90%

higher PiB retention than age-matched normal controls in cortical

brain regions such as frontal, precuneus, parietal and temporal

cortices [40], [26], [20], [8]. High PiB retention has also been

found in mild cognitive impairment (MCI) [14], and faster MCI

converters had higher PiB retention than slower converters [21].

The main brain tissues: grey matter (GM), white matter (WM),

and cerebrospinal fluid (CSF) have different degrees of PiB

retention. For example, cortical GM has marked PiB retention in

AD patients, while a much faster clearance is observed in normal

controls. On the other hand WM has non-specific retention but a

much slower clearance in both AD and normal controls [15], [9].

Recent research [39] indicated that the spatial pattern of

amyloid deposition is related to cognitive performance and may be

more informative than the biomarker of total amyloid burden.

Significantly increased PiB uptake in AD patients in the middle

frontal gyrus, posterior cingulated cortex and inferior parietal lobe

were also found good discriminators for differentiating AD

patients from normal controls [17]. Therefore, the visualization

of spatial patterns of PiB uptake would be a valuable clinical tool.

The cortical surface based visualization could provide a more

compact representation of PiB uptake than the traditional image

based visualization, which is more convenient for instant

inspections by clinicians. Similar tools are widely used to assess

glucose metabolism with Fluorodeoxyglucose (FDG-PET), and a

good example is Neurostat (NeuroStat/3D-SSP: http://128.95.65.

28/_Download). These tools benefit from the fact that FDG

uptake in the WM is very low compared to that of the GM, and

therefore a straightforward sum or maximum projection is

sufficient to estimate the GM uptake on the cortical surface. This

assumption does not hold for most Ab imaging radiotracers,

including PiB, which have significant retention in the WM, and

therefore the 3D surface separating WM and GM is not well-

defined and has to be estimated. This problem is compounded by

the observations that individuals with low PiB retention show a

lower signal in the GM than in the WM as opposed to individuals

with high PiB retention where the GM signal is higher than the

one in the WM. Those issues are very challenging as PET imaging

lacks anatomical details and resolution to distinguish the GM/

WM interface. As a result, Magnetic Resonance Imaging (MRI) is

often used for the correct sampling of GM regions [38], [10], [13].

This involves segmenting the brain into GM and WM masks, and

extracting the separating surface. This surface is then registered to

the subject PET scan where GM PiB retention can be measured

and displayed.

In standard clinical setups, when PET Ab imaging scans are

visually assessed, MRI scans are not always available (e.g. different

system, MRI scan done later) or might be contraindicated (e.g.

presence of metallic implants, claustrophobia, pathological trem-

or). This paper proposes a method to estimate the PiB retention on

the cortical surface without the need of an MRI scan. Our

proposed ‘‘PET-only’’ approach is compared to the standard

method where MRI is available, which we refer to as the MRI-

dependent method.

A PET-only method was reported in [16]. It employed a single

MRI atlas with segmented tissues, co-registered to a PET atlas

from the same subject. When a new subject PET was registered to

the PET atlas, the MRI atlas could be aligned using the same

transform to estimate the GM. The maximal PiB retention within

the subject GM was measured along the normal direction of the

brain surface. The selection of that single atlas remains an issue

and may affect the performance of the method.

We hypothesize that using multiple atlases and a probabilistic

estimation of the GM would allow PiB retention to be estimated

accurately so that acquiring an additional MRI is unnecessary. We

extend this concept by allowing spatially ‘‘local’’ atlas selection,

where the selected atlases are locally combined at each brain

surface location using a Bayesian framework to improve the

posterior probability of the estimation. This essentially provides a

localized linear weighting for each atlas. In addition, we introduce

a ‘‘soft’’ tissue probability map to locally guide the estimation of

the PiB retention. With these strategies, the PiB retention can be

estimated directly from the PET image alone, without explicit

segmentation of grey matter.

In this study, we do not evaluate the estimated PiB uptake to

classify AD from NC as it has already been reported that the

spatial pattern of grey matter PiB uptake (with the use of MRI)

could be employed for classifying the risk of developing AD [17],

and different classification schemes bring different classification

accuracies. Such a divergence would not inform on the accuracy of

our proposed PiB estimate method. Instead, we focus on validating

the agreement of the proposed PET-only method with the

traditional MR-dependent method. As long as the estimation

discrepancy of the two methods is minimized, classification

schemes that are applicable to PiB uptake estimated by the MR-

dependent method can be potentially transported to that by the

PET-only method.

Materials and Methods

Ethics Statement
All the data were obtained from the Australian Imaging

Biomarkers and Lifestyle study [7]. The complete listing of

AIBL investigators is available at. Core funding for the AIBL study

was provided by the CSIRO (http://www.csiro.au/) Flagship

Collaboration Fund and the Science and Industry Endowment

Fund (SIEF http://www.sief.org.au/) in partnership with Edith

Cowan University (https://www.ecu.edu.au/), Florey neurosci-

ences and Mental Health Research institutes (http://www.florey.

edu.au/), Alzheimer’s Australia (http://www.fightdementia.

org.au/), National Ageing Research Institute (http://www.

mednwh.unimelb.edu.au/), Austin Health (http://www.austin.

org.au/), CogState Ltd. (http://cogstate.com/), Hollywood Pri-

vate Hospital (http://www.hollywood.ramsayhealth.com.au/),

Sir Charles Gardner Hospital (http://www.scgh.health.wa.gov.

au/). The AIBL study also receives funding from the National

Health and Medical Research Council (http://www.nhmrc.gov.

au/), the Dementia Collaborative Research Centers program

(http://www.fightdementia.org.au/victoria/dementia-collaborative-

research-centres-1.aspx), The McCusker Alzheimer’s Research

Foundation (http://alzheimers.com.au/) and Operational Infra-

structure Support from the Government of Victoria (http://

www.vic.gov.au/), Australia. Pfizer International (http://www.

pfizer.com.au/default.aspx) has contributed financial support to

AIBL to assist with analysis of blood samples and to further the

AIBL research program.
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Participants
PiB scans from 143 subjects from the AIBL study were used.

The AIBL dataset is available online in LONI image data archive

(https://ida.loni.ucla.edu/login.jsp?project = AIBL).These subjects

underwent both MR and PiB-PET scans at the Austin Hospital

(Melbourne). Approval for the study was obtained from the

Austin Health Human Research Ethics Committee and St

Vincent’s Health Research Ethics Committee, and written

informed consent for participation was obtained for each subject

prior to the scans.

T1-weighted MRI were obtained using the ADNI magnetiza-

tion prepared rapid gradient echo protocol at 3T, with in-plane

resolution 161 mm and 1.2 mm slice thickness. The PiB-PET

scans were acquired using an Allegro PET camera (Phillips,

Amsterdam, the Netherlands). Each participant was injected with

370 MBq of 11C-PiB, and a 30-minute acquisition in 3D mode

was performed starting 40 minutes after injection (665-minute

frames). A transmission scan was performed for attenuation

correction. PET images were reconstructed using a 3D RAMLA

algorithm. More description about the PET imaging was given in

[26].

All 143 subjects were categorized into either PiB+ (‘‘AD-like’’)

or PiB- (‘‘Control-like’’) groups according to their neocortical

standard uptake value ratio (SUVR). SUVR is defined as the ratio

of the regional brain PiB retention to the average of cerebellar

cortex area [24], [18], [12]. In this study, the neocortical SUVR

value was summarized using the mean SUVR in the GM masked

neocortical region composed of the frontal, superior parietal,

lateral temporal, occipital and anterior and posterior cingulated

regions of the AAL ROI atlas [35]. This is consistent with [27]

where similar ROIs were used for SUVR computation for the

AIBL dataset. Following [27], subjects with neocortical SUVR

greater than 1.5 were labeled PiB+ and those with neocortical

SUVR equal or less than 1.5 were labeled PiB-. The cut-off value

of 1.5 was also used by in [11], [30]. In order to get a more

detailed assessment, each image group is further subdivided into

those PiB- with a neocortical SUVR above and below 1.3, and

those PiB+ with a neocortical SUVR above and below 2.0. The

demographic information about the subjects is presented in

Table 1. They include 38 AD subjects, 37 MCI subjects, 65

normal control subjects, and 3 unclassified subjects.

We sorted all subjects according to their SUVRs and uniformly

sampled a subset of 20 cases (with both MRI and PET images)

from the sorted list as an atlas set. In this way, the atlas set was

drawn from the full range of PiB SUVR (Table 2). The atlas set

includes 5 AD subjects, 5 MCI subjects, and 10 normal control

subjects.

Methods
An overview of the method is shown in Figure 1 and briefly

described here.

For each new subject (without MRI),

N 1)Align priors: the PET image was aligned to each atlas PET

image (Section ‘‘Affine registration of PET images’’), which

includes a GM tissue probability, and a cortical surface. The

generation of these atlases is described in Section ‘‘Atlas

generation’’.

N 2)Locally and adaptively select optimal M atlases for each

cortical location (Section ‘‘Local atlas selection’’).

N 3)Generate consensus PiB estimate for each region using a

Bayesian framework (Section ‘‘Surface-based estimation by

multi-atlas fusion’’).

The final output from this approach is a cortical surface (with

atlas correspondence) with each vertex encoding the raw PiB

retention estimation for that location.

This surface can then be SUVR normalized [24], [4] and used

in visual reading (e.g. for clinical diagnosis) or used in population

studies.

Atlas generation. The atlas set comprised twenty subjects

with both PET and MR images (the atlases). All the atlases images

were spatially normalized in two steps i) rigid registration [22]

between the PET and MR images of the same subject; and ii) a

non-linear registration [28] between the MR images of different

subjects to the MNI space [19]. The aligned MRI images were

further segmented into GM, WM and CSF tissue maps by the

implementation of the segmentation algorithm in [2] with

topological constraints that force the GM to be a continuous

layer covering the WM [29]. GM segmentation was also

topologically corrected in deep sulci [29]. A surface between

GM and WM was computed using an expectation maximization

scheme [2]. The cortical correspondence among the population of

GM-WM atlas surfaces was computed using a multi-scale non–

rigid surface registration EM-ICP algorithm [6]. An arbitrary

surface was selected as the reference, with all other atlas surfaces

registered and resampled. Each surface mesh consisted of 81922

vertices.

Affine registration of PET images. Each subject PET

image was aligned to the 20 PET atlases using an affine

registration based on block matching of feature points in PET

images [22]. This method iteratively pairs image blocks, computes

the corresponding transformation via maximizing normalized

cross correlation, and then transforms the feature points accord-

ingly until convergence. After registration, the surface and the

probability maps were propagated into subject space.

Table 1. Demographic information.

SUVR ,1.3 1.3,1.5 1.5,2.0 .2.0 PiB- PiB+

Number of subjects Total (Female) 36 (21) 32 (14) 17 (11) 58 (26) 68 (35) 75 (37)

Age mean (STD) 74.2 (6.5) 73.2 (7.2) 70.4 (12.3) 76.1 (8.6) 73.7 (6.8) 74.8 (9.8)

MMSE mean (STD) 28.2 (2.0) 27.7 (2.7) 25.8 (3.5) 25.4 (5.1) 27.9 (2.4) 25.5 (4.8)

doi:10.1371/journal.pone.0084777.t001

Table 2. SUVR of Atlases.

SUVR ,1.3 1.3,1.6 1.6,2.0 .2.0 PiB- PiB+

No. of Atlases 4 5 3 8 9 11

doi:10.1371/journal.pone.0084777.t002

MR-Less Surface-Based Amyloid Assessment
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Local atlas selection. To account for differences between

the subject and the 20 atlases, only 10 atlases were selected using

local matching. For each surface vertex, PET image similarity

between the subject and an atlas was computed in a 30630630

(voxels) neighborhood by normalized mutual information (NMI)

[31]. The ten most similar atlas PET images were selected to

generate the final estimation at each vertex via a Bayesian fusion

scheme explained in the next section.

Surface-based estimation by multi-atlas fusion. Given a

PET image I xð Þ, where x denotes an image voxel, we aimed at

measuring the mean PiB retention in grey matter along the normal

direction of the transformed atlas surface ST. That equals to

estimate the expectation Ex[D d I,x,lð Þ½ �, where d I,x,lð Þ is an

indicator function:

d I,x,lð Þ~
I xð Þ, forl~1

0, elsewhere:

�

The symbol D denotes the intersection of the line along the

normal direction of a surface vertex v and the PET image I. The

symbol l is the tissue label, representing GM, WM and CSF with

the values of 1, 2 and 3, respectively. Taking discrete probability,

we have

Ex[D d I,x,lð Þ½ �~
X
x[D

I xð ÞP l~1DI,xð ÞP I,xð Þ: ð1Þ

Assuming that x is evenly sampled from D, the probability

P I,xð Þ~ 1
Dj j, where |D| is the length of D. The posterior label

probability P lDI,xð Þ was estimated from the transformed atlases

AT
i (i = 1 ? ? ? n, with n the number of atlases selected in Section

‘‘Local atlas selection’’ by marginalizing the joint probability

P l,AT
i DI,x

� �
:

P lDI,xð Þ~
Xn

i~1

P l,AT
i DI,x

� �
~
Xn

i~1

P lDAT
i ,I,x

� �
P AT

i DI,x
� �

: ð2Þ

P lDAT
i ,I,x

� �
represents the probability for the voxel x to be GM

in the transformed atlas AT
i , which was obtained in our case from

the transformed atlas probability maps. The probability

P AT
i DI,x

� �
measures the probability of the voxel x to be well

aligned between the test image I and the transformed atlasAT
i .

In our approach, P AT
i DI,x

� �
was set proportional to the

reciprocal of the metric of normalized mutual information

estimated locally within the neighborhood N xð Þ of x. That is,

Figure 1. Overview of the proposed method.
doi:10.1371/journal.pone.0084777.g001
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P AT
i DI,x

� �
~P AT

i DI,N xð Þ
� �

. As mentioned in Section ‘‘Local atlas

selection’’, the size of N xð Þ should be large to avoid fitting noise

but small enough to fit local information. In our approach, N xð Þ
was set to be 30630630 (voxels), covering all the voxels along the

line D. Therefore, P AT
i DI,N xð Þ

� �
was constant with respect to the

variable x (x M D).

Combining (1) and (2), we have

Ex[D d I,x,lð Þ½ �~ 1

Dj j
X
x[D

I xð ÞP l~1DI,xð Þ

~
1

Dj j
X
x[D

I xð Þ
Xn

i~1

P l~1DAT
i ,I,x

� �
P AT

i DI,x
� � !

~
Xn

i~1

P AT
i DI,N xð Þ

� � 1

Dj j
X
x[D

I xð ÞP l~1DAT
i ,I,x

� � !
: ð3Þ

Equation (3) shows the additive property for the estimation of

the mean PiB retention at each surface vertex: the estimation from

multiple atlases can be attained by independent estimation from

each single atlas and then linearly combined in a weighted scheme.

The combination weights P AT
i DI,N xð Þ

� �
reflect the alignment

between the test image and the transformed atlasAT
i . As the

alignment is assessed by local metric, such a combination is

nonlinear for the whole surface. This additive property is

important for our approach where the atlas set needs to be

dynamically determined. It makes the switch of selected atlases

easy by confining the changes to the affected atlases only, thus

being computationally efficient.

SUVR Normalization. PiB retention was normalized using

SUVR [24], [18], [12]. The intensity values I xð Þ in the original

PET image were homogeneously scaled by a parameter k. As NMI

matches structures instead of intensity values, P AT
i DI,N xð Þ

� �
is

invariant to k, and so is the GM probability P l~1DAT
i ,I,x

� �
.

Thus, we have

Ex[D d I,x,lð Þ½ �~k
Xn

i~1

P AT
i DI,N xð Þ

� � 1

Dj j
X
x[D

I xð ÞP l~1DAT
i ,I,x

� � !
, ð4Þ

where k is determined by SUVR. Eqn. (4) shows that when

SUVR changes, our estimation (3) can be simply scaled by the

parameter k. Methods to perform PET-only SUVR normalization

were proposed in [24], [4], which can segment the cerebellum in

PET images without MRI.

Surface Visualization. AD patients usually have higher Ab
burdens than the healthy population. Such difference can be

converted into z-scores based on the mean and standard deviation

of the Ab burden in PiB- healthy subjects. To facilitate clinical

inspection, surface based z-score maps were generated, so that the

unusual Ab accumulation could be immediately identified and

localized. Once the z-score maps were computed for each subject,

the left and right hemispheres were assembled and visualized from

six perspectives to generate a clinician friendly report.

Validation
The proposed method was compared to the MRI-dependent

method, which is illustrated in Figure 2. The MRI image of each

subject was segmented into three tissues of GM, WM and CSF

(same as in the proposed method). The surface of MRI GM/WM

interface was extracted and registered with the atlas surfaces using

the multi-resolution EM-ICP method as described in Section

‘‘Atlas generation’’. The subject surface (used in MRI-dependent

method) and the atlas surface (used in the proposed PET-only

method) share the same number of corresponding vertices

allowing direct comparison. PiB retention was measured along

the normal directions of the subject surface and averaged within

the MRI GM mask. The obtained mean PiB retention was

mapped onto the subject surface and visualized as in the proposed

method.

The difference in PiB estimation between the MRI-dependent

and the proposed methods was measured by absolute values (abs)

or ratios (%) averaged over the total subjects. Such measurements

were conducted at both the vertex and the Region of Interest

(ROI) levels. In other words, at the vertex level we took each

vertex as the comparison unit, while at the ROI level we took each

ROI as the comparison unit. The ROIs were those from [35],

which were mapped onto the MRI.

More specifically, two errors were computed:

MeanVar absð Þ~
PN

i~1

P Vj j
v~1 EMRI

i,v {EPET
i,v

�� ��
N| Vj j ,

MeanVar %ð Þ~
2
PN

i~1

P Vj j
v~1 EMRI

i,v {EPET
i,v

�� ��=(DEMRI
i,v zEPET

i,v )

N| Vj j ,

where i is the index of a subject, and EMRI
i,v and EPET

i,v are the

corresponding estimations at the v-th vertex. The value of Vj j is

set to the total number of vertices within the scope of the

comparison that could be either the whole surface or a specific

ROI.

Similarly, at the ROI level, two errors were computed:

MeanVar absð Þ~
PN

i~1

P Rj j
j~1 REMRI

i,j {REPET
i,j

��� ���
N| Rj j ,

MeanVar %ð Þ~
2
PN

i~1

P Rj j
j~1 REMRI

i,j {REPET
i,j

��� ���=(DREMRI
i,j zREPET

i,j )

N| Rj j ,

where j is the index of an ROI, and Rj j is the total number of the

involved ROIs. If the comparison is conducted for a specific ROI, we set

Rj j~1. Here REMRI
i,j and REPET

i,j represent the averaged estimations for

the j-th ROI, which were computed as

REi,j~

P Rj

�� ��
v~1 Ei,v

Rj

�� �� ,
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where Ei,v is defined as before, the estimation at the v-th vertex

of the i-th subject. Rj

�� �� is the size (the number of vertices) of the

j-th ROI.

Z-score estimation was validated at each surface vertex by

comparing the estimations from the MRI-dependent and the

PET-only methods. The z-score of an estimation at the v-th vertex

of the i-th subject was computed by

Zscorei,v~
Ei,v{mv

sv

,

where mv is the mean and sv is the standard deviation of the

estimations at the v-th vertex from the PiB- normal subjects. Z-

score maps were used to detect the deviation of a subject from an

asymptomatic control group using the MRI-dependent estimation

of PiB retention. To calculate the z-scores of a new subject, mv and

sv were computed over all 67 PiB- normal subjects in our data set

(removing the new subject if it were PiB-). That is, for the i-th PiB-

normal subject, we assumed that the ground truth were known for

all except the i-th PiB- normal subjects, and computed the mv and

sv over these subjects. Although slightly different for different PiB-

normal subjects, the same mv and sv were used when computing

ZscoreMRI
i,v and ZscorePET

i,v for a given subject i, cancelling its

influence when computing ZscoreMRI
i,v {ZscorePET

i,v : The mean

and the standard deviation (STD) of the z-score differences

between the two methods were calculated as

MeanDiffzscore~

PN
i~1

P Vj j
v~1 ZscoreMRI

i,v {ZscorePET
i,v

�� ��
N| Vj j ,

STDDiffzscore~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i~1

P Vj j
v~1 ZscoreMRI

i,v {ZscorePET
i,v

�� ��
Vj j {MeanDiffzscore

 !2
vuut :

As defined above, N is the number of total subjects and Vj j the

number of total surface vertices.

Results

In the following sections, results were presented by using the

MRI-dependent assessment as the ground truth. We demonstrated

the accuracy of the PET-only method for both PiB retention

estimation and z-score map estimation. Our proposed method was

also compared to a naive single-atlas based PET-only method

similar to that in [16]. In order to evaluate the performance of the

proposed Ab estimation method, the results presented used the

Figure 2. Illustration of the MRI-dependent method. The PiB retention is measured in the PET image within its grey matter mask obtained from
MRI tissue segmentation, and averaged along the normal direction of the GM-WM interface (overlaid on the PET image) extracted from the subject’s
MRI. The mean PiB value for each surface vertex is mapped onto the surface for visualization.
doi:10.1371/journal.pone.0084777.g002
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Figure 3. Visual Inspection for PiB measurements. Surface-based PiB measurements from the MRI-dependent method (the top row) and the
proposed method (the bottom row) for four examples: (a) AD, (b) PiB+ NC, (c) PiB+ NC, and (d) PiB- NC.
doi:10.1371/journal.pone.0084777.g003
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same MR-based SUVR normalization for both the MRI-

dependent and the PET-only methods.

Comparison of PiB Retention Estimation
Visual inspection. Figure 3 shows four representative

examples displaying the MRI-dependent (top row) and the PET-

only (bottom row) methods: one PiB+ AD patient, one PiB+ NC

(normal control) with high PiB retention, one PiB+ NC with low

PiB retention, and one PiB- NC. The two methods present visually

similar results for each subject.

Quantitative comparison. Quantitative analysis results are

summarized in Table 3 and Table 4.

In Table 3 and Table 4, ‘‘Mean MRI’’ and ‘‘Mean PiB’’ are the

mean ROI PiB retention estimated by the MRI-dependent and

PET-only methods respectively. The estimation differences (mean

VAR) are measured at both ROI and vertex level, as shown in the

tables. The Pearson correlation and the intra-class correlation

(ICC) are computed by correlating the estimations from the two

methods at each vertex, respectively.

The PiB+ group had lower VAR ratio (2.1561.5% for ROI,

13.461.2% for vertex) than the PiB2 group (3.662.3% for ROI,

16.661.5% for vertex), as well as attaining higher Pearson

correlation/ICC (0.74/0.94) than the PiB- group (0.42/0.72).

This difference was expected, because the PiB2 group has

minimal PiB retention, a reduced dynamic range and is therefore

more susceptible to noise. The accuracy in the PiB2 group

allowed identifying similar patterns to the MRI-dependent method

(Figure 4 (d)), with an absolute VAR of 0.0460.03 for ROI, and

0.1960.02 for vertex. We also found that our estimation errors for

both groups were close to the reported reproducible errors of PiB

quantification using 30 min imaging [1] (cited in Table 3 and

Table 4).

In addition to the selected ROIs listed in Table 3 and 4, the

vertex-based mean estimation error (in ratio) and the mean

Table 3. Comparison between MRI-dependent and PET-only methods for PiB+ group (averaging over 123 subjects that are not
included in the atlas set).

All
Lateral Frontal
Cortex

Occipital
Cortex

Lateral Temporal
Cortex Parietal Cortex

Posterior
Cingulate Putamen

Mean MRI 1.8760.27 1.8760.28 1.8660.27 1.8760.27 1.8660.27 1.8860.28 1.8360.26

Mean PiB 1.8460.25 1.8560.25 1.8360.25 1.8460.25 1.8460.25 1.8560.25 1.8160.24

ROI

Mean VAR (abs) 0.0460.03 0.0460.03 0.0460.03 0.0460.03 0.0460.03 0.0560.04 0.0460.03

Mean VAR (%) 2.1561.5 2.2661.6 2.1361.5 2.0861.4 2.1161.5 2.4261.7 2.0461.4

*Cited Mean VAR (%) - 3.9 3.7 3.3 3.7 4.9 5.1

Vertex

Mean VAR(abs) 0.2360.04 0.2360.04 0.2360.04 0.2260.04 0.2360.04 0.2360.04 0.2360.04

Mean VAR (%) 13.461.2 13.461.2 13.361.2 13.161.2 13.461.2 13.561.5 13.661.6

Pearson Corr (R) 0.7460.06 0.7360.06 0.7460.06 0.7560.06 0.7460.06 0.7460.07 0.7560.07

ICC 0.94 0.94 0.94 0.94 0.94 0.94 0.94

*Cited ICC - 0.95 0.94 0.97 0.94 0.88 0.89

doi:10.1371/journal.pone.0084777.t003

Table 4. Comparison between MRI-dependent and PET-only methods for PiB- group (averaging over 123 subjects that are not
included in the atlas set).

All
Lateral Frontal
Cortex Occipital Cortex

Lateral Temporal
Cortex Parietal Cortex Posterior Cingulate Putamen

Mean MRI 1.1560.08 1.1560.08 1.1660.08 1.1560.08 1.1660.08 1.1660.09 1.1560.09

Mean PiB 1.1960.08 1.1960.08 1.1960.08 1.1960.08 1.1960.08 1.1960.08 1.1960.08

ROI

Mean VAR (abs) 0.0460.03 0.0460.03 0.0460.03 0.0460.03 0.0460.03 0.0460.03 0.0560.03

Mean VAR (%) 3.6062.3 3.6362.4 3.4262.1 3.4862.2 3.4662.4 3.2262.3 3.8162.4

*Cite Mean VAR (%) - 2.7 3.2 2.5 2.0 0.9 4.1

Vertex

Mean VAR(abs) 0.1960.02 0.1960.02 0.1960.02 0.1860.02 0.1960.02 0.1960.02 0.1960.02

Mean VAR(%) 16.361.7 16.361.2 16.261.6 16.161.6 16.561.7 16.361.7 16.561.8

Pearson Corr (R) 0.4260.1 0.4260.1 0.4360.1 0.4260.1 0.4160.1 0.4360.1 0.4160.1

ICC 0.72 0.72 0.72 0.72 0.71 0.76 0.68

*Cited ICC - 0.73 0.75 0.69 0.59 0.75 0.66

doi:10.1371/journal.pone.0084777.t004

MR-Less Surface-Based Amyloid Assessment

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e84777



correlation at each AAL ROI [35] are also presented in Figure 4

and Figure 5, respectively. The results were visualized on an

inflated template surface for easier interpretation. The PiB+ group

had lower errors and higher correlations consistently in all AAL

ROIs.

To remove the ambiguity of invariance to linear transforma-

tions existing in Pearson correlation, the intra-class correlation

(ICC) was also computed by correlating all the mean PiB

estimations (averaged over all subjects in the PiB+ and PiB-

groups, respectively) at each surface vertex between the two

methods. The ICCs for all AAL ROIs are presented in Figure 6.

The corresponding full and short ROI names are given in File S1.

The ICC is homogeneous and greater than 0.9 for ROIs in the

PiB+ group, while still reaching 0.7 in average for the PiB- group

despite the low signal of this group.

Comparison of Z-score Estimation
The estimated z-scores at each surface vertex were compared

between the MRI-dependent and the PET-only methods. The

Figure 4. Vertex-based mean estimation errors (ratio) in each AAL ROI. The errors are visualized on an inflated template brain surface for
both PiB+ and PiB- groups. There are higher estimation error ratios for PiB- group than for PiB+ group, due to the minimal amount of retention and
the reduced dynamic range of PiB- group. The mean absolute estimation error (vertex-based) is 0.1960.03 for PiB- group and 0.2360.04 for PiB+
group as reported in Table 3 and Table 4.
doi:10.1371/journal.pone.0084777.g004

Figure 5. Mean correlations between PET-only and MRI-
dependent methods over AAL ROIs. The correlations are visualized
on inflated template brain surface for both PiB+ and PiB- groups.
doi:10.1371/journal.pone.0084777.g005

Figure 6. Intra-class correlation over AAL ROIs between PET-
only and the MRI-dependent methods. Red line is for the PiB+
group and green line is for the PiB- group. To improve clarity, not all ROI
names are shown in the graph.
doi:10.1371/journal.pone.0084777.g006
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z-score difference and the Pearson correlation were computed and

presented in Table 5. Similarly to the PiB retention estimation, the

z-scores for PiB+ group from the PET-only method agreed well

with that from the MRI-dependent method with a mean

difference of 0.94 per vertex and a standard deviation of 0.2,

and a Pearson correlation R = 0.81. The PiB- group was found to

have a mean z-score difference of 0.71 per vertex and a standard

deviation of 0.1, and a Pearson correlation R = 0.4 between the

PET-only and the MRI-dependent estimations.

For a visual comparison, Figure 7 and Figure 8 display the mean

z-scores averaged over the PiB+ AD group and the PiB- NC

group, respectively. It can be seen that the z-scores for both PiB+
and PiB- groups are similar between the two methods. Two

individual examples are given in Figure 9 and Figure 10, where

similar levels and pattern of PiB retention can be observed.

Comparison of Multiple Atlas vs. Single Atlas
To demonstrate the advantage of using multiple atlases, the

average estimation error ratios for each subject and the

correlations with the MRI-dependent method were compared

between using any randomly selected single-atlas approaches and

the proposed multiple-atlas approach. The results were plotted in

Figure 11. The red line corresponds to the result from the

multiple-atlas approach, and the ten other lines correspond to ten

single-atlas approaches. The estimation from the multiple-atlas

approach consistently exhibits significantly lower average estima-

tion errors and higher correlations over the 123 test subjects

compared to the best results obtained using any single atlas.

Moreover, the estimation error ratios and the correlations are

further broken into surface ROIs according to the AAL atlas to

explore the local estimation performance. Within each ROI, the

estimation error ratio and the correlation are averaged over all the

subjects in PiB+ and PiB- groups, respectively. The results are

summarized in Figure 12 and Figure 13. The red line corresponds

to the result from the multiple-atlas approach, and the other ten

lines correspond to the ten single-atlas approaches. The results

reveal a pronounced advantage of the proposed multi-atlas

approach (when averaged over the groups) over any single-atlas

approach in all the AAL ROIs for both PiB+ and PiB- groups.

Discussion

We developed a surface-based method to quantify and visualize

PiB retention within cortical GM without the need of MR images.

Our proposed PET-only method showed good correlation with the

more traditional MRI-dependent method. The variation between

the two methods was similar to published test-retest result of PiB

quantification [1]. As PiB retention within GM may indicate Ab
deposition associated with Alzheimer’s disease, our proposed

method could be used as a clinical tool to help physicians to easily

determine the Ab burden of patients, improving diagnostic

confidence. Future studies will be performed to investigate and

validate the clinical utility of the proposed method.

Our method compared very favorably against the single-atlas

based PET-only method. Although no quantitative analysis about

the precision was reported in [16], we found that the performance

of single-atlas based method was highly dependent on the atlas

selection due to the different anatomy between the single atlas and

the subject. For example, for some given subject, the estimation

error ratio (per vertex) varied from 15% to 25% when different

individual atlases were used from the pool of the 20 atlases.

Previous work in MRI has found that multiple atlases allowed

averaging registration errors and increasing robustness via some

consensus method [3]. However, the optimal way of selecting

atlases and combining them is application-dependent. In our case,

PiB retention in the population is quite heterogeneous (globally)

and patchy (locally) both in terms of shape and appearance. In

order to address this variation, we adopted several strategies to

benefit from the use of multiple atlases. Firstly, we set up a pool of

atlases that covered the whole spectrum of the disease. As changes

in PiB retention are believed to reflect Ab progressive accumu-

lation, the atlases were therefore chosen to match the full range of

PiB cases. Secondly, a subset of 10 atlases was selected from the

atlas pool according to the closest ‘‘local’’ matching of appearance.

Using a subject-specific subset of atlases reduced the negative

influence of dissimilar atlases to that subject. We also found that

‘‘local’’ matching had better capacity to handle the inter-subject

variation than ‘‘global’’ matching. In our case, using global

matching for multiple atlases could not outperform a good single

Table 5. Comparison of Z-score Estimation between the PET-
only and the MRI-dependent Methods (averaging over 123
subjects that are not in the atlas set).

Z-score Difference:
(per vertex) ± Pearson Correlation (R)

PiB+ Group 0.9460.2 0.81

PiB- Group 0.7160.1 0.40

doi:10.1371/journal.pone.0084777.t005

Figure 7. Mean Z-score for PiB+ AD group. The Z-scores are estimated by the MRI-dependent (top row) and the PET-only (bottom row) methods,
respectively.
doi:10.1371/journal.pone.0084777.g007
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atlas based approach. Thirdly, the estimations from each atlas

were ‘‘locally’’ weighted in a Bayesian fusion framework. This

framework also involved a probabilistic tissue map that considered

the variation within the training population. These strategies

allowed locally adaptive estimation of the PiB retention to be

made, which reduced errors due to mismatches in the distribution

of the plaques and GM shapes. This is important and allowed our

method to successfully handle more unusual or early stage

(asymmetries, focal retention) subjects. The parameters that we

used (10 most similar out of 20 atlases) were found to provide the

best results. Whether using different number for different cohorts

would be more optimal remains to be investigated.

The performances of the proposed method were excellent for

the PiB+ group and better than for the PiB- group. This is

expected since PiB- subjects have low PiB retention in the GM,

and therefore a very low SNR. This low SNR decreases the

Figure 10. Z-score for an individual PiB- subject. It is estimated by the MRI-dependent (top row) and the PET-only (bottom row) methods,
respectively.
doi:10.1371/journal.pone.0084777.g010

Figure 8. Mean Z-score for PiB- NC group. The Z-scores are estimated by the MRI-dependent (top row) and the PET-only (bottom row) methods,
respectively.
doi:10.1371/journal.pone.0084777.g008

Figure 9. Z-score for an individual PiB+ subject. It is estimated by the MRI-dependent (top row) and the PET-only (bottom row) methods,
respectively.
doi:10.1371/journal.pone.0084777.g009
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performance when using percentage, although it still provides very

robust results when measured in absolute signal variation. The

visualization of PiB- subjects could still provide insight into the

pattern of retention over the brain surface, with very low average

difference compared to MR-dependent method, and an absolute

estimation difference (per vertex) of 0.1960.03. The error of 0.19

compares to the variability of PiB which has been shown to be 4-

7% [36], [18], [34]. The good performance of this new method

warrants further investigation to establish the benefit of using such

a visualization tool compared to the traditional 3D visualization

used in clinical practice.

The work in [1] evaluated the reproducibility of 11C PiB

quantification at both the regional and the voxel levels when using

only 30 min (60 to 90 min after tracer injection) of imaging data.

Although their purpose was different from ours, the test-retest

results indicated a possible range of variability for 11C PiB

quantification. Being close to that range showed that the

performance of our proposed PET-only method is reasonably

consistent with that of the traditional MR-dependent method. In

Table 3 and 4, our ROI-level VAR (%) was compared to that of

the ROI measurements in [1]. The voxel-level VAR in [1] was not

referenced because our vertex-level measurement was averaged

over voxels along the normal direction of the GM/WM surface

and therefore was incomparable to the voxel-level measurement in

[1]. Meanwhile, our vertex-level ICC resembled more closely to

the ROI-level ICC in [1] as cited. The voxel-level ICCs in [1]

were much worse than their ROI-level ICCs, and hence worse

than that of our method, too.

The amyloid assessment is affected by the partial volume effect

and the resolution of the PET images, in both the traditional MRI-

dependent and our method. Partial volume effect (PVE) appears

when the size of the PET point spread function is greater than the

image resolution, resulting in signal spill over from one tissue with

high radiotracer concentration to one with low radiotracer

concentration. Low resolution of PET images may lead to

relatively large estimation errors in thin cortical structures,

Figure 12. Comparison of the multiple-atlas and ten single-atlas approaches over AAL ROIs within PiB+ group (left: error ratio; right:
correlation). The red line corresponds to the proposed multiple-atlas approach, while the rest ten lines correspond to the ten single-atlas approaches
in comparison, respectively. To improve clarity, not all ROI names are shown in the graph.
doi:10.1371/journal.pone.0084777.g012

Figure 11. Comparison between the multiple-atlas and ten single-atlas approaches subject by subject (left: error ratio; right:
correlation). The red line corresponds to the proposed multiple-atlas approach, while the rest ten lines correspond to the ten single-atlas approaches
in comparison, respectively. To improve clarity, the subjects’ IDs are sorted according to the increase of error ratios and correlation, respectively.
doi:10.1371/journal.pone.0084777.g011
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especially in the presence of PVE. This situation could be

improved by using a partial volume correction method based on

MRI [25], [23]. However, to our knowledge those PVE correction

methods are seldom used in clinical workflow. As for higher

resolution PET images, as long as the traditional MRI-dependent

method could benefit from them, our PET-only method could also

be improved simultaneously because we utilized the atlases’ MRI

and PET to estimate the PiB PET of the new subjects.

There are several limitations to the current study that should be

acknowledged. The first is that the method is validated using the

imaging protocols and scanners in the AIBL study. Further study is

required to ensure that the method generalizes to other

populations, studies and imaging protocols, especially if the PET

reconstruction is significantly changed. It is also acknowledged that

this paper utilizes 11C PiB PET, which, despite its wide use in

dementia research to assess Ab amyloid burden in vivo, is becoming

less relevant with the recent development of various 18F-labeled

radiotracers that have longer radioactive decay half-life and thus

may be less restrictive in clinic use [37]. Although we expect

similar performance, future work is required to validate and report

the performance of our method using these tracers. Meanwhile,

the clinical utility of the surface visualization should also be

consolidated.

Conclusion

In the present study, we propose an approach to estimate Ab
burden utilizing only 11C PiB PET images. This reduces the

necessity of acquiring MRI images to perform accurate quantifi-

cation using conventional methods. This is achieved by taking

advantages of an automatic selection of subject-specific optimal

atlases and an effective multiple atlas fusion scheme. Our MR-less

method applied to a large cohort of images from AIBL was

validated against an MR based method, demonstrating the

accuracy and robustness of the PiB retention estimation.
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2. Acosta O, Fripp J, Doré V, Bourgeat P, Favreau JM, et al. (2012) Cortical

surface mapping using topology correction, partial flattening and 3D shape

context-based non-rigid registration for use in quantifying atrophy in

Alzheimer’s disease. Journal of Neuroscience Methods 205: 96–109.

3. Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C (2009) Combina-

tion strategies in multi-atlas image segmentation: application to brain MR data.

IEEE Trans Med Imaging 28 (8): 1266–1277.

4. Bourgeat P, Raniga P, Dore V, Zhou L, Macaulay SL, et al. (2012) Manifold

Driven MR-less PiB SUVR Normalisation. In MICCAI 2012 Workshop on

Novel Imaging Biomarkers for Alzheimer’s Disease and Related Disorders

(NIBAD’12)

5. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related

changes. Acta Neuropathol. (Berl) 82 (4): 239–259.
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