
University of Wollongong University of Wollongong

Research Online Research Online

Emerging Technologies Conference 2008 Faculty of Arts, Social Sciences & Humanities

6-2008

CSCI: A LEAP into the future CSCI: A LEAP into the future

J. Abrantes
University of Wollongong, jo@uow.edu.au

A. Porter
University of Wollongong, alp@uow.edu.au

W. Meyers
University of Wollongong, meyers@uow.edu.au

Ray Stace
University of Wollongong, rstace@uow.edu.au

Willy Susilo
University of Wollongong, wsusilo@uow.edu.au

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/etc08

Recommended Citation Recommended Citation
Abrantes, J.; Porter, A.; Meyers, W.; Stace, Ray; Susilo, Willy; Krishna, A.; Zhou, Z. Q.; Judge, D.; Franks, R.;
and Xia, Tianbing, "CSCI: A LEAP into the future" (2008). Emerging Technologies Conference 2008. 1.
https://ro.uow.edu.au/etc08/1

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/36998331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/etc08
https://ro.uow.edu.au/assh
https://ro.uow.edu.au/etc08?utm_source=ro.uow.edu.au%2Fetc08%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/etc08/1?utm_source=ro.uow.edu.au%2Fetc08%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

CSCI: A LEAP into the future CSCI: A LEAP into the future

Abstract Abstract
This paper outlines the development of a project which aims to improve the teaching and learning
outcomes within the Computer Sciences. A major strategy being examined is the effectiveness of digital
gamesbased learning. Utilising the Neverwinter Nights game engine the team have created a prototype to
be trialled in the first half of 2008. The project forms part of a broader faculty based solution to address
teaching and learning problems of first year students, known as QUALITY101.

Publication Details Publication Details
This conference paper was originally published as Abrantes, J, Porter, A, Meyers, W, Stace, R, Susilo, W,
Krishna, A, Zhou, ZQ, Judge, D, Franks, R and Xia, T, CSCI: A LEAP into the future, Proceedings of the
Emerging Technologies Conference, University of Wollongong, 18-21 June 2008.

Authors Authors
J. Abrantes, A. Porter, W. Meyers, Ray Stace, Willy Susilo, A. Krishna, Z. Q. Zhou, D. Judge, R. Franks, and
Tianbing Xia

This conference paper is available at Research Online: https://ro.uow.edu.au/etc08/1

https://ro.uow.edu.au/etc08/1

1

CSCI: A LEAP into the future
Jo Abrantes; Anne Porter; Wendy Meyers; Ray Stace; Willy
Susilo; Aneesh Krishna; Zhi Quan Zhou; Daniel Judge; Ross
Franks; Tianbing Xia
University of Wol longong

Introduction
The LEAP project is examining the feasibility of using digital games-
based learning within higher education. LEAP (Learning Experience
And Problem solving) is a games-based learning project that emerged
as one component of a broad strategy to address a teaching and
learning problem within CSCI, first year Computer Science subjects at
the University of Wollongong. QUALITY101, involving a team of
academics, was charged with investigating the issues and developing a
strategy. The research conducted by QUALITY101 revealed a number
of factors including low student motivation, problems in delivery,
activities and assessment. The games-based learning approach is one
solution being investigated. It attempts to supplement traditional
modes of delivery, allowing students an opportunity to practice skills
within an engaging learning environment. The game development
team is using the Neverwinter Nights game engine to develop an
immersive environment enabling the deepening of generic problem
solving skills, knowledge of programming concepts and strategies to
solve coding problems. The LEAP project will trial the first prototype
in the first semester of 2008.

Background to the project
In 2003 the Faculty of Informatics identified poor learning outcomes
and high failure rates amongst first year Computer Science students.
They formed a working party to investigate the issues and develop
solutions in order to improve teaching and learning outcomes within
the program. The working party became known as QUALITY101.
They established an accountability cycle, action plan and evaluation
framework to guide the investigators. The accountability cycle
enabled the team to report directly to the Faculty Education
Committee on a quarterly basis. The action plan targeted large core
subjects with high failure rates. The evaluation framework utilises
qualitative research methods including staff interviews and student
questionnaires to inform the project. The LEAP project emerged from
this process in order to investigate the feasibility of digital games to
improve teaching and learning outcomes by focusing on conceptually
difficult components of computing problems, problem solving in
general and algorithms, and embedding these within a highly
interactive digital environment.

Abstract:
This paper outlines the
development of a project which
aims to improve the teaching and
learning outcomes within the
Computer Sciences. A major
strategy being examined is the
effectiveness of digital games-
based learning. Utilising the
Neverwinter Nights game engine
the team have created a prototype
to be trialled in the first half of
2008. The project forms part of a
broader faculty based solution to
address teaching and learning
problems of first year students,
known as QUALITY101.

E M E R G I N G T E C H N O L O G I E S C O N F E R E N C E : S u p p o r t i n g a l e a r n i n g c o m m u n i t y

2

The teaching of Computer Sciences
Historically and worldwide the teaching and learning of computer
languages subjects has been fraught with difficulties and with poor
educational outcomes. First year computer programming subjects are
considered difficult by students (Smith and Webb, 1995; Garner,
2003; Costelloe, 2004; Yousoof et al., 2006) and have high
withdrawal rates (Campell and Bolker, 2002; Robins et al. 2003).
Academics teaching these subjects are often frustrated by poor student
learning outcomes. A number of studies and approaches have been
carried out around the world aiming to identify the problems and
inform others attempting to raise students’ understanding of subject
contents and to make the studying and learning of these subjects more
enjoyable (Jimenez-Peris et al., 1999; Gil, 2005).

Robins and colleagues (Robins et al., 2003) suggest that to be able to
make teaching and learning more effective, the following questions
must be addressed:

• Why is computer programming difficult to learn?

• What are the cognitive requirements of learning a first
programming language?

• Do effective learning strategies exist?

Robins and colleagues (2003) draw on the work of Rogalski and
Samurcay (1990) and du Boulay (1989), the latter identifying five
possible sources of difficulty in learning a first year programming
language. du Boulay suggests that students have difficulty because
they must understand complex sets of ideas including:

1. General orientation: What kinds of problems there are and how
programs can solve problems,

2. Notional machine: Models of the computer that allow the
students to understand program execution,

3. Notation: Programming language syntax and semantics,

4. Structures: Building of schemas for operations such as loops and
recursion,

5. Pragmatics: Skills involved in planning, designing, developing,
testing and debugging programs.

Similarly, Rogalski and Samurcay (1990) identified the large number
of cognitive activities involved in the complex task of programming.
These extend from basic structuring operations such as loops and
conditional statements to incorporating these into schemes and plans,
program design, understanding, modification, debugging and
documentation. Associated with the complex task of programming are
the sophistication of analytical skills and problem solving abilities
required.

In attempting to gain a deeper understanding of effective solutions,
Costello (2004) uses six categories to classify approaches aimed at
improving the teaching and learning outcomes within computer
programming subjects. These approaches were classified as:

1. Lectures and labs;

E M E R G I N G T E C H N O L O G I E S C O N F E R E N C E : S u p p o r t i n g a l e a r n i n g c o m m u n i t y

3

2. Software visualisation including program visualization, algorithm
animation, visual programming, programming by demonstration
and computational visualisation;

3. Robots;

4. Problem-based learning;

5. Cognitive apprenticeship, and

6. Miscellaneous.

However, within these different classifications there is enormous
scope for differences. Reinfelds and colleagues (2003) discuss many
paradigms for programming including, procedural, functional, object-
oriented, event driven, logic, concurrent, parallel, genetic and
quantum; they attempt to identify and teach the common core of
concepts that suit multiple paradigms. Within the lecture and
laboratory classification many different strategies are employed.
Campbell and Bolker (2002) emphasize the use of immersion, reading
and writing code when teaching programming. Garner (2003)
explored the educational impact of building programs from previously
written modules and Vodounon (2006) found that using this approach
there were improvements in high-performing students’ ability to think
logically and to divide problems into sub-problems as well as low-
achieving students’ improvements in ability to divide problems into
sub-problems. Some academics have also explored the potential of
more non-traditional solutions.

Examining the UOW situation
In order to institute fundamental and informed curriculum changes the
QUALITY101 team drew on the work of Alexander and Hedberg
(1994) and Reeves and Hedberg (2003) to develop an evaluation
framework which was reflective and allowed feedback to inform the
change process. The heart of this research process involved analysis,
research, implementation, evaluation and feedback. The evaluation
framework involves a four stage cyclic process:

• Stage 1: Design (including review and needs assessment),

• Stage 2: Development (formative evaluation),

• Stage 3: Implementation (effectiveness evaluation) and

• Stage 4: Institutionalisation (impact evaluation and maintenance)

From a Faculty perspective, the QUALITY101 team identified two key
aspects of projects or innovations for improving teaching and learning
outcomes that would lead to change in the educational culture. These
key aspects involved the development of leadership and teamwork.
Previous to the project, subject redesign involved single subjects and
was not creating sustained improvement. As a process of the review it
was considered desirable that several people owned innovations
across a range of subjects. This alleviated a problem of vertical
alignment, where in the past it was possible that lecturers, who have
subjects that follow-on from one another, sometimes dismissed the
improvements to the earlier subject. In some cases this resulted from a
feeling that the changes allow too many students to progress thus
forwarding the high failure rates onto the subsequent subject. Rarely
was there seen the need to modify the follow-on subject as well. The

E M E R G I N G T E C H N O L O G I E S C O N F E R E N C E : S u p p o r t i n g a l e a r n i n g c o m m u n i t y

4

QUALITY101 framework alleviated this by including teams covering a
sequence of subjects. The teams-based approach also informed
parallel subject design. The team developed a collegial approach,
encouraging Lecturers and Educational Developers to work together
to look at ways to improve learning outcomes.

In 2003, the Faculty of Informatics analysed student results from 2000
to 2002. Data analysis revealed that within the introductory computing
C++ programming subject there were significant problems marked by
the annual failure rate of 26 to 39 per cent. On further investigation it
became apparent that lecturers had been trialling and implementing
strategies to improve learning outcomes. Many of these innovations
were undocumented and happening in isolation from the program as a
whole. Whilst done with excellent intentions the strategies failed to
improve the situation. In 2003, the Faculty recommended a review
and planned a restructure of the Degree. This was undertaken resulting
in the addition of several new subjects. An existing subject
CSCI111was divided into two subjects, CSCI103 and CSCI104, one
focusing on algorithm design and one on C++ programming. These
were developed as replacements for a single subject that attempted to
teach both the algorithm design and coding. These changes were in
accord with ideas that programmers firstly need to have good problem
solving skills (Henderson, 1986; Linn and Clancy, 1992), analytical
skills (Masheshwari (1997) or conceptual skills (Reinfelds et al, 2003)
and that they must be able to implement their solutions in relevant
language, executing and debugging strategies appropriate to the
specific environment (Costelloe, 2004). Table 1 shows changes within
the subjects from 2003 to 2006.

2003 Final implementations of the old curriculum, before the redesign of
the single subject into CSCI103 and CSCI114. The two hour
laboratory time is divided in a one-hour tutorial where the students
are given a set of exercises and the tutors discuss these with the
whole class. In the one hour laboratory, students work on their
assignments.

2004 The existing subject was divided into two subjects one on
algorithm design (CSCI103) and one on C++ programming
(CSCI114)

2005 First implementation of a revised structure, the laboratory was
meant to serve both purposes of lab and tutorial. The major
changes were the successive introduction of structured exercises
by way of a laboratory manual and the inclusion of tutorial time,
enabling tutors to review these exercises with the whole class.
This was refined in the second session and fully implemented in
2006.

2006 The laboratory program continues to be refined, but the
assessment structure is also modified. Assessment is now eight
short online tests, four assignments (instead of seven or eight)
and a final examination.

Changes to subject design
As a result of the review two major changes were undertaken and
trialled in 2005 within the program, namely the utilisation of Lab
manuals and quizzes. Previously students’ main form of activities and

Table 1: Changes in operation
and structure of subjects 2003-
2006.

E M E R G I N G T E C H N O L O G I E S C O N F E R E N C E : S u p p o r t i n g a l e a r n i n g c o m m u n i t y

5

formative assessment involved set assignments. In 2005 these were
modified to include lab manuals, lab time (for students to work on
selected exercises from their manual) and tutorials (enabling tutors to
discuss and review exercises with the whole class). The exercises in
the lab manual were aligned with topics covered in the lectures.
Bloom’s Taxonomy (Bloom & Krathwohl, 1956) was used to inform
the development of the exercise covered in the lab manual. These
included a weekly set of exercises of varying levels of complexity.
This increased the students’ skills in higher order thinking. Online
quizzes, which utilised multiple-choice tests, were also implemented.
The students undertook these, every second lab session, which
provided, along with lecturer feedback, an opportunity for students to
test their understanding of the fundamental concepts covered in the
lectures. These tests counted towards a small proportion of the
students’ final marks.

In the autumn of 2006 grades showed an increase in high distinctions
from 7.9 to 13 per cent and a lowering of fail grades from 28 to 22 per
cent. However, the team felt there was more room for improvement.
Student subject evaluations were undertaken as part of QUALITY101
in Autumn 2006. This provided important data to support the further
development of the course. A student questionnaire was utilised and
29 students responded. Of those 65% of the students revealed that
they spent less than 8 hours per week on their subject. This indicated
there was a need to increase student engagement, participation and
interaction. Students identified problems in a number of content areas
specific to the subject including graphs, problem-solving strategies,
programming logic errors and writing algorithms. When asked for
feedback on improvements to the course, students said that there was
a need for more time on more difficult tasks; increased exposure to
relevant examples in particular worked solutions. The project team,
having trialled a number of other educational strategies previously to
increase student engagement argued for the development of a more
interactive online tool such as digital games in line with the work of
Robins and colleagues (2003).

An alternative solution to a traditional
problem
Digital games-based learning is being identified as an effective
teaching strategy within higher education, in general. Games enable a
student to immerse themselves in their learning and increase their
“fun”, which increases student motivation and engagement (Ebner and
Holzinger, 2007), and support problem based learning strategies
(Kiili, 2007). Recent work within Computer Science education has
also identified educational benefits of games-based learning.

The problems encountered by the academics responsible for the
delivery of the Computer Science programs were not unique.
Academics around the world have encountered similar problems.
Some academics are turning to non-traditional methods of delivery in
order to improve teaching and learning outcomes. Games-based
learning is being examined as a viable part of the solution for
education within the Computer Sciences.

In line with the work of Robins and colleagues (Robins et al., 2003),
discussed previously, which identified groups of skills necessary for

E M E R G I N G T E C H N O L O G I E S C O N F E R E N C E : S u p p o r t i n g a l e a r n i n g c o m m u n i t y

6

successful learning within the computer sciences, preliminary work of
academics utilising games-based learning appears promising (see
Table 2). Games have pedagogical use in the teaching of computer
programming by supporting the development of critical thinking and
problem solving skills (Fasli M. and Michalakopoulos M., 2005;
Neller et al, 2006; Rajaravivarma, 2005). Games also offer visual
representation of abstract concepts, a component difficult to teach in
programming subjects utilising traditional delivery method
(Rajaravivarma, 2005). A well designed game appears to increase
students’ time “on-task”, along with providing multiple opportunities
for students to apply earlier learning to later problems (Gee, 2003;
O’Neil et al., 2005).

Learning computer programming is recognized around world as
difficult for many students, with students experiencing high levels of
cognitive load (Costelloe, 2002; Garner, 2003; Yousoof et al, 2006).
Students are required to learn the use of a program development
environment, while learning the programming language syntax and
developing logic design skills (Garner, 2001). The use of well-
designed games can introduce students to these three aspects
separately in an engaging and entertaining way.

Benefits of Games Based
Learning

Areas of concern for teaching
programming

Visual representation of abstract
concepts

1. General orientation; 2. Notional
machine; 3. Notation

Critical thinking and problem
solving skills 4. Structures; 5. Pragmatics

Evolution of a games based approach
In 2005 the QUALITY101 team successfully applied for funding to
investigate the feasibility of games-based learning to improve the
teaching and learning results within the first year Computing Science
subjects. A project team was created consisting of content experts,
learning designers, animators and computer programmers. The
objectives guiding the project were to:

• Reduce failure rates in CSCI114 through encouraging practice

• Reduce failure rates in CSCI103 through improving students
problem solving skills and understanding of key computer
concepts

• Improve students’ satisfaction with their learning outcomes in
CSCI114 and CSCI103 through providing engaging and
motivating activities and through developing a greater sense of
competency

• Develop an engine (template) for gaming that is adaptable to
other 100/200 level technical and hierarchical subjects e.g.
Mathematics

• Develop a creative and energetic 100 level teaching team over the
two parallel subjects CSCI103 and CSCI114

• Provide a more viable approach to improving faculty learning
outcomes than the hitherto subject-by-subject approach

Table 2: Alignment of Games
based learning to identify
problems in first year
programming education

E M E R G I N G T E C H N O L O G I E S C O N F E R E N C E : S u p p o r t i n g a l e a r n i n g c o m m u n i t y

7

• Gather evidence for the QUALITY101 team regarding the impact
of strategies implemented to improve learning outcomes in
Informatics

If the teaching strategy proves feasible the LEAP project will seek
external funding to expand its initial pilot via an ARC or Carrick
grant.

Development of the LEAP project
The experience of the QUALITY101 academics, having implemented
initial redevelopment of the first year subjects, identified the potential
of games to provide an alternative opportunity for students to study
within an environment in which they are intrinsically motivated to
engage. Whilst the changes to delivery, including the lab manual, lab
tests and modifications to tutorials had improved results, the team felt
that there was more room for improvement. Students’ motivation and
weekly time engaged had still showed little improvement. The
potential for games to not only support curriculum objectives but to
increase student engagement appeared to offer a viable solution.

Specific outcomes driving the LEAP project are:

• Reduce failure rates in CSCI114 and CSCI103

• Shift the grade distribution of passing students to higher grades
while maintaining or improving standards

• Provide an authentic experience for Bachelor of Computing
Science students choosing to major in the currently growing
Multimedia and Games major, enabling them to be responsible
for components of game development

• Increase student satisfaction with learning resources as measured
by Change Evaluation Survey and Lecturer ratings

• Develop a game suitable for teaching and learning in CSCI114,
in particular C++

• Develop a game suitable for extending to advanced C++ topics
introduced in CSCI124

• Evaluate and implement modern game engines, allowing them to
be used as examples in later multimedia and gaming subjects

• Develop a gaming template suitable for adapting to other
technical disciplines such as Mathematics (an additional learning
tool for the Summertime Math (Porter 2007), Statistics, Science
and Engineering.

• Present findings to the academic community via, publications and
conferences

• Improve the project via external funding i.e. ARC or Carrick
grants

The project involved a cross-university team including four academics
responsible for three core subjects; two parallel and one vertical
subject. The academics were supported by staff in CEDIR (The Centre
for Educational Development and Interactive Resources) who
facilitated the design and development of the game along with

E M E R G I N G T E C H N O L O G I E S C O N F E R E N C E : S u p p o r t i n g a l e a r n i n g c o m m u n i t y

8

examining its re-usability potential enabling the future expansion of
the game approach to other sectors of the University.

Not only was the project geared to support student learning within
first-year core subjects, but also final-year students were involved in
design and implementation. The third year students consulted the
development team in the initial stage and developed a parallel game
design. They developed an alternative interface with a second game
engine, including PlaneShift; an open source game engine enabling
MMORPG (Massively Multiplayer Online Role-Playing Game). The
game play included activities in which students’ complete quests
using their C++ programming knowledge. The students put their
knowledge into practice via an in-game code editor. The code written
by the student-player is then compiled and run by an integrated GNU
g++ compiler that runs on the background in order to trigger game
events used to complete various types of missions. The student game
will be trialled with first year students in the first semester of 2008
(and compared with the suite of games developed by the CEDIR staff
using Neverwinter Nights game engine).

Development of technical expertise
Digital games design is a specialist field. Whilst the production team
from CEDIR is experienced in the design, animation, programming
and development of educational resources, the development of the
game required the adaptation of a range of skills. The LEAP project
provided an excellent opportunity for the staff to increase their skills
and knowledge within an applied context.

Graphical design began as an investigation of appropriate 3D design
software, one was needed that would match existing skill sets of the
design team and be appropriate for the game design. Initially the team
explored open source software, one potential product being Blender.
However, time became a limiting factor. The use of Blender would
have required a large amount of valuable production time consumed
with familiarising the team with the interface and 3D modelling
methods of the tools.

A final decision was made to use Autodesk’s 3Ds Max 9. It aligned
with existing skills and knowledge of the team, came within budget,
and the license terms were more suitable than the alternative 3D
software, including Maya. The decision to choose Bioware’s
Neverwinter Nights as the game engine influenced the final decision.
A number of resources, which enable models to be exported from 3Ds
Max into Neverwinter Nights, were available, including the plug-in
called NWmax by Joco. As an outcome, the Graphic Designer has
developed strong skills in low polygon modelling, texturing and
animation in 3Ds Max and has broadened skills into the gaming
design world. The Graphic designer worked closely with the
programmer as the game developed.

Initially the programmer investigated a range of freeware and other
games engines suitable for the project. Financial considerations were
important and many game engines are expensive. Initially the team
was interested in using a free-ware engine called PlaneShift. While
this is a free engine, the license for this product is restrictive, only
allowing for the use of the underlying code. This necessitates the
compiling of code into a runnable package, the development of all

E M E R G I N G T E C H N O L O G I E S C O N F E R E N C E : S u p p o r t i n g a l e a r n i n g c o m m u n i t y

9

interface including art, game assets, character and creature models,
environments, textures, objects, and equip-able objects, etc. Had this
been chosen as a final engine, it would have consumed valuable time
and budget, prior to development of any in-game activities, on basics,
including getting the game to compile and run properly, and creating
art and interface assets. PlaneShift also lacked a helpful online
community of users. The team decided against using PlaneShift for
the teaching game, however the final year students who had different
evaluation criteria, decided to use this engine. The team continued
investigating “out of the box” options.

The team also examined Neverwinter Nights to develop the game.
Neverwinter Nights is a commercial 3D Role-playing game. It
includes a tool-set called the Aurora Tool-set, which encourages the
use of the game engine and assets to create new modules. There is a
wide community of helpful users upon whom a developer may seek
support to resolve issues with the game. There have been a large
number of third party tools developed for use with Neverwinter
Nights. There are many script packages that have been developed by
others, which can be freely used. The overall price is affordable, at
under fifty dollars for a single user. The game is a few years old,
hence it does not require the latest hardware to run. There is an
extensive range of art, assets and models that are available for
immediate use or customisation.

Neverwinter Nights also comes with a script programming language
that is a customised form of C++, it can be used to customise many
game functions. Also, Neverwinter Nights can be leveraged for multi-
player options and the storing of information is persistent server
databases. A disadvantage of Neverwinter Nights is the cost of fifty
dollars for a single license, when implementing across a large number
of students this can be cost prohibitive. Some ‘hard-coded’ aspects
such as spell systems and character races/species are difficult to
change and/or remove. Other limitations relate to the game engine
itself, some activities need to be customised to make them workable in
Neverwinter Nights, for example a usable keypad to enter a code. This
cannot be readily made but instead the developer needs a “work
around solution” such as large buttons on the floor, which the
character can activate by walk over.

Despite some of these limitations, it was decided that the Neverwinter
Nights engine using the Aurora Toolset would be the best option. Of
particular relevance was its ability to utilise pre-existing art, assets and
systems. This enabled the developer to concentrate on developing
activities, dialogue, learning outcomes and storyline for the prototype.
Should the project prove successful base mechanics and art creation
will be enhanced in later versions. Essentially, Neverwinter Nights
engine is being used as a form of rapid prototyping environment,
enabling the team to produce a usable and appealing prototype
without having to worry about the more complex tasks such as the
creation of a physics or collision system. For the team, LEAP has
proved a very valuable developmental experience, increasing skills in
programming, game development and the use of interacting elements
such as game servers, databases, differing script functions and art
assets.

E M E R G I N G T E C H N O L O G I E S C O N F E R E N C E : S u p p o r t i n g a l e a r n i n g c o m m u n i t y

10

A great war was underway in the 21st century, during which a new
bio-technological weapon was developed. The hope was to harness a
newly discovered power, something to do with anti-matter,
superstrings and quantum mechanics. Using this power, the hope was
not to destroy the technologies and equipment of the enemy but to be
able to control them from afar. Alas, this new technology, when
deployed on a large scale, tore a rift in the fabric of the universe -
which unleashed bizarre inter-dimensional powers, reshaping the
world and destroying much of civilised society.... (In-game narrative)

In order to engage students with the game idea, a narrative or scenario
concept was developed to involve students from the beginning. It
needed to be a flexible one that would allow many different types of
activities to be encapsulated within it. The limitations imposed by the
Neverwinter Nights game development engine had also to be taken
into account.

With these factors in mind, a starting scenario was devised that was
set some years in the future after a global catastrophe, the exact details
of which were long lost to those that lived in this future world. A
great war was underway in the early 21st century, when a new bio-
technological weapon was developed. Alas, this new technology,
when deployed on a large scale, tore a rift in the fabric of the universe
and unleashed bizarre inter-dimensional powers, reshaping the world
and destroying much of civilised society. These powers merged with
modern technology and the technology, with varying levels of
sentience, turned upon its human overseers. And thus began the age of
descent into darkness, ending the age of technological development.

Humanity fought back, and barely survived. In doing so they reverted
to a pre-industrial society, fearing complex technology and living in
enclaves that fend off periodic attacks by the machines. Despite
surviving like this for some centuries, humanity was slowly losing the
battle and needed to find a new way to defeat the machines. The idea
emerged to bring forth a person from the early 21st century, just
before the wars began and use their knowledge to bring the machines
under control. Assuming that almost everyone in the 21st century
knew how to program computers - since ‘everyone back then used and
controlled them’ - they have transport an undergraduate university
student, from the past, to unwittingly become the hope for all
humanity.

Player in a representation of a university car park, when they are
suddenly “teleported” to a prison cell in what turns out to be a far-
future post-apocalyptic world.

In -game activ it ies

The game’s play involves the students engaged in a quest, as they
journey through the game they encounter tasks and activities to
perform. Most of the tasks are designed to support the teaching and
learning objectives, including problem solving strategies and
academic content. As the student progresses in the game they practice
core skills. The academic team has identified five activities to be
created for the first prototype based on identified weaknesses within
student performance:

The story

E M E R G I N G T E C H N O L O G I E S C O N F E R E N C E : S u p p o r t i n g a l e a r n i n g c o m m u n i t y

11

1. Pass Argument activity

2. Algorithm Design activity

3. Systematic Traversal Algorithms activity

4. Tree Traversal Algorithms activity

5. Sorting Algorithms activity

The Pass Argument activity introduces and illustrates the concepts of
passing arguments to functions, namely “pass by value” and “pass by
reference” (see Image 1). In this activity, the player is presented with
two objects that will need to swap positions. To achieve this, the
player will need to assemble several lines of code and choose to pass
the argument to a function either by value or by reference. The objects
will swap positions if and only if the code is correct, that is if “pass by
reference” is used. If the player chooses “pass by value” each object is
firstly “cloned” and then the clones swap positions instead of the
objects.

The second activity requires the player to encrypt a given number to
generate the secret code that will open a door. The player has access
to a WWII enciphering machine that can be used to encrypt any
number except the given number. The main aim of this activity is to
derive the encryption algorithm from the relationships between the
numbers the player selects and the respective encryptions produced by
the machine. Once the player has derived the algorithm he/she can use
it to encrypt the number given and obtain the code that will open the
door.

The learning objective of a third activity is to help students practice
systematic traversal algorithms (using stacks or recursion) by
searching for the exit of a maze. Because of the large number of
possible routes, the chance of success is very slim if the player
attempts to find the exit route randomly. This activity can be extended
to involve multiple players, either as competitors or as collaborators in
searching for a route to escape.

A fourth activity enables students to practice tree traversal algorithms.
In drive X of a computer (the operating system is command-line MS

Image 1:

E M E R G I N G T E C H N O L O G I E S C O N F E R E N C E : S u p p o r t i n g a l e a r n i n g c o m m u n i t y

12

DOS), there are many directories, sub-directories, and files. Each sub-
directory may have further sub-directories. The player needs to find a
file named “password.txt”, and this file contains the password that
allows the player to open a door. In order to locate this file, the player
can only use the command “dir” to list the files and sub-directories in
current directory. All parameters to “dir”, such as “dir /s”, have been
disabled so that the player can only see the contents of the current
directory. However, the player can use the “cd” command to enter a
parent or child directory, but limited to a certain number of times.
This limit will force the player to apply a tree traversal algorithm to
systematically search the file system.

The fifth activity enables students to practice sorting algorithms. The
player is presented with several identical opaque boxes each
containing an object. The player can use an x-ray machine to see what
is inside the boxes; however only two boxes can be inspected
simultaneously. The player needs to sort the boxes according to the
heights of the objects inside these boxes by swapping two boxes at a
time.

Outcomes and future directions
The LEAP project was intended as a mechanism for improving
outcomes for students undertaking two first-year subjects. Early in the
project there were other recognizable outcomes. These include:

• A change in the culture of education at first year level with the
development of a team of academics across three core subjects,
working together to improve learning outcomes.

• Development of technical expertise within the university
community, allowing application of the gaming approach to other
discipline areas.

• Development of frameworks for games and specification of
activities within the games that expand students’ problem solving
skills.

• The opportunities for third year students to become involved in
the design and implementation of educational games.

• The opportunities for third year students to provide feedback to
first year teaching, by including their past experience in the
subjects that they undertook.

As an offshoot to the broader strategy of QUALITY101 the project is
guided by its cycle of evaluation. Future directions will be informed
by the first year student responses to the games trial, both in terms of
their motivation to use the games, improvements to their problem
solving skills, algorithm design and programming. Improvements in
grades are also desired outcomes.

The games have a natural extension to increasingly include activities
that encompass the thinking that is characteristic of the three core
subjects that it targets. With planned activities including pass
arguments, algorithm design, systematic traversal algorithms, tree
traversal algorithms and sorting algorithms the project hopes to
improve key skills.

E M E R G I N G T E C H N O L O G I E S C O N F E R E N C E : S u p p o r t i n g a l e a r n i n g c o m m u n i t y

13

From an educational culture perspective the project has the capacity to
create a broader team, working together rather than in isolation to
provide a motivational and coherent approach to problem solving. The
natural extension is to include mathematicians working in
mathematics fundamental to the computing discipline. Ensley and
Crawley (2006) for example approach Mathematical reasoning and
proof in Discrete Mathematics with, puzzles, patterns and games. The
mathematical problems treated are clearly also the province of
computing; binary trees, graphs and trees, recursion.

The game will be ready for trial with first year students in the first
semester of 2008. This will be evaluated and modified. The academics
will then re-examine the learning outcomes and create appropriate
activities. The game play and game narrative will be further refined
and integrated into the game. If initial evaluation proves positive the
team will seek an external grant from ARC or Carrick to support
further expansion and development.

Conclusion
The LEAP project represents an innovative technique to support
teaching and learning within the Computer Science subjects, the
incorporation of digital game-based learning. It has evolved from a
Faculty initiative to improve learning outcomes amongst first year
students, QUALITY101. Whilst, only in its early stages the project is
providing a focus for a team based approach in which academics
teaching across a number of subjects are collaborating to support the
development of solutions. The LEAP project aims to develop an
alternative teaching strategy which can be utilised throughout the
University.

References
Alexander, S. & Hedberg, J.G., (1994). Evaluating technology–based learning: Which

model? In Beattie, K. McNaught, C. & Wills (Eds.), Interactive Multimedia in
University Education: Designing for Change in Teaching and Learning, (pp. 233-
244). Amsterdam: Elsevier Science.

Bloom, B. & Krathwohl, D., (1956). Taxonomy of educational objectives: The
classification of educational goals, by a committee of college and university
examiners. Handbook 1: Cognitive domain. New York , Longmans.

Campbell, W. & Bolker, E., (2002). Teaching and Programming by Immersion,
Reading and Writing, Frontiers in Education Conference, 1, pp. T4G-23.

Costelloe, E., (2004). Teaching programming the state of the art. CRITE Technical
Report, 2004. Retrieved 10 April, 2008 from
https://www.cs.tcd.ie/crite/publications/sources/programmingv1.pdf.

du Boulay B., (1989), Some Difficulties of Learning to Program, In Studying the
Novice Programmer, Eds E. Soloway and J. C. Spohrer, Lawrence Erlbaum
Associates, Publishers, Hillsdale New Jersey, USA, pp. 283-299.

Ebner M. & Holzinger, A., (2007). Successful implementation of user-centered game
based learning in higher education: An example from civil engineering,
Computers & Education, (49)3.

Ensley, D. & Crawley, J., (2006) Introduction to Discrete Mathematics: Mathematical
Reasoning with Puzzles, Patterns, and Games, John Wiley and Sons.

Fasli M. & Michalakopoulos M., (2005). Interactive Game-Based Learning.
Proceedings of the International Conference of the Association for Learning
Technology, ALT-C 2005, September, Manchester, UK.

Garner, S. K., (2001). A Tool to Support the Use of Part-Complete Solutions in the
Learning of Programming, Proceedings of Informing Science 2001, Krakow,
Poland

Garner, S. K., (2003). Learning to Program Using Part-Complete Solutions,
Proceedings of International Conference on Computer Based Learning in Science
2003, Nicosia, Cyprus.

Acknowledgments
This work was funded by the
University of Wollongong
Educational Strategies
Development Fund (ESDF)

E M E R G I N G T E C H N O L O G I E S C O N F E R E N C E : S u p p o r t i n g a l e a r n i n g c o m m u n i t y

14

Gee, J. P., (2003). What video games have to teach us about learning and literacy,
ACM Computers in Entertainment, (1)1 pp. 1-4.

Gill, T. G., (2005). Engaging Introductory Programming Students with CGI, Decision
Sciences Journal of Innovative Education, (3)1, pp. 177-181.

Henderson, P., (1986). Modern Introductory Computer Science, Proceedings of the
Eighteenth SIGCSE Technical Symposium on Computer Science Education, St.
Louis, Missouri, USA, pp. 183-190.

Jiménez-Peris, R., Patiño-Martínez, M. & Pacios-Martínez, J. (1999). VisMod: A
Beginner-Friendly Programming Environment, Proceedings of the 1999 ACM
symposium on Applied Computing, San Antonio, Texas, USA, pp. 115 - 120.

Kiili, K., (2007). Foundation for problem-based gaming, British Journal of
Educational Technology, (39)3, pp. 394-404.

Linn M. C., & Clancy M. J., (1992). The Case for Case Studies of Programming
Problems, Communications of the ACM, (35)3, pp. 121-132.

Masheshwari, (1997). Teaching Programming Paradigms and Languages for
Qualitative Learning, Proceedings of the 2nd Australasian Conference on
Computer Science Education, Melbourne, Australia, pp. 32 - 39.

Neller, T., Presser, C., Russell, I., & Markov, Z. (2006). Pedagogical Possibilities for
the Dice Game Pig, Journal of Computing Sciences in Colleges, (6) pp. 149-161.

O’Neil, H., Wainess, R., & Baker, E. (2005). Classification of Learning outcomes:
evidence from the computer games literature. The Curriculum Journal, 16(4) 455-
474.

Porter, A. (2007). Summertime Math. Symposium on Learning Support in
Mathematics and Statistics QUT, 19 - 20 July 2007.

Rajaravivarma, R,. (2005). A Games based approach for teaching the Introductory
programming course, The SIGCSE Bulletin, 37(4), pp. 98-101.

Reeves, T. C., & Hedberg, J., (2003). Interactive Learning Systems Evaluation.
Educational Technology Publications, Englewood Cliffs, New Jersey.

Reinfelds, J., Bergin, J., Rasala, R., Van Roy, P., Bredin, J., & Scott, K. (2003).
Concepts First in Introductory CS Courses: Working Group Report ITiCSE 2003,
(Computing science and engineering department, Research Report, 293288).

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching
Programming: A Review and Discussion, Computer Science Education, (13)2,
pp.137-172.

Rogalski, J., & Samurcay, R. (1990). Acquisition of programming knowledge and
skills. In Hoc, J., Green, T., Samurcay, R., & Gillmore, D. (Eds.) Psychology of
programming, London: Academic Press. pp. 157–174.

Smith, P., & Webb, G. (1995). Reinforcing a Generic Computer Model for Novice
Programmers, Proceedings of the ASCILITE, Seventh Australian Society for
Computers in Learning in Tertiary Education Conference, Melbourne, Australia.

Yousoof, M., Sapiyan, M., & Kamaliddin, K. (2006). Transactions on Engineering,
Computing and Technology, (12), March 2006, pp. 259-262.

Contact: jo@uow.edu.au

Cite paper as: Abrantes, J., Porter, A., Meyers, W., Stace, R., Susilo, W.
Krishna, Zhou, Z.Q., Judge, D., Franks, R., Xia, T. (2008). CSCI: A LEAP into
the future. In I. Olney, G. Lefoe, J. Mantei, & J. Herrington (Eds.),
Proceedings of the Second Emerging Technologies Conference 2008 (pp.
1-14). Wollongong: University of Wollongong.

Copyright © 2008 Author/s: The author/s grant a non-exclusive licence to UOW to
publish this document in full on the World Wide Web within the Emerging Technologies
conference proceedings. Any other usage is prohibited without the express permission of the
author/s.

	CSCI: A LEAP into the future
	Recommended Citation

	CSCI: A LEAP into the future
	Abstract
	Publication Details
	Authors

	Microsoft Word - Abrantes.doc

