University of Wollongong

Research Online

Faculty of Engineering and Information Sciences - Papers: Part A

Faculty of Engineering and Information Sciences

1-1-1998

Cancellation laws for BCI-algebra, atoms and p-semisimple BCI-algebras

M W. Bunder University of Wollongong, mbunder@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers

Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation

Bunder, M W., "Cancellation laws for BCI-algebra, atoms and p-semisimple BCI-algebras" (1998). Faculty of Engineering and Information Sciences - Papers: Part A. 1893. https://ro.uow.edu.au/eispapers/1893

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Cancellation laws for BCI-algebra, atoms and p-semisimple BCI-algebras

Abstract

We derive cancellation laws for BCI-algebras and for p-semisimple BCI- algebras, show that the set of all atoms of a BCI-algebra is a p semisimple BCI-algebra and that in a p-semisimple BCI-algebra and = are the same.

Keywords

p, semisimple, algebras, atoms, cancellation, algebra, bci, laws

Disciplines

Engineering | Science and Technology Studies

Publication Details

Bunder, M. W. (1998). Cancellation laws for BCI-algebra, atoms and p-semisimple BCI-algebras. Scientiae Mathematicae Japonicae, 1 (1), 19-22.

CANCELLATION LAWS FOR BCI-ALGEBRA, ATOMS AND P-SEMISIMPLE BCI-ALGEBRAS

M.W. BUNDER

Received July 8, 1997

ABSTRACT. We derive cancellation laws for BCI-algebras and for p-semisimple BCI-algebras, show that the set of all atoms of a BCI-algebra is a p-semisimple BCI-algebra and that in a p-semisimple BCI-algebra \leq and = are the same.

1. Introduction. BCI-algebras, first introduced by Iséki in [1], can be defined as follows: **Definition 1** An algebra $\langle X; *, 0 \rangle$ of type (2,0) is a BCI-algebra if for all $x, y, z \in X$.

$$\begin{array}{lll} BCI\text{-}1 & (x*y)*(x*z) \leq z*y \; ; \\ BCI\text{-}2 & x*(x*y) \leq y; \\ BCI\text{-}3 & x \leq x ; \\ BCI\text{-}4 & x \leq y \; \text{and} \; \; y \leq x \; \text{imply} \; x = y; \\ BCI\text{-}5 & x \leq y \; \text{iff} \; \; x*y = 0. \end{array}$$

The following well known properties of BCI-algebras are used below.

- $\begin{array}{lll} (1) & (x*y)*z = (x*z)*y \\ (2) & 0*(x*y) = (0*x)*(0*y) \\ (3) & x*0 = x \\ (4) & x*(x*(x*y)) = x*y \\ (5) & x*x = 0 \\ \end{array}$
- $\begin{array}{ccc}
 (5) & & & x * x = 0 \\
 (6) & & x \le 0 & \Rightarrow & x = 0.
 \end{array}$

2. A Cancellation law for BCI-Algebras.

Theorem 1 If $\langle X; *, 0 \rangle$ is a *BCI*-algebra and $x, y, z \in X$ then:

- (i) $x * y \le x * z \Rightarrow 0 * y = 0 * z$;
- (ii) $y * x \le z * x \Rightarrow 0 * y = 0 * z$.

Proof (i) If $x * y \le x * z$, by BCI-5,

$$(x*y)*(x*z) = 0$$

and so by BCI-1 and BCI-5,

$$0 * (z * y) = 0 \tag{a}$$

and by (2),

$$(0*z)*(0*y) = 0.$$

¹⁹⁹¹ Mathematics Subject Classification. 06F35.

 $Key\ words\ and\ phrases.\ {\it BCI-algebras}.$

Hence by BCI-5

$$0 * z \le 0 * y$$
.

We now apply the same cancellation procedure to this as we did to $x*y \le x*z$, this time "cancelling" the 0 to give:

$$0 * y \le 0 * z$$

$$0 * y = 0 * z.$$

(ii) If y * x < z * x, by *BCI*-5,

$$(y*x)*(z*x) = 0.$$

BCI-1 and (1) give

$$((y*x)*(z*x))*(y*z) = 0$$

0*(y*z) = 0 -(b)

 \mathbf{SO}

giving, as above,

$$0 * y < 0 * z$$
.

As in (i) this gives 0 * y = 0 * z.

Corollary If $\langle X; *, 0 \rangle$ is a BCI-algebra and $x, y, z \in X$ then

- (i) $x * y = x * z \Rightarrow 0 * y = 0 * z$
- (ii) $y * x = z * x \Rightarrow 0 * y = 0 * z$.

We have two further properties resulting from the above cancellation laws:

Theorem 2 If $\langle X; *, 0 \rangle$ is a *BCI*-algebra and $x, y, z \in x$ then:

- (i) $x \le x * z \Rightarrow 0 \le z$
- (ii) $x * y \le x \Rightarrow 0 \le y$.

Proof (i) If $x \le x * z$, by (3) $x * 0 \le x * z$ and so by Theorem 1 (i) 0 * z = 0 * 0. This gives 0 * z = 0 ie $0 \le z$.

- (ii) If $x * y \le x$, by (3), $x * y \le x * 0$ and so by Theorem 1 (ii) 0 * y = 0 * 0 = 0, so $0 \le y$.
- **3. P-Semisimple Algebras.** These were introduced by Lei and Xi in [2] as follows: **Definition 2** A BCI-algebra $\langle X; *, 0 \rangle$ is p-semisimple if

$$(\forall x \in X)(0 * x = 0 \Rightarrow x = 0).$$

In these algebras we find that \leq becomes the same as = .

Theorem 3 If $\langle X; *, 0 \rangle$ is a p-semisimple BCI-algebra and $x, y \in X$ then if $x \leq y$ also x = y.

Proof If $x \le y$, x * y = 0 by BCI-5. Also by (5), x * y = x * x, so by the corollary to Theorem 1, 0 * y = 0 * x.

As (0*x)*(0*x) = 0, we have (0*y)*(0*x) = 0 and by (2), 0*(y*x) = 0.

As BCI-algebras are closed under $*, y*x \in X$, so if the algebra is p-semisimple, y*x=0.

By BCI-4, x = y.

Our cancellation laws can now be strengthened.

Theorem 4 If $\langle X; *, 0 \rangle$ is a p-semisimple BCI-algebra and $x, y, z \in X$ then:

- (i) $x * y \le x * z \implies y = z;$
- (ii) $y * x \le z * x \Rightarrow y = z$.

Proof (i) If $x * y \le x * z$, by Theorem 1(i) we get 0 * z = 0 * y and so (0 * z) * (0 * y) = 0. By (2) this gives 0 * (z * y) = 0, so if the algebra is p-semisimple we have z * y = 0 i.e. $z \le y$. The result then follows from Theorem 3.

(ii) Similar.

Corollary If $\langle X; *, 0 \rangle$ is a p-semisimple BCI-algebra and $x, y, z \in X$ then

- (i) $x * y = x * z \Rightarrow y = z;$
- (ii) $y * x = z * x \Rightarrow y = z$.
- **4. Atoms.** Meng and Xin in [5] introduced the notion of atom and the class of all atoms of a BCI-algebra.

Definition 3 An element of a BCI-algebra $\langle X; *, 0 \rangle$ is an atom if

$$(\forall z \in X)(z * a = 0 \quad \Rightarrow \quad z = a)$$

Definition 4 $L(X) = \{x \in X \mid a \text{ is an atom of } X\}$

Meng and Xin prove in [5]:

Theorem 5 If $\langle X; *, 0 \rangle$ is a BCI-algebra then

- (i) a is an atom iff a = 0 * (0 * a);
- (ii) $(\forall x \in X) \quad 0 * x \in L(X)$.
- ((ii) also follows from (4) and (i).)

The following simple representation of L(X) results:

Theorem 6 $L(X) = \{0 * x \mid x \in X\}.$

Meng and Xin prove that L(X) is a BCI-algebra. The following result of Lei and Xi [2]:

Theorem 7 If $\langle X; *, 0 \rangle$ is a *BCI*-algebra then X is p-semisimple iff

 $(\forall x \in X) \quad 0 * (0 * x) = x.$

and Theorem 5(i) give us:

Theorem 8 If $\langle X; *, 0 \rangle$ is a *BCI*-algebra $\langle L(X); *, 0 \rangle$ is a p-semisimple *BCI*-algebra.

A final result on L(X) is the following:

Theorem 9 If $\langle X; *, 0 \rangle$ is a *BCI*-algebra then L(L(X)) = L(X).

Proof By Theorem 6,

$$L(L(X)) = \{0 * x \mid x \in L(X)\}\$$

= \{0 * (0 * y) \| y \in X\}

Similarly

$$L(L(L(X))) = \{0 * (0 * (0 * z)) \mid z \in X\},\$$

so by (4)

$$L(L(L(X))) = L(X).$$

Hence as $L(L(L(X))) \subseteq L(L(X)) \subseteq L(X)$ we have L(L(X)) = L(X).

5. Powers. In [2] Lei and Xi define a new operation + by:

Definition 5 x + y = x * (0 * y)

and show that if $\langle X; *, 0 \rangle$ is a p-semisimple BCI-algebra then $\langle X, + \rangle$ is an abelian group.

In [3] Meng and Wei use the same operation to define powers of elements by:

$$x^{1} = x$$
 $x^{n+1} = x * (0 * x^{n}),$

(though mx instead of x^m might have been in better keeping with +).

The following are new properties of this form of exponentiation:

Theorem 10 If x is an element of a BCI-algebra $\langle X; *, 0 \rangle$ then:

- (i) $(0*x)^n = 0*x^n$;
- (ii) $(0*x)^n = (...((0*x)*x)...)*x$

(where there are n xs on the right hand side).

Proof (i) By induction on n.

n = 1 - obvious. Assuming (i) for n,

$$(0*x)^{n+1} = (0*x)*(0*(0*x)^n)$$

$$= (0*x)*(0*(0*x^n)) -(c)$$

$$= 0*(x*(0*x^n)) by (2)$$

$$= 0*x^{n+1}$$

(ii) By induction on n.

n = 1 - obvious.

Assuming (ii) for n, by (c) above, (1) and (4):

$$(0*x)^{n+1} = (0*(0*(0*x^n)))*x$$

$$= (0*x^n)*x$$

$$= (0*x)^n*x by (i)$$

$$= (...((0*x)*x)...)*x.$$

as required.

References

- 1. K. Iséki, "An algebra related with a propositional calculus" Proc. Japan Acad. 42 (1966), 26-29.
- 2. T. Lei and C. Xi "p-Radical in BCI-algebras" Math. Japonica 30, (1985) 511-517.
- 3. J. Meng and S.M. Wei "Periods of elements in BCI-algebras" Math. Japonica 38 (1993), 427-431.
- 4. J. Meng and S.M. Wei "Periodic BCI-algebras and closed ideals" Math. Japonica 38 (1993), 571-575.
- 5. J. Meng and X.L. Xin "Characterization of atoms in BCI-algebras" Math Japonica 37, (1992), 359-361.

(M.W. Bunder) Department of Mathematics, University of Wollongong, Wollongong NSW 2522, Australia. Phone: $61\ 42\ 214151$; fax: $61\ 42\ 214845$

E-mail address: martin_bunder@uow.edu.au