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Abstract. How to sign an electronic contract online between two parties
(say Alice and Bob) in a fair manner is an interesting problem, and has
been studied for a long time. Optimistic Fair Exchange (OFE) is an
efficient solution to this problem, in which a semi-trusted third party
named arbitrator is called in to resolve a dispute if there is one during an
exchange between Alice and Bob. Recently, several extensions of OFE,
such as Ambiguous OFE (AOFE) and Perfect AOFE (PAOFE), have
been proposed to protect the privacy of the exchanging parties. These
variants prevent any outsider including the arbitrator from telling which
parties are involved in the exchange of signatures before the exchange
completes.
However, in PAOFE, AOFE, and all the current work on OFE, the ar-
bitrator can always learn the signer’s signature at (or before) the end
of a resolution, which is undesirable in some important applications, for
example, signing a contract between two parties which do not wish oth-
ers to find out even when there is a dispute that needs a resolution by
the arbitrator. In this work, we introduce a new notion called Privacy-
Preserving Optimistic Fair Exchange (P2OFE), in which other than Alice
and Bob, no one else, including the arbitrator, can collect any evidence
about an exchange between them even after the resolution of a dispute.
We formally define P2OFE and propose a security model. We also pro-
pose a concrete and efficient construction of P2OFE, and prove its security
based on the Strong Diffie-Helllman and Decision Linear assumptions in
the standard model.

Keywords. optimistic fair exchange; signature; ambiguity; privacy pre-
serving

1 Introduction

The fair exchange problem is about constructing a protocol for two par-
ties, Alice and Bob, that allow them to exchange items in an all-or-nothing
(fair) manner, that is, after the protocol, either both parties obtain the



other’s item or none of them does. There are two major approaches to
do fair exchange. The first one is to have the parties release their secrets
‘gradually’, e.g. bit by bit, in multiple rounds. Besides, it is assumed that
both of them have comparable computation power. Thus, this approach
may not be appropriate for practical use.

Another approach is to have a third party called arbitrator employed.
The arbitrator is semi-trusted by the two parties, and is usually offline.
The arbitrator only gets involved when there is a dispute. Asokan et
al. proposed this notion called Optimistic Fair Exchange (OFE) [1], and
later extended it to support the exchange of digital signatures [2]. In
OFE, Alice prepares an ‘encapsulated’ version of her signature, called
partial signature σA, and sends it to Bob. If σA is valid, Bob returns
his full signature ζB to Alice. In the third move, Alice tells Bob how to
open σA or directly sends her full signature ζA to Bob if she believes ζB
is valid. Figure 1 shows a normal execution. If Alice refuses or fails to
return ζA, Bob resorts to the arbitrator for resolving σA. After checking
the fulfillment of Bob’s obligation, the arbitrator extracts ζA from σA,
and sends it to Bob. Figure 2 shows the case in which there is a dispute.

Fig. 1. OFE: Normal Execution Fig. 2. OFE: Resolution

Due to the simple and elegant framework, and the low level of trust
required on the third party, OFE has many useful applications. One of
them is to sign contracts between two online parties. For example, Alice
wants to buy a software from Bob’s online shop. She generates a partial
signature on a message “Bob can withdraw $100 from my bank account”.
Bob then gives Alice his full signature on message “Alice can get a copy
of Windows 13 from my shop”. If everything goes well, Alice gets the
software and Bob gets the money from Alice’s bank account. If Bob does
not get the full signature from Alice subsequently, Bob asks the arbitrator
for resolving Alice’s partial signature and gets Alice’s full signature.

(On the Privacy of OFE and its Variants). In conventional OFE, Alice’s
partial signature σA already reveals her will/intention to do exchange
with Bob, from which Bob may take advantage of, and could be unfair
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to Alice. In [13, 19], the notion of Ambiguous Optimistic Fair Exchange
(AOFE)4 was introduced to solve this problem. In AOFE, Bob is en-
dowed with the ability of producing partial signatures computationally
indistinguishable from those of Alice. Recently, Wang et al. [30] proposed
an enhanced version of AOFE, named Perfect AOFE (PAOFE), in which
a partial signature leaks no information about the actual signer or the in-
tended verifier. This is useful for applications where the involved parties
of an exchange wish to further protect their privacy on whether they are
indeed involved in an exchange or not. For instance, when Alice and Bob
sign a business contract (e.g. a procurement deal) online while revealing
and confirming who is involved in the process may potentially be harm-
ful to (for example, the image of) Alice and/or Bob. No one including
the arbitrator can tell who and what exchange has taken place from the
transcript of a normal execution of PAOFE.

Although the privacy is ensured in a normal execution of PAOFE,
this is not the case if a dispute occurs and a resolution is solicited. At
the end of a resolution protocol run in PAOFE, the arbitrator gets the
full signature ζA of Alice. (Note that the resolution is an algorithm run
by the arbitrator in (A)OFE while it is a protocol in PAOFE.) Hence the
arbitrator can confirm whether a particular party, say Alice, is involved
in an exchange of signatures. Note that this is always the case in (A)OFE
as the resolution algorithm outputs ζA. Whereas there are applications in
which the parties do not want anyone including the arbitrator to confirm
and especially, convince others their involvement even when there is a
dispute that needs the arbitrator to resolve. Even in the example above,
revealing and confirming who is involved in the business contract to the
arbitrator during a dispute may potentially hurt (the image of) Alice
and/or Bob. We stress here that revealing the contract (i.e. the message)
itself (without the signatures) does not entail any concern on revealing,
or letting outsiders or the arbitrator to confirm the involvement of a
particular party in an exchange. This is because such a contract/message
can be made up by anyone. Only the signed contract can be used to
confirm a party’s involvement. In this scenario, PAOFE would not help
because the arbitrator learns the final signature ζA at the end of the
resolution and hence can confirm the involvement of Alice. The arbitrator
can even convince others about Alice’s involvement by making use of ζA.

4 It is named abuse-free contract signing in [13] and ambiguous optimistic fair exchange
in [19]. Hereafter we call it ambiguous optimistic fair exchange (AOFE), for the sake
of the ease of presentation.
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Our Contributions. In this paper we contribute to the study of fair
exchange in the following aspects:

1. We introduce the notion of Privacy-Preserving OFE (P2OFE). The
new notion differs from PAOFE mainly in that P2OFE explicitly re-
quires that even the arbitrator cannot learn the signer’s full signature.
The resolution in P2OFE is a protocol between the verifier and the ar-
bitrator, and consists of two algorithms, ResA and ResV . Briefly, After
receiving a partial signature σ for resolution, the arbitrator runs ResA

to convert it to an intermediate value θ, and gives to the verifier, who
then runs ResV to extract the signer’s full signature ζ from θ. It is
required that without the intended verifier’s secret key, anyone cannot
recover ζ from the intermediate value.

2. We present the security models of P2OFE to capture our intuition that
even the arbitrator is unable to recover the signer’s full signature after
the resolution. As in [16,18] we consider the certified-key model in this
paper, which is slightly weaker than the chosen-key model considered
in [20,30]. However, the perfect ambiguity in our model is stronger in
the sense that we allow the adversary to interact with the intended
verifier for resolution, which is not allowed in [30].

3. We also propose a concrete and efficient P2OFE protocol, the secu-
rity of which is based on Strong Diffie-Hellman assumption [7] and
Decision Linear assumption [8] without random oracles. Roughly, our
protocol follows the sign-then-encrypt paradigm (which is common
in the construction of designated confirmer signatures [9, 18]). A full
signature is simply a Boneh-Boyen short signature [7], while a partial
signature is a ‘twisted’ double encryption of the full signature. Please
refer to Sec. 5 for the detailed construction.

2 Related Works

Since the introduction, OFE has attracted a lot of attention, e.g. [3, 10,
11, 15–22, 28, 29]. In [10], Dodis et al. showed a gap between the security
of OFE in single-user setting (where there are one signer and one verifier)
and that in multi-user setting (where there are multiple signers and veri-
fiers). Using random oracle heuristic, they proposed a OFE secure in the
multi-user setting and registered-key model [5]. Huang et al. [21] proposed
a generic construction of OFE from time capsule signature [12], based on
their observation on the similarity between the two primitives. The re-
sulting protocol is secure in the multi-user setting and certified-key model
without random oracles. Huang et al. [20] further strengthened Dodis et
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al.’s result by relaxing the restriction on using a public key. They demon-
strated that there is a gap between the security of OFE in chosen-key
model [27] (in which an adversary can use any public key) and that in
registered-key model. A generic construction using a standard signature
and a two-user ring signature was also proposed and proven secure in the
multi-user setting and chosen-key model.

In traditional OFE, Alice’s partial signature is generally self-authenticating
and indicates her commitment to some message already. This may allow
Bob to take advantage of it. Garay et al. [13] and Huang et al. [19] ad-
dressed this problem and proposed notions of abuse-free OFE and am-
biguous OFE, respectively. In both notions, Alice and Bob should be able
to produce indistinguishable partial signatures so that given a valid par-
tial signature from Alice, Bob cannot transfer the conviction to others. In
this paper we universally call them as AOFE. Garay et al. constructed an
efficient AOFE from a type of signatures called private contract signatures
(PCS). Their PCS scheme is built from designated-verifier signature [23],
and is secure in the registered-key model with random oracles. Huang
et al. [19] proposed another efficient construction of AOFE using Groth-
Sahai non-interactive proofs [14]. The scheme is secure based on Strong
Diffie-Hellman assumption [7] and Decision Linear assumption [8] in the
chosen-key model without random oracles. However, the scheme suffers
from long signatures, which consist of more than 40 group elements.

Huang et al. [15, 16] proposed a new approach to constructing inter-
active AOFE, in which the signer interacts with the verifier to produce
the partial signature. Their construction applies to a specific class of des-
ignated confirmer signature (DCS) [9] schemes, in which anyone is able
to sample confirmer signatures from the signer’s signature space efficient-
ly, e.g. in polynomial time. However, not many DCS schemes enjoy this
property, and thus limiting the application of Huang et al.’s construc-
tion. The authors improved the result by proposing another construction
of AOFE from standard DCS [18]. They also proposed an efficient DCS
construction, which follows the sign-then-encrypt paradigm. By applying
their construction, they obtained an AOFE protocol which has short par-
tial signature and the shortest full signature, and is secure based on SDH
and DLIN assumptions without random oracles.

Huang et al. also introduced another variant of AOFE, called group-
oriented optimistic fair exchange (GOFE) [17]. In GOFE, two users ex-
change signatures on behalf of their respective groups in a fair and anony-
mous manner so that either each group receives the other group’s signa-
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ture or none of them does, and in the meanwhile the users’ identities are
kept secret to others except their respective group managers.

Wang et al. proposed the notion of perfect ambiguous optimistic fair
exchange (PAOFE) [30], in which only the intended verifier is able to
tell which parties are involved in the exchange. They proposed a generic
PAOFE construction by combining an AOFE protocol and a public key
encryption scheme with key privacy (no one is able to tell whom a cipher-
text is intended for). However, no concrete implementation of PAOFE is
provided in [30].

In terms of the arbitrator not learning the exchanged material even
in case of a dispute, there are also some other works in the non-signature
exchange fields. For example, Belenkiy et al. [6] and Küpçü et al. [25]
studied the privacy in optimistic fair exchange of files, where the arbitra-
tor could not learn the full files. Avoine et al. [4] proposed to distribute
the arbitrator so that no single arbitrator may learn the full signature.
Similar idea has been used in [26] in the exchange of files.

3 Privacy-Preserving OFE

3.1 Definition

A Privacy-Preserving Optimistic Fair Exchange protocol (P2OFE) ‘blinds’
the arbitrator so that the arbitrator is unable to recover a full signature.
Similar to PAOFE, the resolution in the definition of P2OFE below is a
protocol rather than an algorithm in a conventional (A)OFE.

Definition 1. A Privacy-Preserving Optimistic Fair Exchange protocol
(P2OFE) involves the users (signers and verifiers) and the arbitrator, and
consists of the following probabilistic polynomial-time (p.p.t. for short)
algorithms and protocols:

PMG. It takes 1k as input where k is the security parameter and outputs
the system parameter PM.

Akg. It takes as input PM and outputs a key pair for the arbitrator. We
denote it by (Apk, Ask)← Akg(PM).

UKg. It takes PM (and optionally Apk) as input and outputs a user key
pair. We denote it by (Pk, Sk)← Ukg(PM, Apk).

PSig. This is the partial signature generation algorithm. It takes as input
a message M , the signer’s secret key Ski, the signer’s public key Pki,
the verifier’s public key Pkj and the arbitrator’s public key Apk, and
outputs a partial signature σ. We denote it by σ ← PSig(M, Ski, Pki,
Pkj , Apk).
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PVer. This is for verifying a partial signature. It can be either an al-
gorithm or a protocol, depending on whether the verification requires
the interaction between the signer Ui and the verifier Uj. If the verifi-
cation is non-interactive, the algorithm takes as input (M,σ, Pki, Pkj,
Apk, Skj) and outputs a bit b. We denote it by b ← PVer(M,σ, Pki,
Pkj , Apk, Skj). In case the verification is an interactive protocol, the
common input consists of (M,σ, Pki, Pkj, Apk). The signer (acting as
the prover) has private input Ski and the randomness r used in signa-
ture generation, while the verifier has private input Skj. We denote a
run of the protocol by

b← PVer⟨Ui(Ski,r),Uj(Skj)⟩(M,σ, Pki, Pkj , Apk),

where b is the decision bit of Uj, which is 1 for acceptance and 0 for
rejection.

Sig. This is the full signature generation algorithm. It takes as input
(M, Ski, Pki, Pkj , Apk) and outputs a full signature ζ. We denote it by
ζ ← Sig(M, Ski, Pki, Pkj , Apk).

Ver. This is for verifying a full signature. It takes as input (M, ζ, Pki, Pkj,
Apk) and outputs a bit b which is 1 if ζ is a valid full signature of Pki
and 0 otherwise. We denote it by b← Ver(M, ζ, Pki, Pkj , Apk).

Res. This is a protocol between verifier Uj and arbitrator A for convert-
ing a partial signature to a full one. It consists of two algorithms,
ResA and ResV . ResA is run by the arbitrator for resolving a par-
tial signature. It takes as input (M, Ask, σ, Pki, Pkj), and outputs an
intermediate signature θ or ⊥ indicating the failure of resolution.
ResV is run by the intended verifier for extracting the full signa-
ture ζ from an intermediate signature θ. It takes as input (M, Skj , θ,
Pki, Pkj , Apk) and outputs a full signature ζ. We denote the two algo-
rithms by θ ← ResA(M, Ask, σ, Pki, Pkj) and ζ ← ResV (M, Skj , θ, Pki,
Pkj , Apk).

On the Resolution Protocol : To resolve a partial signature σ, V sends it to
the arbitrator, which runs ResA to convert it into an intermediate value θ
and returns to V . The verifier then runs ResV to recover the full signature
ζ from θ. In this way the arbitrator does not learn the final output of the
resolution. Furthermore, as in the definition of perfect ambiguity (Def.
3), we require that the arbitrator does not know whether the submitted
partial signature contains a valid full signature on M of the signer. In Sec.
6 we explain in more details how the resolution of our proposed P2OFE
protocol works in practice.
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Remark. We stress that in P2OFE, giving a message/contract M itself to
the arbitrator in clear does not harm the signer, since guaranteed by the
perfect ambiguity, the arbitrator cannot confirm or convince others that
the signer has signed M .

3.2 Security Models

We now study the security properties that a P2OFE protocol should satis-
fy. First of all, the correctness of P2OFE can be naturally defined, and we
omit it here. A secure P2OFE protocol should satisfy the following prop-
erties: resolution ambiguity, signer ambiguity, perfect ambiguity, security
against signers and security against the arbitrator. Below we introduce
them individually, where for simplicity we omit the generation of system
parameters PM. All the security properties of P2OFE are defined in the
certified-key model [5,18], in which an adversary can query an oracle OKR

which takes as input a key pair (Pk, Sk) and outputs 1 if it is in the range
of algorithm Ukg and 0 otherwise. For simplicity we omit OKR in the
following experiments.

Resolution Ambiguity: The property states that full signatures out-
put by the signer should be computationally indistinguishable from those
output by the verifier at the end of the resolution protocol. Let

∆0
def
= {ζ ← Sig(M, Ski, Pki, Pkj , Apk)}, and

∆1
def
= {ζ ← ResV (M, Skj , θ, Pki, Pkj , Apk)},

where θ ← ResA(Ask, σ, Pki, Pkj) and σ ← PSig(M, Ski, Pki, Pkj , Apk).
A protocol is resolution ambiguous if ∆0 and ∆1 are computationally
indistinguishable.

Signer Ambiguity: Before giving the definition of signer ambiguity, we
describe a new p.p.t. algorithm FPSig that is run by the verifier to simu-
late the signer’s partial signature. The algorithm is similar with PSig. It
takes as input (M, Skj , Pki, Pkj , Apk) and outputs a partial signature valid
under Pki, Pkj and Apk. We require that there exists an algorithm FPSig
such that for any p.p.t. adversary A, which models a dishonest signer,
succeeds with at most negligible advantage in the following experiment
Expsa:

(Apk, Ask)← Akg(PM)

(Pkγ , Skγ)← Ukg(PM, Apk), ∀γ ∈ {0, 1}

8



(M∗, Υ )← AO
ResA ({(Pkγ , Skγ)}1γ=0, Apk)

b← {0, 1}

σ∗ ←
{
PSig(M∗, Sk0, Pk0, Pk1, Apk) if b = 0
FPSig(M∗, Sk1, Pk0, Pk1, Apk) if b = 1

b′ ← AO
ResA (Υ, σ∗)

Succ. of A := [b′ = b ∧ (M∗, σ∗, Pk0, Pk1) ̸∈ Q(A, OResA)

∧ (M∗, σ∗, Pk1, Pk0) ̸∈ Q(A, OResA)],

where

– OResA takes as input (M,σ, Pki, Pkj) and outputs the corresponding
intermediate signature θ or ⊥ indicating the failure of conversion; and

– Q(A, OResA) is the set of queries that A submitted to oracle OResA .

The advantage ofA in the experiment is defined as AdvAsa(1
k) := |Pr[Succsa]−

1/2|, where Succsa denotes the event that A succeeds in the experiment
Expsa.

Definition 2 (Signer Ambiguity). A P2OFE protocol is signer am-
biguous if there is no p.p.t. A, such that AdvAsa(1

k) is non-negligible in the
security parameter k.

Perfect Ambiguity: It basically says that given a partial signature, even
the arbitrator cannot assert which users are involved in the signature
exchange. Technically, we require that the distinguisher (which could be
the arbitrator) is unable to tell whether the given signature was generated
honestly by signer A w.r.t. the verifier B, or randomly selected from
the signature space. We need a p.p.t. algorithm Sim that is run by the
public to simulate signatures of A and B. The algorithm takes as input
(Apk, Pki, Pkj) and outputs a simulated partial signature of the signer Ui

w.r.t. the verifier Uj . Formally, we require that there exists an algorithm
Sim such that for any p.p.t. adversary A, it succeeds in the following
experiment Exppa with only negligible advantage:

(Apk, Ask)← Akg(PM)

(Pkγ , Skγ)← Ukg(PM, Apk), ∀γ ∈ {0, 1}

(M∗, Υ )← AO
PSigV

,OFPSig,OResV (Pk0, Sk0, Pk1, Apk, Ask)

b← {0, 1}

σ∗ ←
{
PSig(M∗, Sk0, Pk0, Pk1, Apk), if b = 0
Sim(Apk, Pk0, Pk1) , if b = 1

9



b′ ← AO
PSigV

,OFPSig,OResV (Υ, σ∗)

θ∗ ← ResA(M∗, Ask, σ∗, Pk0, Pk1)

Succ. of A := [b′ = b ∧ (M∗, θ∗, Pk0) ̸∈ Q(A, OResV )],

where

– OPSigV takes as input (M, Pk′), and outputs a partial signature σ ←
PSig(M, Sk1, Pk1, Pk

′, Apk);

– OFPSig takes as input (M, Pk′), and outputs a simulated partial signa-
ture, e.g. σ ← FPSig(M, Sk1, Pk

′, Pk1, Apk);

– OResV takes as input (M, θ, Pk′), and outputs the full signature ζ ←
ResV (M, Sk1, θ, Pk

′, Pk1, Apk); and

– Q(A, OResV ) is the set of queries that A submitted to oracle OResV .

The advantage ofA in the experiment is defined as AdvApa(1
k) := |Pr[Succpa]−

1/2|, where Succpa denotes the event that A succeeds in the experiment
Exppa.

Definition 3 (Perfect Ambiguity). A P2OFE protocol is perfect am-
biguous if there is no p.p.t. adversary A such that AdvApa(1

k) is non-
negligible in the security parameter k.

Remark. Notice that in the experiment above we do not give the adversary
access to an oracle which returns full signatures of the verifier (with public
key Pk1). The oracle can be implemented by composing OPSigV and OResV

as well as the knowledge of Ask.

The simulation algorithm Sim does not take any secret input and can
be run by anyone to simulate a partial signature that looks indistinguish-
able from a real one. Guaranteed by the perfect ambiguity, without the
knowledge of the intended verfier’s secret key, no one is able to deter-
mine whether a given partial signature does come from the signer. Due to
the public simulatability, even the arbitrator cannot assert and convince
others that the signer indeed signed the message M . In other words, the
signer could deny the generation of a partial signature.

Security against Signers: To protect the verifier from being cheated,
the signer should be unable to produce a partial signature such that it
can pass the partial verification, but the resolution fails to output a valid
full signature. Formally, we consider the following experiment Expsas:

(Apk, Ask)← Akg(PM)

(Pk1, Sk1)← Ukg(PM, Apk)

10



(M∗, Pk0, σ
∗)← AOFPSig,ORes(Pk1, Apk)

θ∗ ← ResA(M∗, Ask, σ∗, Pk0, Pk1)

ζ∗ ← ResV (M∗, Sk1, θ
∗, Pk0, Pk1, Apk)

Succ. of A := [PVer(M∗, σ∗, Pk0, Pk1, Apk, Sk1) = 1

∧ Ver(M∗, ζ∗, Pk0, Pk1, Apk) = 0

∧ (M∗, Pk0) ̸∈ Q(A, OFPSig)],

where

– ORes = ⟨OResA , OResV ⟩ takes as (M,σ, Pk′), and outputs the corre-
sponding full signature ζ (that is valid w.r.t. the signer’s public key
Pk′, the verifier’s public key Pk1 and Apk) or ⊥; and

– Q(A, OFPSig) is the set of queries that A submitted to the oracle
OFPSig.

The advantage ofA in the experiment is defined as AdvAsas(1
k) := Pr[Succsas],

where Succsas denotes the event thatA succeeds in the experimentExpsas.

Definition 4 (Security against Signers). A P2OFE protocol is secure
against signers if there is no p.p.t. adversary A such that AdvApa(1

k) is
non-negligible in the security parameter k.

Security against the Arbitrator: To be fair for the signer, no one but
the signer, should be able to produce valid signatures on behalf of the
signer. Formally, we consider the following experiment Expsaa:

(Apk, Ask)← Akg(PM)

(Pk0, Sk0)← Ukg(PM, Apk)

(M∗, Pk1, ζ
∗)← AOPSig(Pk0, Apk, Ask)

Succ. of A := [Ver(M∗, ζ∗, Pk0, Pk1, Apk) = 1 ∧ (M∗, Pk1) ̸∈ Q(A, OPSig)],

where

– OPSig takes as input a message M and a public key Pk′ and outputs
σ ← PSig(M, Sk0, Pk0, Pk

′, Apk); and
– Q(A, OPSig) is the set of queries that A submitted to OPSig.

The advantage ofA in the experiment is defined as AdvAsaa(1
k) := Pr[Succsaa],

where Succsaa denotes the event that A succeeds in Expsaa.

Definition 5 (Security against the Arbitrator). A P2OFE protocol
is secure against the arbitrator if there is no p.p.t. adversary A such that
AdvAsaa(1

k) is non-negligible in the security parameter k.
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Remark 1. Security against the arbitrator assumes the adversary (in-
cluding the arbitrator) is malicious and is allowed to try all kinds of
ways to forge the signer’s signature. This is for protecting the signer to
the maximum extent. However, the arbitrator is still assumed to func-
tion normally as prescribed in practice, i.e. to honestly resolve signatures
according to the users’ needs.

3.3 Differences from Other Variants of OFE

In this part we summarize the differences between P2OFE and (other
variants of) OFE. Table 1 shows the comparison. In the table, “Ambiguity
of σ Before Resolution” (resp. “Ambiguity of σ After Resolution”) refers
to that given only a partial signature σ, whether anyone (including the
arbitrator) could convince others before (resp. after) the resolution takes
place that the signer has signed the message. We denote by “

√
2” that

σ is ambiguous in the sense that either the signer or the verifier could
generate σ, and by “

√
∞” that σ is ambiguous in the sense that everyone

could be the source of σ.

Table 1. Comparison with other variants of OFE

Ambiguity of σ Ambiguity of σ
Variants

Before Resolution After Resolution

OFE × ×
AOFE

√
2 ×

PAOFE
√

∞ ×
P2OFE

√
∞

√
∞

The partial signature in traditional OFE [3, 10, 20] is publicly verifi-
able, and everyone is able to tell from it the fact that the signer signed
the message. In the enhanced variant AOFE [15,16,18,19], although the
partial signature is ambiguous, however, anyone is still able to confirm
that the given partial signature was generated by either the signer or the
verifier. In PAOFE [30], the ambiguity is further improved. No one but
the verifier is able to tell from the given partial signature who the real
signer is. However, no matter the partial signature is ambiguous or not,
the arbitrator in these variants has a full copy of the signer’s full signature
after the resolution.

In our new notion of OFE, given only the partial signature, neither
the arbitrator nor the verifier is able to find out by itself who the signer is.
Thus, the arbitrator could not convince others that the signer did sign the
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message. Furthermore, this also holds even after the resolution in P2OFE,
as guaranteed by the perfect ambiguity of P2OFE.

4 Mathematical Assumptions

The P2OFE protocol is bilinear pairing based, and its security is based
on the Decision Linear and Strong Diffie-Hellman assumptions, which are
reviewed as follows:

Bilinear Pairing. Let G,GT be two cyclic groups of prime order p, and
g be a random generator of G. The map ê : G×G→ GT is a bilinear pair-
ing if (1) Bilinear: ∀u, v ∈ Zp, ê(g

u, gv) = ê(g, g)uv; (2) Non-degenerate:
ê(g, g) ̸= 1T , where 1T is the identity element of group GT ; and (3) Com-
putable: there exists a polynomial-time algorithm for computing ê(U, V )
for any U, V ∈ G.

Definition 6 (Decision Linear Assumption [8]). Let G,GT be cyclic
groups of prime order p, and g be a random generator of G. Let ê : G×
G → GT be a bilinear pairing. The Decision Linear (DLIN) assumption
in the context of (G,GT , ê, p, g) says that there is no p.p.t. algorithm A
such that for all F,G← G, s, t, z ← Zp,∣∣∣Pr[A(F,G, F s, Gt, gs+t) = 1]− Pr[A(F,G, F s, Gt, gz) = 1]

∣∣∣ ≤ negl(k),

where negl(·) is a negligible function in the security parameter k, and the
probabilities are taken over the choices of F,G ∈ G, s, t, z ∈ Zp and the
random bits consumed by A.

Definition 7 (Strong Diffie-Hellman Assumption [7]). Let G be a
cyclic group of prime order p, and g be a random generator of it. The
ℓ-Strong Diffie-Hellman (ℓ-SDH) assumption says that there is no p.p.t.
algorithm A such that for all x← Zp,

Pr
[
Z = g

1
x+c | (Z, c)← A(g, gx, gx2

, · · · , gxℓ
)
]
≤ negl(k),

where c ∈ Zp, and the probability is taken over the choice of x ∈ Zp and
the random bits consumed by A.

5 Our Protocol

In this section we present a concrete construction of P2OFE. Before pre-
senting the concrete protocol, we give a high level description of how our
protocol works.
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5.1 High Level Idea

Briefly speaking, our protocol makes use of Boneh-Boyen short signature
scheme (BB signature, for short) [7] and the tag-based public key encryp-
tion scheme [24]. It essentially follows the sign-then-encrypt paradigm.
To generate a full signature ζ on message M , the signer simply runs the
corresponding algorithm of BB signature scheme. To partially sign M ,
the signer first generates a BB signature ζ = (S, r) and encrypts ζ w.r.t.
the arbitrator’s public key using the tag-based encryption scheme while
keeping r public. Let the ciphertext be e. Then the signer encrypts (part
of) e under the intended verifier’s public key again and obtains a new
ciphertext c. The two encryptions are twisted together so that the arbi-
trator and the intended verifier can perform their own decryption, but
cannot recover the signer’s full signature alone. To prevent the adver-
sary from making use of the resolution oracle to break the security of the
protocol, we use a strong one-time signature scheme to sign the whole
ciphertext and use the fresh one-time verification key as the tag in the
tag-based encryption. To convince the verifier the validity of σ, the signer
needs carry out a proof with the verifier.

In order to resolve a partial signature σ to a full one, the verifier
sends σ to the arbitrator. The latter uses its secret key to do the first
level decryption and returns the resulting value, which is a ciphertext
of ζ. The verifier then extracts the full signature by performing another
decryption using its own secret key.

5.2 The Protocol

Let G,GT be two cyclic multiplicative groups of prime order p, g a ran-
dom generator of G, and ê : G×G→ GT be a bilinear pairing. Let OTS
be a strong one-time signature scheme and VK be the space of one-time
verification keys. Let H : G5×VK → Zp be a collision-resistant hash func-
tion. Our P2OFE protocol works as follows. In the protocol we assume the
message space is Zp, which can be easily extended to {0, 1}∗ by applying
a collision-resistant hash function onto the message.

Akg. The arbitrator chooses at random ξ1, ξ2 ← Zp, K,L ∈ G, and
computes F = g1/ξ1 , G = g1/ξ2 . It sets Apk = (F,G,K,L) and Ask =
(ξ1, ξ2).

UKg. The user Ui chooses at random xi, yi, ξi1, ξi2 ∈ Zp and computes
Xi = gxi , Yi = gyi , Fi = g1/ξi1 and Gi = g1/ξi2 . The user sets Pki =
(Xi, Yi, Fi, Gi,Ki, Li) and Ski = (xi, yi, ξi1, ξi2).
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PSig. Given a message M , the signer Ui generates its partial signature
for the verifier Uj as follows.
1. Select at random r, s, t, s′, t′ ∈ Zp.
2. Run OTS.Kg(1k) to generate a one-time key pair (otvk, otsk).
3. Compute

c1 = F s′
j , c2 = Gt′

j , S = g1/(xi+M+yi·r),

e1 = F s, e2 = Gt, e3 = Sgs+tgs
′+t′ , α = H(c1, c2, e1, e2, e3, otvk),

c4 = (gαKj)
s′ , c5 = (gαLj)

t′ , e4 = (gαK)s, e5 = (gαL)t,

δ = OTS.Sig(otsk,M∥Pki∥Pkj∥c∥e∥r),

where e = (e1, e2, e3, e4, e5) and c = (c1, c2, c4, c5).
If xi +M + yir = 0 mod p, the signer chooses another r and repeats
the process. Its partial signature on M is σ = (c, e, r, otvk, δ).

PVer. Given a partial signature σ = (c, e, r, otvk, δ), Ui and Uj check
the well-formedness of the signature locally, and do nothing if either
of the following does not hold:

ê(e4, F ) = ê(e1, g
αK), (1)

ê(e5, G) = ê(e2, g
αL), (2)

ê(c4, Fj) = ê(c1, g
αKj), (3)

ê(c5, Gj) = ê(c2, g
αLj), (4)

OTS.Sig(M∥Pki∥Pkj∥c∥e∥r, otvk, δ) = 1, (5)

where α = H(c1, c2, e1, e2, e3, otvk). Then they carry out the following
witness-indistinguishable proof to show that σ contains a valid BB
signature of either Ui or Uj :

Π
def
= PK

{
(s, t, s′, t′) : c1 = F s′

j ∧ c2 = Gt′
j ∧ e1 = F s ∧ e2 = Gt

∧
(
ê(e3 · g−s−t−s′−t′ , Xig

MY r
i ) = ê(g, g)

∨ ê(e3 · g−s−t−s′−t′ , Xjg
MY r

j ) = ê(g, g)
)}

. (6)

Sig. To generate a full signature on message M for the verifier Uj , the
signer Ui randomly selects r ∈ Zp, and computes

S = g1/(xi+M+yi·r).

Again, in case that xi +M + yir = 0 mod p, it chooses another r and
repeats the computation. Its full signature on M is ζ = (S, r).
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Ver. Given (M, ζ) where ζ = (S, r), the verifier checks if

ê(S,Xig
MY r

i ) = ê(g, g). (7)

It outputs 1 if the equation holds, and 0 otherwise.
ResA. Given (M,σ, Pki, Pkj) where σ = (c, e, r, otvk, δ), the arbitrator

returns ⊥ if either Eq. (1), (2), (3), (4) or (5) fails to hold; otherwise,
it computes

c3 = e3e
−ξ1
1 e−ξ2

2 , (8)

and returns θ = (c1, c2, c3, c4, c5, e3, r, otvk).
ResV . Given (M, θ, Pki, Pkj), where θ = (c1, c2, c3, c4, c5, e3, r, otvk), the

verifier outputs ⊥ if either Eq. (3) or (4) fails to hold; otherwise, it
computes

S = c3c
−ξj1
1 c

−ξj2
2 . (9)

It outputs ζ = (S, r) if Eq. (7) holds, and ⊥ otherwise.

5.3 Security

Below we show the security of our P2OFE protocol based on the assump-
tions described in Sec. 4.

Theorem 1. Our P2OFE protocol is resolution ambiguous.

Proof. Notice that the full signature output by the signer and that output
by the resolution protocol are of the form ζ = (S, r), which is a Boneh-
Boyen signature on the message M . Therefore, our P2OFE protocol is
perfectly resolution ambiguous. ⊓⊔

Theorem 2. Our P2OFE protocol is signer ambiguous if DLIN assump-
tion holds, H is collision-resistant and OTS is a strong one-time signature
scheme.

Theorem 3. Our P2OFE protocol is perfect ambiguous, if DLIN assump-
tion holds, H is collision resistant and OTS is a strong one-time signature
scheme.

Theorem 4. Our P2OFE protocol is secure against signers, if SDH as-
sumption holds, and Π is sound and witness-indistinguishable.

Theorem 5. Our P2OFE protocol is secure against the arbitrator if SDH
assumption holds.

Due to the page limit we defer the proofs to the full version.

16



6 Resolution in Practice

In this section we describe one of the ways on how P2OFE runs in practice.
Suppose the electronic contract that Alice and Bob want to secretly sign
is M , and their semi-trusted third party is Ted. Recall that the contract
M itself does not need to be secret, as anyone can prepare such a contract.
Instead, signatures of Alice and Bob should be kept secret from others.
Without their signatures, no one can confirm whether they have signed
the contract or have really performed such a business deal.

Following the framework of optimistic fair exchange, Alice and Bob
exchange their signatures on M . If everything goes well, they will receive
the counterpart’s full signature. Due to that a party might refuse to con-
tinue the run of the exchange protocol, or that the internet connection
might become down, there are two cases in which a dispute will occur
between the two parties, as below:

1. after sending out the first-move message, which is Alice’s partial sig-
nature σA on M , Alice receives nothing;

2. after sending out the second-move message, which is Bob’s full signa-
ture ζB on M , Bob receives nothing.

Let us focus on the latter case first. In this case, Bob can resort to
the arbitrator, Ted, for converting σA to the full signature of Alice. Be-
fore the conversion, Bob has to show the fulfillment of his obligation.
Traditionally, this can be done by sending his full signature ζB to the
arbitrator, the validity of which can be verified publicly. However, this
will let the arbitrator confirm, and even show to others the involvemen-
t of Bob as ζB shows that Bob indeed signed M . This is undesired in
some sensitive applications. To avoid this problem, Bob instead sends his
partial signature σB on M to Ted, and carries out a zero-knowledge (or
designated-verifier [23]) proof of knowledge to convince Ted that σB does
encapsulate his full signature on M . If he accepts the proof, Ted runs
ResA on input σA (as well as M) to obtain the intermediate value θA
and sends it to Bob. In the meanwhile, he also runs ResA on input σB
to obtain Bob’s intermediate value θB and sends it to Alice, in order to
avoid the case in which Bob tried to cheat at the end of the first move
and did not ever send his full signature to Alice. Figure 3 shows how the
resolution of P2OFE works in practice, where ΠB is the proof run by B
to show the fulfillment of his obligation.

Now let us go back to the former case. If Bob does not try to cheat
and simply aborts the protocol, guaranteed by the signer ambiguity, Bob
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does not learn anything from Alice partial signature, as long as Ted does
not collude with Bob. In this case, neither Alice nor Bob obtains their
counterpart’s (full) signature. However, if Bob tries to cheat and asks Ted
for the resolution, according to the aforementioned resolution procedure,
Bob still needs to provide his partial signature and a proof to support the
validity of his signature.

Fig. 3. P2OFE: Resolution in Practice

It should be noticed that the message signed by Alice and that signed
by Bob are not required to be the same, depending on the applications.
In applications where they need sign different messages, it suffices that
Alice (resp. Bob) runs algorithms PSig, Sig on input MA (resp. MB) and
runs PVer, Ver, ResV on input MB (resp. MA).

7 Conclusion

We introduced the notion P2OFE for achieving the privacy preserving
property not just against a semi-trusted honest-but-curious arbitrator,
but also against a completely malicious arbitrator. This is the first time
in the context of OFE that signer privacy can be ensured even after the
resolution. We also proposed an efficient concrete construction of P2OFE
with each of its full signatures being as simple as a Boneh-Boyen short
signature. Based on SDH and DLIN assumptions, we also showed its
security under the security model we defined without random oracles.
As of practical interest, we further demonstrated how the resolution can
actually work in practice.
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E. Rachlin. Making p2p accountable without losing privacy. In WPES, pages
31–40. ACM, 2007.

7. D. Boneh and X. Boyen. Short signatures without random oracles. In EURO-
CRYPT04, volume 3027 of LNCS, pages 56–73. Springer, 2004.

8. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in
Cryptology - CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,
pages 41–55. Springer, 2004.

9. D. Chaum. Designated confirmer signatures. In EUROCRYPT94, volume 950 of
LNCS, pages 86–91. Springer, 1995.

10. Y. Dodis, P. J. Lee, and D. H. Yum. Optimistic fair exchange in a multi-user
setting. In PKC07, volume 4450 of LNCS, pages 118–133. Spriner, 2007.

11. Y. Dodis and L. Reyzin. Breaking and repairing optimistic fair exchange from
PODC 2003. In ACM Workshop on Digital Rights Management, DRM 2003, pages
47–54. ACM, 2003.

12. Y. Dodis and D. H. Yum. Time capsule signatures. In FC05, volume 3570 of
LNCS, pages 57–71. Springer, 2005.

13. J. A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract
signing. In CRYPTO99, volume 1666 of LNCS, pages 449–466. Springer, 1999.

19



14. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In EUROCRYPT08, volume 4965 of LNCS, pages 415–432. Springer, 2008.

15. Q. Huang, D. S. Wong, and W. Susilo. A new construction of designated confirmer
signature and its application to optimistic fair exchange - (extended abstract). In
Pairing10, volume 6487 of LNCS, pages 41–61. Springer, 2010.

16. Q. Huang, D. S. Wong, and W. Susilo. Efficient designated confirmer signature
and DCS-based ambiguous optimistic fair exchange. IEEE Transactions on Infor-
mation Forensics and Security, 6(4):1233–1247, 2011.

17. Q. Huang, D. S. Wong, and W. Susilo. Group-oriented fair exchange of signatures.
Information Sciences, 181(16):3267–3283, 2011.

18. Q. Huang, D. S. Wong, and W. Susilo. The construction of ambiguous optimistic
fair exchange from designated confirmer signature without random oracles. In
PKC12, volume 7293 of LNCS, pages 120–137. Springer, 2012.

19. Q. Huang, G. Yang, D. S. Wong, and W. Susilo. Ambiguous optimistic fair ex-
change. In ASIACRYPT08, volume 5350 of LNCS, pages 74–89. Springer, 2008.

20. Q. Huang, G. Yang, D. S. Wong, and W. Susilo. Efficient optimistic fair exchange
secure in the multi-user setting and chosen-key model without random oracles. In
CT-RSA08, volume 4964 of LNCS, pages 106–120. Springer, 2008.

21. Q. Huang, G. Yang, D. S. Wong, and W. Susilo. A new efficient optimistic fair
exchange protocol without random oracles. International Journal of Information
Security, 11(1):53–63, 2012.

22. X. Huang, Y. Mu, W. Susilo, W. Wu, J. Zhou, and R. H. Deng. Preserving
transparency and accountability in optimistic fair exchange of digital signatures.
IEEE Transactions on Information Forensics and Security, 6(2):498–512, 2011.

23. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their
applications. In EUROCRYPT96, volume 1070 of LNCS, pages 143 – 154. Springer,
1996.

24. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC06, volume
3876 of LNCS, pages 581–600. Springer, 2006.
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