Cancellation laws for BCl -algebra, atoms and p -semisimple BCl -algebras

M W. Bunder
University of Wollongong, mbunder@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers
Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation

Bunder, M W., "Cancellation laws for BCl-algebra, atoms and p-semisimple BCl-algebras" (1998). Faculty of Engineering and Information Sciences - Papers: Part A. 1893.
https://ro.uow.edu.au/eispapers/1893

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Cancellation laws for BCI-algebra, atoms and p-semisimple BCI-algebras

Abstract

We derive cancellation laws for BCl -algebras and for p -semisimple BCl - algebras, show that the set of all atoms of a BCl -algebra is a p semisimple BCl -algebra and that in a p -semisimple BCl -algebra and $=$ are the same.

Keywords
p, semisimple, algebras, atoms, cancellation, algebra, bci, laws

Disciplines

Engineering | Science and Technology Studies

Publication Details

Bunder, M. W. (1998). Cancellation laws for $\mathrm{BCl}-$-algebra, atoms and p -semisimple BCl -algebras. Scientiae Mathematicae Japonicae, 1 (1), 19-22.

CANCELLATION LAWS FOR BCI-ALGEBRA, ATOMS AND P-SEMISIMPLE BCI-ALGEBRAS

M.W. BUNDER

Received July 8, 1997

Abstract

We derive cancellation laws for $B C I$-algebras and for p-semisimple $B C I$ algebras, show that the set of all atoms of a $B C I$-algebra is a p semisimple $B C I$-algebra and that in a p-semisimple $B C I$-algebra \leq and $=$ are the same

1. Introduction. $B C I$-algebras, first introduced by Iséki in [1], can be defined as follows: Definition 1 An algebra $\langle X ; *, 0\rangle$ of type $(2,0)$ is a $B C I$-algebra if for all $x, y, z \in X$.

BCI-1
$(x * y) *(x * z) \leq z * y ;$
$B C I-2$
BCI-3
$x *(x * y) \leq y ;$
$x \leq x$;
$B C I-4 \quad x \leq y$ and $y \leq x$ imply $x=y ;$
$B C I-5 \quad x \leq y$ iff $x * y=0$.
The following well known properties of $B C I$-algebras are used below.

$$
\begin{align*}
(x * y) * z & =(x * z) * y \tag{1}\\
0 *(x * y) & =(0 * x) *(0 * y) \tag{2}\\
x * 0 & =x \tag{3}\\
x *(x *(x * y)) & =x * y \tag{4}\\
x * x & =0 \tag{5}\\
x \leq 0 \Rightarrow \quad x & =0 \tag{6}
\end{align*}
$$

2. A Cancellation law for BCI-Algebras.

Theorem 1 If $\langle X ; *, 0\rangle$ is a $B C I$-algebra and $x, y, z \in X$ then:
(i) $x * y \leq x * z \quad \Rightarrow \quad 0 * y=0 * z$;
(ii) $y * x \leq z * x \quad \Rightarrow \quad 0 * y=0 * z$.

Proof (i) If $x * y \leq x * z$, by BCI-5,

$$
(x * y) *(x * z)=0
$$

and so by $B C I-1$ and $B C I-5$,

$$
\begin{equation*}
0 *(z * y)=0 \tag{a}
\end{equation*}
$$

and by (2),

$$
(0 * z) *(0 * y)=0
$$

1991 Mathematics Subject Classification. 06F35.
Key words and phrases. BCI-algebras.

Hence by BCI-5

$$
0 * z \leq 0 * y
$$

We now apply the same cancellation procedure to this as we did to $x * y \leq x * z$, this time "cancelling" the 0 to give:

$$
\begin{aligned}
& 0 * y \leq 0 * z \\
\therefore & 0 * y=0 * z .
\end{aligned}
$$

(ii) If $y * x \leq z * x$, by $B C I-5$,

$$
(y * x) *(z * x)=0 .
$$

$B C I-1$ and (1) give
so

$$
\begin{gather*}
((y * x) *(z * x)) *(y * z)=0 \\
0 *(y * z)=0 \tag{b}
\end{gather*}
$$

giving, as above,

$$
0 * y \leq 0 * z
$$

As in (i) this gives $0 * y=0 * z$.
Corollary If $\langle X ; *, 0\rangle$ is a $B C I$-algebra and $x, y, z \in X$ then
(i) $x * y=x * z \quad \Rightarrow \quad 0 * y=0 * z$
(ii) $y * x=z * x \quad \Rightarrow \quad 0 * y=0 * z$.

We have two further properties resulting from the above cancellation laws:
Theorem 2 If $\langle X ; *, 0\rangle$ is a $B C I$-algebra and $x, y, z \in x$ then:
(i) $x \leq x * z \quad \Rightarrow \quad 0 \leq z$
(ii) $x * y \leq x \quad \Rightarrow \quad 0 \leq y$.

Proof (i) If $x \leq x * z$, by (3) $x * 0 \leq x * z$ and so by Theorem 1 (i) $0 * z=0 * 0$. This gives $0 * z=0$ ie $0 \leq z$.
(ii) If $x * y \leq x$, by (3), $x * y \leq x * 0$ and so by Theorem 1 (ii) $0 * y=0 * 0=0$, so $0 \leq y$.
3. P-Semisimple Algebras. These were introduced by Lei and Xi in [2] as follows: Definition 2 A $B C I$-algebra $\langle X ; *, 0\rangle$ is p-semisimple if

$$
(\forall x \in X)(0 * x=0 \quad \Rightarrow \quad x=0)
$$

In these algebras we find that \leq becomes the same as $=$.
Theorem 3 If $\langle X ; *, 0\rangle$ is a p-semisimple $B C I$-algebra and $x, y \in X$ then if $x \leq y$ also $x=y$.
Proof If $x \leq y, \quad x * y=0$ by $B C I-5$. Also by (5), $x * y=x * x$, so by the corollary to Theorem $1,0 * y=0 * x$.

As $(0 * x) *(0 * x)=0$, we have $(0 * y) *(0 * x)=0$ and by $(2), 0 *(y * x)=0$.
As $B C I$-algebras are closed under $*, \quad y * x \in X$, so if the algebra is p-semisimple, $y * x=0$.

By $B C I-4, \quad x=y$.
Our cancellation laws can now be strengthened.
Theorem 4 If $\langle X ; *, 0\rangle$ is a p-semisimple $B C I$-algebra and $x, y, z \in X$ then:
(i) $x * y \leq x * z \quad \Rightarrow \quad y=z$;
(ii) $y * x \leq z * x \quad \Rightarrow \quad y=z$.

Proof (i) If $x * y \leq x * z$, by Theorem 1(i) we get $0 * z=0 * y$ and so $(0 * z) *(0 * y)=0$.
By (2) this gives $0 *(z * y)=0$, so if the algebra is p -semisimple we have $z * y=0$ i.e. $z \leq y$. The result then follows from Theorem 3.
(ii) Similar.

Corollary If $\langle X ; *, 0\rangle$ is a p-semisimple $B C I$-algebra and $x, y, z \in X$ then
(i) $x * y=x * z \quad \Rightarrow \quad y=z$;
(ii) $y * x=z * x \quad \Rightarrow \quad y=z$.
4. Atoms. Meng and Xin in [5] introduced the notion of atom and the class of all atoms of a $B C I$-algebra.
Definition 3 An element of a $B C I$-algebra $\langle X ; *, 0\rangle$ is an atom if

$$
(\forall z \in X)(z * a=0 \quad \Rightarrow \quad z=a)
$$

Definition $4 \quad L(X)=\{x \in X \mid a$ is an atom of $X\}$
Meng and Xin prove in [5]:
Theorem 5 If $\langle X ; *, 0\rangle$ is a $B C I$-algebra then
(i) a is an atom iff $a=0 *(0 * a)$;
(ii) $(\forall x \in X) 0 * x \in L(X)$.
((ii) also follows from (4) and (i).)

The following simple representation of $L(X)$ results:
Theorem $6 \quad L(X)=\{0 * x \mid x \in X\}$.
Meng and Xin prove that $L(X)$ is a $B C I$-algebra. The following result of Lei and Xi [2]:
Theorem 7 If $\langle X ; *, 0\rangle$ is a $B C I$-algebra then X is p-semisimple iff
$(\forall x \in X) 0 *(0 * x)=x$.
and Theorem $5(\mathrm{i})$ give us:
Theorem 8 If $\langle X ; *, 0\rangle$ is a $B C I$-algebra $\langle L(X) ; *, 0\rangle$ is a p-semisimple $B C I$-algebra.
A final result on $L(X)$ is the following:
Theorem 9 If $\langle X ; *, 0\rangle$ is a $B C I$-algebra then $L(L(X))=L(X)$.
Proof By Theorem 6,

$$
\begin{aligned}
L(L(X)) & =\{0 * x \mid x \in L(X)\} \\
& =\{0 *(0 * y) \mid y \in X\}
\end{aligned}
$$

Similarly

$$
L(L(L(X)))=\{0 *(0 *(0 * z)) \mid z \in X\}
$$

so by (4)

$$
L(L(L(X)))=L(X)
$$

Hence as $L(L(L(X))) \subseteq L(L(X)) \subseteq L(X)$ we have $L(L(X))=L(X)$.
5. Powers. In [2] Lei and Xi define a new operation + by:

Definition $5 \quad x+y=x *(0 * y)$
and show that if $\langle X ; *, 0\rangle$ is a p-semisimple $B C I$-algebra then $\langle X,+\rangle$ is an abelian group.
In [3] Meng and Wei use the same operation to define powers of elements by:

$$
\begin{aligned}
x^{1} & =x \\
x^{n+1} & =x *\left(0 * x^{n}\right)
\end{aligned}
$$

(though $m x$ instead of x^{m} might have been in better keeping with +).
The following are new properties of this form of exponentiation:
Theorem 10 If x is an element of a $B C I$-algebra $\langle X ; *, 0\rangle$ then:
(i) $(0 * x)^{n}=0 * x^{n}$;
(ii) $(0 * x)^{n}=(\ldots((0 * x) * x) \ldots) * x$
(where there are $n x \mathrm{~s}$ on the right hand side).
Proof (i) By induction on n.
$n=1$ - obvious.
Assuming (i) for n,

$$
\begin{align*}
(0 * x)^{n+1} & =(0 * x) *\left(0 *(0 * x)^{n}\right) \\
& =(0 * x) *\left(0 *\left(0 * x^{n}\right)\right) \tag{c}\\
& =0 *\left(x *\left(0 * x^{n}\right)\right) \tag{2}\\
& =0 * x^{n+1}
\end{align*}
$$

(ii) By induction on n.
$n=1$ - obvious.
Assuming (ii) for n, by (c) above, (1) and (4):

$$
\begin{aligned}
(0 * x)^{n+1} & =\left(0 *\left(0 *\left(0 * x^{n}\right)\right)\right) * x \\
& =\left(0 * x^{n}\right) * x \\
& =(0 * x)^{n} * x \\
& =(\ldots((0 * x) * x) \ldots) * x .
\end{aligned}
$$

as required.

References

1. K. Iséki, "An algebra related with a propositional calculus" Proc. Japan Acad. 42 (1966), 26-29.
2. T. Lei and C. Xi "p-Radical in BCI-algebras" Math. Japonica 30, (1985) 511-517.
3. J. Meng and S.M. Wei "Periods of elements in BCI-algebras" Math. Japonica 38 (1993), 427-431.
4. J. Meng and S.M. Wei "Periodic BCI-algebras and closed ideals" Math. Japonica 38 (1993), 571-575.
5. J. Meng and X.L. Xin "Characterization of atoms in BCI-algebras" Math Japonica 37, (1992), 359-361.
(M.W. Bunder) Department of Mathematics, University of Wollongong, Wollongong NSW 2522, Australia. Phone: 6142 214151; fax: 6142214845

E-mail address: martin_bunder@uow.edu.au

