University of Wollongong

Research Online

Classical versions of $\mathrm{BCI}, \mathrm{BCK}$ and BCIW logics

Martin W. Bunder
University of Wollongong, mbunder@uow.edu.au
John K. Slaney
Australian National University

Follow this and additional works at: https://ro.uow.edu.au/eispapers
Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation

Bunder, Martin W. and Slaney, John K., "Classical versions of BCI, BCK and BCIW logics" (1994). Faculty of Engineering and Information Sciences - Papers: Part A. 1894.
https://ro.uow.edu.au/eispapers/1894

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Classical versions of BCI, BCK and BCIW logics

Abstract

The question is, is there a formula X, independent of $B, C, K 1, I$ and W that creates distinct subclassical logics BCIX,BCKX and BCIWX, while BCKWX is the full classical implicational logic TV?

Keywords
logics, bciw, bck, classical, bci, versions

Disciplines

Engineering | Science and Technology Studies

Publication Details

Bunder, M. W. \& Slaney, J. K. (1994). Classical versions of BCI, BCK and BCIW logics. Bulletin of the Section of Logic, 23 (2), 61-65.

John K. Slaney
Martin W. Bunder

CLASSICAL VERSIONS OF $B C I, B C K$ AND $B C I W$ LOGICS

Karpenko in [2] raises an interesting problem which can be represented in the diagram below.

Each of the corners of the cube is to represent a distinct system of implicational logic based on some of the axioms:

$$
\begin{array}{rll}
I & : p \rightarrow p \\
B & :(q \rightarrow r) \rightarrow((p \rightarrow q) \rightarrow(p \rightarrow r)) \\
C & : & (p \rightarrow(q \rightarrow r)) \rightarrow(q \rightarrow(p \rightarrow r)) \\
W & :(p \rightarrow(p \rightarrow q)) \rightarrow(p \rightarrow q) \\
K_{1} & :(p \rightarrow q) \rightarrow(r \rightarrow(p \rightarrow q)) \\
X & : \quad ?
\end{array}
$$

and the rules modus ponens and substitution.
The axioms shown on the cube for the logic $B C I$ and the relevance logic $R \rightarrow(B C I W)$ are well known to be independent. Karpenko shows that I, B, C and K_{1} and B, C, K_{1} and W are independent axioms for $B C K$ logic and intuitionistic implicational logic $\left(H_{\rightarrow}\right)$ respectively.

The question is, is there a formula X, independent of B, C, K_{1}, I and W that creates distinct subclassical logics $B C I X, B C K X$ and $B C I W X$, while $B C K W X$ is the full classical implicational logic $T V_{\rightarrow}$? In [1] Karpenko considers various candidates which do not meet all of the requirements. Since then however he has, in [3], found such an X (which we will call X_{k}):

$$
X_{k}:(p \rightarrow((q \rightarrow q) \rightarrow p)) \rightarrow(((p \rightarrow q) \rightarrow q) \rightarrow((q \rightarrow p) \rightarrow p)) .
$$

He has also extended the work so that he now has an alternative to C and one to K_{1} which are independent of each other and of B, W, X_{k} as well as I.

Independently the present authors arrived at another version of X.
We show here that:

$$
X:((((p \rightarrow q) \rightarrow q) \rightarrow p) \rightarrow r) \rightarrow(((((q \rightarrow p) \rightarrow p) \rightarrow q) \rightarrow r) \rightarrow r)
$$

meets the requirements. We also show that our $B C K X$ and $B C I W X$ have $B C K X_{k}$ and $B C I W X_{k}$ respectively as proper subsystems. Our X is not provable in $B C I X_{k}$, but whether $B C I X_{k}$ is a subsystem of our $B C I X$ is still open.

Other interesting open questions are:
(1) Is there an infinite number of distinct systems $B C I X_{i}, B C K X_{i}$ and $B C I W X_{i}$?
(2) Is there a weakest and stronger system $B C I X_{i}, B C K X_{i}$ or $B C I W X_{i}$?

Our X is due to Meyer and Parks [4], who proposed it as the independent axioms for the system $R M_{\rightarrow .} . B C I W X$ is in fact equivalent to $R M_{\rightarrow}$.

Our results are expressed as the following theorems:
Theorem 1. $H_{\rightarrow}+X=T V_{\rightarrow}$
Proof. $\quad I, C \vdash((p \rightarrow r) \rightarrow r) \rightarrow[(((p \rightarrow r) \rightarrow r) \rightarrow p) \rightarrow p]$, so $\quad I, C, B, X \vdash((p \rightarrow r) \rightarrow r) \rightarrow[((((r \rightarrow p) \rightarrow p) \rightarrow r) \rightarrow p) \rightarrow p]$ and $\quad I, C, B, X, W \vdash(((((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow(p \rightarrow q)) \rightarrow p) \rightarrow p$ (with $p \rightarrow q / r$).
$B, C \vdash(p \rightarrow v) \rightarrow[((p \rightarrow s) \rightarrow p) \rightarrow((v \rightarrow s) \rightarrow p)]$, $K, B, C \vdash((p \rightarrow s) \rightarrow p) \rightarrow(((u \rightarrow p) \rightarrow s) \rightarrow p)$ (with $u \rightarrow p / v$) and $\quad I, C, B, X, W, K \vdash[(p \rightarrow(p \rightarrow q)) \rightarrow p] \rightarrow p$ (with $p \rightarrow q / s,(p \rightarrow q) \rightarrow p / u)$.
Finally $\quad W, B \vdash((p \rightarrow q) \rightarrow p) \rightarrow((p \rightarrow(p \rightarrow q)) \rightarrow p)$
so $\quad I, C, B, X, W, K \vdash((p \rightarrow q) \rightarrow p) \rightarrow p$.

The above proof was discovered using the automatic theorem prover SCOTT (see [5]).

This formula strengthens intuitionistic implicational logic to classical implicational logic.

Theorem 2.
(i) $B C K W X \neq B C K W$
(ii) $B C I W X \neq B C K_{1} W X$
(iii) $B C K_{1} X \neq B C K_{1} W X$

Proof.
(i) It follows from Theorem 1 that X is a classical but not an intuitionistic tautology. It is therefore not derivable in $B C K_{1} W$.
(ii) It is easy to show that every theorem of $B C I W X$ logic has value 1 or 2 under the given matrix, but K_{1} does not.

\rightarrow	0	1	2
0	2	2	2
1	0	1	2
2	0	0	2

(iii) It is easy to show that every theorem of $B C K_{1} X$ has value 2 under the given matrix but that W does not.

\rightarrow	0	1	2
0	2	2	2
1	1	2	2
2	0	1	2

Note that other inequalities come directly from these. For example from (i)

$$
\begin{gathered}
B C K W \neq B C I W X, \quad B C I W \neq B C I W X, \quad B C K X \neq B C K W, \\
B C I X \neq B C K W, \quad B C I X \neq B C I W
\end{gathered}
$$

The matrices in (ii) and (iii), as well as a discussion on $R M_{\rightarrow}$, appear in Anderson and Belnap [1].

Theorem 3. $\quad X$ is not provable in $B C I W X_{k}$ or $B C K X_{k}$ and so not in $B C I X_{k}$.

Proof.
(i) All theorems of $B C I W X_{k}$ satisfy the following matrix (generated by MaGIC [6]), where 1,2 and 3 are designated values.

\rightarrow	0	1	2	3
0	3	3	3	3
1	0	1	0	3
2	0	0	2	3
3	0	0	0	3

Our X has value 0 when $p=2, q=1$ and $r=0$.
(ii) All theorems of $B C K X_{k}$ satisfy the following matrix (generated by MaGIC [6]), where the designated value is 3 .

\rightarrow	0	1	2	3
0	3	2	3	3
1	2	3	3	3
2	2	2	3	3
3	0	1	2	3

Our X has value 2 when $p=1, q=0$ and $r=2$.
Theorem 4. X_{k} is provable in $B C K X$ and in $B C I W X$.
Proof.
(i) By I and C,

By K
so by B and C,
Therefore
Then using (1) and X hence

$$
\begin{aligned}
& (p \rightarrow q) \rightarrow q \vdash(((p \rightarrow q) \rightarrow q) \rightarrow p) \rightarrow p . \\
& \vdash p \rightarrow((q \rightarrow p) \rightarrow p), \\
& \vdash(((q \rightarrow p) \rightarrow p) \rightarrow q) \rightarrow(p \rightarrow q) . \\
& q \rightarrow p,(p \rightarrow q) \rightarrow q \vdash(((q \rightarrow p) \rightarrow p) \rightarrow q) \rightarrow p . \\
& q \rightarrow p,(p \rightarrow q) \rightarrow q \vdash p, \\
& \vdash((p \rightarrow q) \rightarrow q) \rightarrow((q \rightarrow p) \rightarrow p)
\end{aligned}
$$

and $\vdash X_{k}$ follows by K.
(ii) The system $B C I W X$ is the system $R M \rightarrow$ of Anderson and Belnap [1]. R. K. Meyer shows in [1] that a formula Y is provable in $R M \rightarrow$ iff it has only nonnegative valuations $v(Y)$, where v is defined over the integers as follows:

$$
\begin{aligned}
v(p \rightarrow q) & =\min (-v(p), v(q)) \text { if } v(p)>v(q) \\
& =\max (-v(p), v(q)) \text { if } v(p) \leq v(q) . \\
v\left(X_{k}\right) & =\max (|v(p)|,|v(q)|), X_{k} \text { is provable in } B C I W X .
\end{aligned}
$$

References

[1] A. R. Anderson, N. D. Belnap, Entailment, Princeton University Press, (1975).
[2] A. S. Karpenko, Lattices of implicational logics, Bulletin of the Section of Logic, vol. 21 (1992), pp. 82-91.
[3] A. S. Karpenko, Constructions of logics: what is logic? Private correspondence.
[4] R. K. Meyer, Z. Parks, Independent axioms for the implicational fragment of Sobocinski's three valued logic, Zeitschrift für Mathematische Logik and Grundlagen der Mathematik, vol. 18 (1972), pp. 291-295.
[5] J. Slaney, SCOTT: A Model-Guided Theorem Prover, Proceedings of the 13th International Joint Conference on Artificial Intelligence, 1993 (forthcoming).
[6] J. Slaney, G. Meglicki, MaGIC (Matrix Generator for Implication Connectives) Version 2.0 Notes and Guide, Technical report TR-ARP1/91, Automated Reasoning Project, Australian National University, Canberra, 1991.

Automated Reasoning Project
Australian National University
Cannberra ACT 0200
Australia

Department of Mathematics University of Wollongong Wollongong NSW 2522
Australia

