University of Wollongong

Research Online

Faculty of Engineering and Information
Faculty of Engineering and Information
Sciences - Papers: Part A
Sciences

1-1-1994

The strong relevance logics

Martin W. Bunder
University of Wollongong, mbunder@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers
Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation

Bunder, Martin W., "The strong relevance logics" (1994). Faculty of Engineering and Information Sciences Papers: Part A. 1958.
https://ro.uow.edu.au/eispapers/1958

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

The strong relevance logics

Abstract

The tautology $\mathrm{p}-\mathrm{q}-\mathrm{p}$ is not a theorem of the various relevance logics (see Anderson and Belnap [1]) because q is not considered to be relevant in the derivation of final p. We can take this lack of relevance to mean simply that $p-q-p$ could have been proved without q and its - i.e., $p-p$. By the same criterion we could say that in ((p-p) -q) -q p-p is not relevant. In general we will say that any theorem A of an implicational logic is strongly relevant if there is no subpart B ! which can be removed from A, leaving the rest still a theorem of the same logic. Such a subpart B - is said to be superfluous.

Keywords

strong, relevance, logics

Disciplines

Engineering | Science and Technology Studies

Publication Details

Bunder, M. W. (1994). The strong relevance logics. Bulletin of the Section of Logic, 23 (1), 12-17.

THE STRONG RELEVANCE LOGICS

Introduction

The tautology

$$
p \rightarrow q \rightarrow p
$$

is not a theorem of the various relevance logics (see Anderson and Belnap [1]) because q is not considered to be relevant in the derivation of final p. We can take this lack of relevance to mean simply that $p \rightarrow q \rightarrow p$ could have been proved without q and its \rightarrow, i.e., $p \rightarrow p$.

By the same criterion we could say that in

$$
((p \rightarrow p) \rightarrow q) \rightarrow q
$$

$p \rightarrow p$ is not relevant.
In general we will say that any theorem A of an implicational logic is strongly relevant if there is no subpart $B \rightarrow$ which can be removed from A, leaving the rest still a theorem of the same logic. Such a subpart $B \rightarrow$ is said to be superfluous.

The strongly relevant form of a logic

If L is an implicational logic, the theorems of the strongly relevant form $S R(L)$ of L are obtained from the theorems of L by reducing them to strongly relevant theorems by means of the algorithm given below.

The algorithm requires the notion of depth. $A w f A$ is said to have depth 0 in A.

If $B=B_{1} \rightarrow \ldots \rightarrow B_{m} \rightarrow p$ has depth d in A any B_{i} has depth $d+1$ in A.

The relevance algorithm

To change a theorem A of a logic L to its strongly relevant form, $S R(A)$, in the logic $S R(L)$, proceed in the following way for $d=1,2, \ldots$

Remove all superfluous $B \rightarrow s$ of depth d from A from the left. Then remove any superfluous $B \rightarrow s$ of levels less than $d+1$ from the reduced A, starting from depth 1 .

Here are some examples from Classical Logic.

1. In $\quad(p \rightarrow q \rightarrow r) \rightarrow(p \rightarrow q) \rightarrow p \rightarrow r$ there are no superfluous subparts of depth 1 and the only one of depth 2 is $q \rightarrow$. The removal leaves

$$
(p \rightarrow r) \rightarrow(p \rightarrow q) \rightarrow p \rightarrow r
$$

Now $(p \rightarrow q) \rightarrow$ of depth 1 is superfluous. Removing this yields:

$$
(p \rightarrow r) \rightarrow p \rightarrow r .
$$

Now the first $p \rightarrow$ (depth 2$)$ is superfluous and when removed gives

$$
r \rightarrow p \rightarrow r
$$

which then is reduced to

$$
r \rightarrow r .
$$

2. In $\quad((p \rightarrow q) \rightarrow p) \rightarrow p$ the $(p \rightarrow q) \rightarrow$ of depth 2 is all that can be removed yielding

$$
p \rightarrow p
$$

Strongly relevant forms of logics

We will name logics by the combinators associated with their axioms:

$$
\begin{array}{ll}
\mathbf{I} & \vdash p \rightarrow p \\
\mathbf{B} & \vdash(p \rightarrow q) \rightarrow(r \rightarrow p) \rightarrow r \rightarrow q \\
\mathbf{B}^{\prime} & \vdash(p \rightarrow q) \rightarrow(q \rightarrow r) \rightarrow p \rightarrow r \\
\mathbf{C} & \vdash(p \rightarrow q \rightarrow r) \rightarrow q \rightarrow p \rightarrow r \\
\mathbf{S} & \vdash(p \rightarrow q \rightarrow r) \rightarrow(p \rightarrow q) \rightarrow p \rightarrow r
\end{array}
$$

$$
\begin{array}{ll}
\mathbf{W} & \vdash(p \rightarrow p \rightarrow q) \rightarrow p \rightarrow q \\
\mathbf{K} & \vdash p \rightarrow q \rightarrow p
\end{array}
$$

In general, relevance logics are those without \mathbf{K}. First we need two lemmas
Lemma 1. If $\mathbf{K}, \mathbf{B}, \mathbf{B}^{\prime}$ and \mathbf{I} hold in L and
(i) $\quad Q$ is in a positive position in $A(Q)$ then

$$
\vdash_{L} A(Q) \rightarrow A(P \rightarrow Q) ;
$$

(ii) $\quad Q$ is in a negative position in $A(Q)$ then

$$
\vdash_{L} A(P \rightarrow Q) \rightarrow A(Q)
$$

Proof. We prove (i) and (ii), where only one instance of Q or $P \rightarrow Q$ is being replaced, by induction on the depth d of Q in $A(Q)$.

If $d=0 A(Q)=Q$ and $\vdash_{L} Q \rightarrow(P \rightarrow Q)$
If $d>0$ and $A(Q)=A_{1} \rightarrow \ldots \rightarrow A_{i}(Q) \rightarrow B$, there are 2 cases:
If d is odd, Q is in a negative position in $A(Q)$ and in a positive position in $A_{i}(Q)$, so by the induction hypothesis

By \mathbf{B}^{\prime}

$$
\begin{aligned}
& \vdash A_{i}(Q) \rightarrow A_{i}(P \rightarrow Q) . \\
& \vdash\left(A_{i}(P \rightarrow Q) \rightarrow B\right) \rightarrow A_{i}(Q) \rightarrow B
\end{aligned}
$$

and by \mathbf{B} applied $\mathrm{i}-1$ times we get

$$
\vdash A(P \rightarrow Q) \rightarrow A(Q)
$$

If d is odd, Q is in a positive position in $A(Q)$ and in a negative position in $A_{i}(Q)$, so by the induction hypothesis

$$
\vdash A_{i}(P \rightarrow Q) \rightarrow A_{i}(Q)
$$

and by \mathbf{B} and \mathbf{B}^{\prime} we obtain as above:

$$
\vdash A(Q) \rightarrow A(P \rightarrow Q) .
$$

Multiple copies of Q and $P \rightarrow Q$ can be replaced in $A(Q)$ and $A(P \rightarrow Q)$ by repeating this procedure.

Lemma 2. If $\mathbf{K}, \mathbf{B}, \mathbf{B}^{\prime}$ and \mathbf{I} hold in L, then the Relevance Algorithm will reduce any theorem A of L that is not $p \rightarrow p$.

Proof. If A has a negative part of the form $P \rightarrow Q$, write $A=B(P \rightarrow Q)$, then by Lemma 1 (ii) $P \rightarrow$ is superfluous in A.

As A has a superfluous part, the Relevance Algorithm will reduce it (though not necessarily that part first, or even at all).

If A has no negative part of the form $P \rightarrow Q$, it must be of the form:

$$
A=p_{i} \rightarrow p_{2} \ldots \rightarrow p_{n}
$$

where at least one $p_{i}=p_{n}$.
Unless $n=1$, the Relevance Algorithm reduces this A to $p_{n} \rightarrow p_{n}$
Theorem 1. If $\mathbf{K}, \mathbf{B}, \mathbf{B}^{\prime}$ and \mathbf{I} hold in L then

$$
S R(L)=\{p \rightarrow p \mid p \text { is a variable }\} .
$$

Proof. By Lemma 2, the Relevance Algorithm will reduce the length of any theorem that is not $p \rightarrow p$. Thus the algorithm will reduce any theorem to $p \rightarrow p$.

It can probably easily be shown that if $\mathbf{K}, \mathbf{B}, \mathbf{B}^{\prime}$ (but not \mathbf{I}) hold in L, then

$$
S R(L)=\{p \rightarrow q \rightarrow p \mid p, q \text { are variables }\} .
$$

The same holds if L has \mathbf{K} and \mathbf{B} or \mathbf{K} and \mathbf{B}^{\prime}, but not \mathbf{I} nor even \mathbf{K}.
Theorem 2. $S R(\mathbf{K I})=\{p \rightarrow p \mid p$ is a variable $\}$.
Proof. It is easy to show that every theorem T of KI-logic is of the form
or

$$
\begin{aligned}
& T_{1}=B_{1} \rightarrow \ldots \rightarrow B_{n} \rightarrow A \rightarrow A \\
& T_{2}=B_{1} \rightarrow \ldots \rightarrow B_{n} \rightarrow A \rightarrow B \rightarrow A .
\end{aligned}
$$

We can also assume that A in T_{1}, and A and $B \rightarrow A$ in T_{2} are not theorems of KI logic, since in that case we would have:

$$
\begin{aligned}
& B \rightarrow A \text { or } A=C_{1} \rightarrow \ldots \rightarrow C_{k} \rightarrow A_{1} \rightarrow A_{1} \\
& \text { or } A \text { or } B \rightarrow A=C_{1} \rightarrow \ldots \rightarrow C_{k} \rightarrow A_{1} \rightarrow B_{1} \rightarrow A, \\
& \text { so that } T_{1}=B_{1} \rightarrow \ldots \rightarrow B_{n} \rightarrow A \rightarrow C_{1} \rightarrow \ldots \rightarrow C_{k} \rightarrow A_{1} \rightarrow A_{1}, \\
& T_{2}=B_{1} \rightarrow \ldots \rightarrow B_{n} \rightarrow A \rightarrow B \rightarrow C_{1} \rightarrow \ldots \rightarrow C_{k} \rightarrow A_{1} \rightarrow A_{1}, \\
& T_{1}=B_{1} \rightarrow \ldots \rightarrow B_{n} \rightarrow A \rightarrow C_{1} \rightarrow \ldots \rightarrow C_{k} \rightarrow A_{1} \rightarrow B_{1} \rightarrow A_{1} \\
& T_{2}=B_{1} \rightarrow \ldots \rightarrow B_{n} \rightarrow A \rightarrow B \rightarrow C_{1} \rightarrow \ldots \rightarrow C_{k} \rightarrow A_{1} \rightarrow B_{1} \rightarrow A_{1} \\
& T_{2}=B_{1} \rightarrow \ldots \rightarrow B_{n} \rightarrow A \rightarrow C_{1} \rightarrow \ldots \rightarrow C_{k} \rightarrow A_{1} \rightarrow A_{1} \\
& \text { or } T_{2}=B_{1} \rightarrow \ldots \rightarrow B_{n} \rightarrow A \rightarrow C_{1} \rightarrow \ldots \rightarrow C_{k} \rightarrow A_{1} \rightarrow B_{1} \rightarrow A_{1}
\end{aligned}
$$

$$
\text { which are in the above forms but with } A_{1} \text { smaller than } A \text {. }
$$

Now

$$
\begin{aligned}
S R\left(T_{2}\right) & =S R(A \rightarrow B \rightarrow A) \\
& =S R(A \rightarrow A) \\
S R\left(T_{1}\right) & =S R(A \rightarrow A) . \\
A & =A_{1} \rightarrow A_{2},
\end{aligned}
$$

Let
then

$$
\begin{aligned}
S R(A \rightarrow A) & =S R\left(\left(A_{1} \rightarrow A_{2}\right) \rightarrow A_{1} \rightarrow A_{2}\right) \\
& =S R\left(\left(A_{1} \rightarrow A_{2}\right) \rightarrow A_{2}\right) \\
& =S R\left(A_{2} \rightarrow A_{2}\right) \\
S R(A \rightarrow A) & =A_{2} \rightarrow\left(A_{1} \rightarrow A_{2}\right) \\
& =S R\left(A_{2} \rightarrow A_{2}\right) .
\end{aligned}
$$

or

We can continue this reduction till we get $p \rightarrow p$ for some variable p.
The same result probably holds for $\mathbf{K B I}$ and $\mathbf{K B}^{\prime} \mathbf{I}$.
For logics without \mathbf{K} the situation is much more complex as is shown below:

LEMMA 4.
(i) $\quad S R\left(\mathbf{B B}^{\prime} \mathbf{I W}\right) \nsubseteq S R(\mathbf{B C I}) \cup S R(\mathbf{B C I W}) \cup S R\left(\mathbf{B B}^{\prime} \mathbf{I}\right)$;
(ii) $\quad S R\left(\mathbf{B B}^{\prime} \mathbf{I}\right) \cap S R(\mathbf{B C I}) \nsubseteq S R(\mathbf{B C I W}) \cup S R\left(\mathbf{B B}^{\prime} \mathbf{I W}\right)$;
(iii) $\quad S R(\mathbf{B C I W}) \cap S R(\mathbf{B C I}) \nsubseteq S R\left(\mathbf{B B}^{\prime} \mathbf{I W}\right) \cup S R\left(\mathbf{B B}^{\prime} \mathbf{I}\right)$;
(iv) $S R(\mathbf{B C I W}) \nsubseteq S R(\mathbf{B C I}) ;$
(v) $S R\left(\mathbf{B B}^{\prime} \mathbf{I}\right) \nsubseteq S R(\mathbf{B C I})$.

Proof.

$$
((p \rightarrow q) \rightarrow p) \rightarrow(p \rightarrow q) \rightarrow(p \rightarrow q) \rightarrow q
$$

is a theorem of $S R\left(\mathbf{B B}^{\prime} \mathbf{I}\right)$ and $S R(\mathbf{B C I})$ but not of $S R(\mathbf{B C I W})$ nor $S R\left(\mathbf{B B}^{\prime} \mathbf{I} \mathbf{W}\right)$ wherein it is reduced to

$$
((p \rightarrow q) \rightarrow p) \rightarrow(p \rightarrow q) \rightarrow q
$$

Hence (ii) holds.
The last formula above is a theorem of $S R\left(\mathbf{B B}^{\prime} \mathbf{I} \mathbf{W}\right)$ but not of $S R(\mathbf{B C I W})$ where it is reduced to

$$
p \rightarrow(p \rightarrow q) \rightarrow q .
$$

Neither is it a theorem of $S R(\mathbf{B C I})$ or $S R\left(\mathbf{B B}^{\prime} \mathbf{I}\right)$. Hence (i) holds.
This last formula above is a theorem of $S R(\mathbf{B C I W})$ and $S R(\mathbf{B C I})$, but not of $S R\left(\mathbf{B B}^{\prime} \mathbf{I} \mathbf{W}\right)$ or $S R\left(\mathbf{B B}^{\prime} \mathbf{I}\right)$, so (iii) holds.

$$
(p \rightarrow(p \rightarrow(p \rightarrow q))) \rightarrow p \rightarrow q
$$

is a theorem of $S R(\mathbf{B C I W})$ but not of $S R(\mathbf{B C I})$, so (iv) holds.

$$
(p \rightarrow r \rightarrow q) \rightarrow((p \rightarrow q) \rightarrow r) \rightarrow p \rightarrow(p \rightarrow q) \rightarrow q
$$

is a theorem of $S R\left(\mathbf{B B}^{\prime} \mathbf{I}\right)$ but not of $S R(\mathbf{B C I W})$.
Theorem 3. The systems $S R(\mathbf{B C I W}), S R\left(\mathbf{B B}^{\prime} \mathbf{I W}\right), S R(\mathbf{B C I})$, and $S R\left(\mathbf{B B}^{\prime} \mathbf{I}\right)$ are mutually independent.

Proof. By Lemma 4.

We should note that the relevance requirements here, although similar, are stronger than those in [2] where effectively only superfluous subparts of depth 1 have been removed.

The work can be extended to logics with the connectives \wedge and \vee where parts $\wedge B, B \wedge, B \vee$ and $\vee B$ can be superfluous.

Again all theorems of positive classical, intuitionistic and BCK logics reduce to the form $p \rightarrow p$. For relevance logics, as before, the situation is more complex.

References

[1] A. R. Anderson, N. D. Belnap, Entailment Vol. I, Princeton U. P., 1975.
[2] M. W. Bunder, A more relevant relevance logic, Notre Dame Journal of Formal Logic, 20, (1979), pp. 701-704.

Maths Department University of Wollongong
P. O. Box 1144

Wollongong, N. S. W.
2500.Australia

