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Abstract. Time-delayed nonlinear evolution equations and boundary value problems have a wide
range of applications in science and engineering. In this paper, we implement the differential trans-
form method to solve the nonlinear delay differential equation and boundary value problems. Also,
we present some numerical examples including time-delayed nonlinear Burgers equation to illus-
trate the validity and the great potential of the differential transform method. Numerical experiments
demonstrate the use and computational efficiency of the method. This method can easily be applied
to many nonlinear problems and is capable of reducing the size of computational work.

Keywords. Differential transform method; series solutions; time-delayed Burgers equation;
boundary value problems.

PACS Nos 02.30.Jr; 02.30.Ik; 02.30Hq

1. Introduction

The nonlinear evolution equations and boundary value problems have become one of the
central theme of perpetual interest in mathematical physics. In order to understand better
the nonlinear phenomena as well as their further applications in the real-life situations, it is
important to find their exact solutions. Accurate and fast numerical solution of nonlinear
equations is of great importance due to their wide applications in scientific and engineer-
ing research. Different numerical methods have been proposed by various authors for
solving nonlinear problems such as exp-function method [1–6], Jacobi elliptic function
method [7], variational iteration method [8,9], tanh function method [10,11], (G′/G)-
expansion method [12], homotopy perturbation method [13–15] and so on. However,
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practically there is no unified method that can be used to handle all types of nonlinear-
ities. Another important method used to obtain exact solutions of nonlinear problem is
the differential transform method (DTM) [16,17]. The concept of the DTM was first pro-
posed by Zhou [17] to solve both linear and nonlinear initial value problems arising in
electrical circuit analysis. DTM provides an efficient explicit and numerical solution with
high accuracy, minimal calculations and without linearization. The DTM has been suc-
cessfully implemented to many kinds of nonlinear problems and its applications can be
found in [18–25] and references therein.

A number of nonlinear phenomena in many real-world problems are described by the
interaction between convection and diffusion [26,27]. The well-known partial differential
equation (PDE) having such interplay of reaction and diffusion is the Burgers equa-
tion [28]. The diffusion processes, however, get significantly modified when the memory
effects are taken into account. This implies that the correlation between the successive
movements of the diffusing particles may be understood as a delay in the flux for a given
concentration gradient. Thus, existence of time delay is an important feature in convec-
tion diffusion systems. So, it is important and necessary to study the nonlinear evolution
equations with delay term. In this paper, we consider the well-known generalization of
the Burgers–Fisher equation, namely generalized time-delayed Burgers–Fisher equation
of the form [29,30]

τutt + [1 − τfu]ut = uxx − pusux + f (u), f (u) = qu(1 − us), (1)

where p, q, s are constants and τ is a time-delay constant. Equation (1) reduces to the
classical Burgers equation when q = τ = 0 and p = s = 1.

On the other hand, the two-point boundary value problem occurs in a wide variety
of problems in engineering and science, including the modelling of chemical reactions,
heat transfer, diffusion, and the solution of optimal control problems (see [31,32] and
references therein). The most common numerical method for solving these problems
is to use shooting methods [33,34]. Although shooting method has many advantages
such as a fast solver and a reduced size of the system, it also requires a huge amount
of computational work for obtaining accurate approximations, especially for nonlinear
problems.

In this paper, we obtain exact solutions of the two-point boundary value problems of
the form

y ′′ = f (x, y, y ′), a < x < b (2)

subject to the boundary conditions

y(a) = α, y(b) = β, (3)

where f is continuous on the set D = {(x, y, y ′)|a ≤ x ≤ b, y, y ′ ∈ R}, a, b, α and β are
constants.

The basic motivation of this paper is to implement the DTM to obtain numerical solu-
tion for the time-delayed nonlinear evolution equations and boundary value problems.
Further, we present some numerical examples including linear as well as nonlinear bound-
ary value problems. It is shown that the method provides the solution in rapid convergent
series. The DTM has been shown to effectively, easily and accurately solve a large class of
linear, non-linear partial differential equations with approximate solutions which converge
very rapidly to accurate solutions.
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2. DTM Method

The basic definitions and fundamental operations of the two-dimensional differential
transform are defined in [35,36] as follows:

If function w(x, y) is analytic and differentiated continuously with respect to time y in
the domain of interest, then

W(k, h) = 1

k!h!
[
∂k+hw(x, y)

∂xk∂yh

]
(x=0,y=0)

, (4)

where w(x, y) is the original function and W(k, h) is the transformed function, which
is also called the T-function. In this paper, the lower and upper case letters represent
the original and transformed functions, respectively. The differential inverse transform of
W(k, h) is defined as

w(x, y) =
∞∑

k=0

∞∑
h=0

W(k, h)xkyk. (5)

Combining eqs (4) and (5), we obtain

w(x, y) =
∞∑

k=0

∞∑
h=0

1

k!h!
[
∂k+hw(x, y)

∂xk∂yh

]
(x=0,y=0)

xkyk. (6)

The fundamental operations of the two-dimensional differential transform method are
listed in table 1.

3. Time-delayed evolution equations

In this section, we obtain the exact solutions for the time-delayed Burgers and Burgers–
Fisher equations using the DTM method.

3.1 Time-delayed Burgers equation

Example 3.1. Consider the time-delayed Burgers equation of the form [29]

τutt + ut + uux − uxx = 0 (7)

Table 1. The operators for the two-dimensional differential transform method.

Original function Transformed function

w(x, y) = u(x, y) ± v(x, y) W(k, h) = U(k, h) ± V (k, h)

w(x, y) = αu(x, y) W(k, h) = αU(k, h), α is a constant
w(x, y) = ∂u(x,y)

∂x
W(k, h) = (k + 1)U(k + 1, h)

w(x, y) = ∂u(x,y)
∂y

W(k, h) = (h + 1)U(k, h + 1)

w(x, y) = u(x, y)v(x, y) W(k, h) = ∑k
r=0

∑h
s=0 U(r, h − s)V (k − r, s)

w(x, y) = ∂r+su(x,y)
∂xr ∂ys W(k, h) =(k + 1)(k + 2) · · · (k + r)(h + 1)(h + 2)

· · · (h + s)U(k + r, h + s)
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with the initial conditions

u(x, 0) = 1 + 2(1 − τ ) tan x

and

ut (x, 0) = −2(1 − τ ) sec2 x. (8)

Solution: Taking the two-dimensional transform of eq. (7) by using the related definitions
in table 1, we obtain

τ (h + 1)(h + 2)U(k, h + 2) + (h + 1)U(k, h + 1)

+
k∑

r=0

h∑
s=0

(k − r + 1)U(r, h − s)U(k − r + 1, s)

−(k + 1)(k + 2)U(k + 2, h) = 0. (9)

The initial conditions (8) can be transformed at x = 0 as

U(k, 0) =
{

1, k = 0
0, k = 2, 4, 6, . . . ,

U(k, 1) =
{ −2(1 − τ ), k = 0

0, k = 1, 3, 5, . . .
(10)

and

U(1, 0) = 2(1 − τ ), U(3, 0) = 2(1 − τ )

3
,

U(5, 0) = 4(1 − τ )

15
, U(7, 0) = 34(1 − τ )

315
, . . . , (11)

U(2, 1) = −2(1 − τ ), U(4, 1) = −4(1 − τ )

3
,

U(6, 1) = −34(1 − τ )

45
, U(8, 1) = −124(1 − τ )

315
, . . . . (12)

Substituting (10), (11) and (12) in (9) and after some manipulations, we obtain the closed
form solution of (7) and (8) as

u(x, t) =
∞∑

k=0

∞∑
h=0

U(k, h)xkth

= 1 + 2(1 − τ )

{
(x − t) + 1

3
(x − t)3 + 2

15
(x − t)5 + 17

315
(x − t)7 + · · ·

}

= 1 + 2(1 − τ ) tan(x − t), (13)

which is the exact solution of (7) and (8).

Example 3.2. Next consider eq. (7) for which the initial profile is taken as

u(x, 0) = 1 + tanh

{
x

2(τ − 1)

}
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and

ut (x, 0) = − 1

2(τ − 1)
sech2

{
x

2(τ − 1)

}
. (14)

Solution: Taking two-dimensional transform of eq. (7) again by using table 1 and
by applying the initial condition, eq. (14) the initial transformation coefficients are
determined by

U(k, 0) =
{

1, k = 0
0, k = 2, 4, 6, . . .

,

U(k, 1) =
⎧⎨
⎩

− 1

2(τ − 1)
, k = 0

0, k = 1, 3, 5, · · ·
(15)

and

U(1, 0) = 1

2(τ − 1)
, U(3, 0) = − 1

24(τ − 1)3
,

U(5, 0) = 1

240(τ − 1)5
, U(7, 0) = − 17

40320(τ − 1)7
, . . . , (16)

U(2, 1) = 1

8(τ − 1)3
, U(4, 1) = − 1

48(τ − 1)5
,

U(6, 1) = 17

5760(τ − 1)7
, U(8, 1) = − 31

80640(τ − 1)9
, . . . . (17)

Substituting (15)–(17) in (9), we obtain the following closed form solution:

u(x, t) =
∞∑

k=0

∞∑
h=0

U(k, h)xkth

= 1 + x − t

2(τ − 1)
− 1

3

{
x − t

2(τ − 1)

}3

+ 2

15

{
x − t

2(τ − 1)

}5

− 17

315

{
x − t

2(τ − 1)

}7

+· · ·

= 1 + tanh

{
x − t

2(τ − 1)

}
, (18)

which is the exact solution of (7) and (14).

3.2 Time-delayed Burgers–Fisher equation

In this subsection, we obtain the solution of the time-delayed Burgers–Fisher equation.
When p = s = q = 1, eq. (1) reduces to the form

τutt + (1 − τ )ut + 2τuut − uxx + uux − u + u2 = 0, (19)
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where τ is a time-delay constant. This equation may be called the time-delayed Burgers–
Fisher equation. This equation shows a prototypical model for describing the interaction
between the reaction mechanism, convection effect and diffusion transport [37]. It is clear
that when τ = 0, eq. (19) reduces to the classical Burgers–Fisher equation discussed
in [37].

Example 3.3. Consider the time-delayed Burgers–Fisher equation

τutt + (1 − τ )ut + 2τuut − uxx + uux − u + u2 = 0 (20)

with the initial conditions

u(x, 0) = 1

2
+ 1

2
tanh

(
τ + 1

τ − 4
x

)

and

ut (x, 0) = − 5

4(τ − 4)
sech2

(
τ + 1

τ − 4
x

)
. (21)

Solution: The transformed version of eq. (20) can be written in the following recurrence
formula:

τ (h + 1)(h + 2)U(k, h + 2) + (1 − τ )(h + 1)U(k, h + 1)

+2τ

k∑
r=0

h∑
s=0

(s + 1)U(r, h − s)U(k − r, s + 1)

−(k + 1)(k + 2)U(k + 2, h)

+
k∑

r=0

h∑
s=0

(k − r + 1)U(r, h − s)U(k − r + 1, s)

−U(k, h) +
k∑

r=0

h∑
s=0

U(r, h − s)U(k − r, s) = 0. (22)

Following the same procedure which is outlined for the previous problems, the transfor-
mation coefficients can easily be evaluated. The initial conditions (21) can be transformed
at x = 0 as

U(k, 0) =
{

1/2, k = 0
0, k = 2, 4, 6, . . .

,

U(k, 1) =
{ −(5/4(τ − 4)), k = 0

0, k = 1, 3, 5, . . .
(23)

and

U(1, 0) = τ + 1

2(τ − 4)
, U(3, 0) = − (τ + 1)3

6(τ − 4)3
,

U(5, 0) = (τ + 1)5

15(τ − 4)5
, U(7, 0) = − 17(τ + 1)7

630(τ − 4)7
, . . . , (24)
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U(2, 1) = 5(τ + 1)2

4(τ − 4)3
, U(4, 1) = −5(τ + 1)4

6(τ − 4)5
,

U(6, 1) = 17(τ + 1)6

36(τ − 4)7
, U(8, 1) = − 31(τ + 1)8

126(τ − 4)9
, . . . . (25)

Substituting (23), (24) and (25) in (22), we obtain the following closed form solution:

u(x, t) =
∞∑

k=0

∞∑
h=0

U(k, h)xkth

= 1

2
+ 1

2

[
τ + 1

τ − 4

(
x − 5t

2(τ + 1)

)

−1

3

{
τ + 1

τ − 4

(
x − 5t

2(τ + 1)

)}3

+ 2

15

{
τ + 1

τ − 4

(
x − 5t

2(τ + 1)

)}5

− 17

315

{
τ + 1

τ − 4

(
x − 5t

2(τ + 1)

)}7

+ · · ·
]

= 1

2
+ 1

2
tanh

{
τ + 1

τ − 4

(
x − 5t

2(τ + 1)

)}
, (26)

which is the exact solution of (20) and (21).

4. Boundary value problems

In this section, DTM is applied to solve two-point boundary value problems. To study the
accuracy and efficiency of this method, it is applied to four problems involving linear and
nonlinear terms, and the numerical results are presented.

Example 4.1. We consider the following linear boundary value problem [33,34]:

ky ′′ − xy ′ − y = −(1 + kπ2) cos(πx) + πx sin(πx), 0 < x < 1 (27)

with boundary conditions

y(0) = 1, y(1) = −1. (28)

Solution: Applying the differential transform to eq. (27), we obtain

k(h + 1)(h + 2)Y (h + 2)

−
h∑

l=0

δ(l −1)(h− l +1)Y (h− l +1)−Y (h) = −
(

1+kπ2
) πh

h! cos

(
πh

2

)

+π

h∑
l=0

δ(l−1)
πh−l

(h− l)! sin

(
π(h−l)

2

)
. (29)
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The boundary conditions in eq. (28) can be transformed at x = 0 as

Y (0) = 1, Y (1) = a

and
∞∑

h=0

Y (h) = −1. (30)

It follows from eqs (29) and (30) that

Y (2) = −π2

2! , Y (3) = a

3k
, Y (4) = π4

4! , Y (5) = a

15k
,

Y (6) = −π6

6! , Y (7) = a

105k3
, . . . . (31)

So we have the following:

Y (h) =
{

(−1)h/2(πh/h!), h = 0, 2, 4, 6, . . .

a/
∏(h−1)/2

n=0 (2n + 1)k(h−1)/2, h = 1, 3, 5, 7, . . . .
(32)

From the third condition of eq. (30), we can find the constant a as follows:
∞∑

h=2i

(−1)h/2 πh

h! +
∞∑

h=2i+1

a∏(h−1)/2
n=0 (2n + 1)k(h−1)/2

= −1, (33)

where i is a nonnegative integer, i = 0, 1, 2, . . . . Equation (33) gives us the value of
constant a

cos π + a

∞∑
h=2i+1

1∏(h−1)/2
n=0 (2n + 1)k(h−1)/2

= −1, (34)

we have a = 0. Now eq. (32) can be rewritten as

Y (h) =
{

(−1)h/2(πh/h!), h = 0, 2, 4, 6, · · ·
0, h = 1, 3, 5, 7, . . . .

(35)

Finally, we obtain the following closed form solution:

y(x) =
∞∑

h=0

Y (h)xh

= 1 − (πx)2

2! + (πx)4

4! − (πx)6

6! + (πx)8

8! − · · ·

= cos(πx). (36)

Example 4.2. Next, we consider the following linear differential equation [33,34]:

ky ′′ = y − (1 + kπ2) cos(πx), 0 < x < 1 (37)

with the boundary conditions

y(0) = 1 + exp

(
− 1√

k

)
, y(1) = −1 + exp

(
− 2√

k

)
. (38)
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Solution: The transformed version of eq. (37) can be written in the following recurrence
formula:

k(h + 1)(h + 2)Y (h + 2) = Y (h) − (1 + kπ2)
πh

h! cos

(
πh

2

)
. (39)

The boundary conditions in eq. (38) can be transformed at x = 0 as

Y (0) = 1 + exp

(
− 1√

k

)
, Y (1) = a

and ∞∑
h=0

Y (h) = −1 + exp

(
− 2√

k

)
. (40)

Moreover, it follows from eqs (39) and (40) that

Y (2) = exp(−1/
√

k)

2!k − π2

2! , Y (3) = a

3!k ,

Y (4) = exp(−1/
√

k)

4!k2
+ π4

4! , Y (5) = a

5!k2
,

Y (6) = exp(−1/
√

k)

6!k3
− π6

6! , Y (7) = a

7!k3
, . . . . (41)

Now, we obtain the following:

Y (h) =

⎧⎪⎪⎨
⎪⎪⎩

exp(−1/
√

k)

h!kh/2
+ (−1)h/2(πh/h!), h = 0, 2, 4, 6, . . .

a

h!k(h−1)/2
, h = 1, 3, 5, 7, . . .

. (42)

From the third condition of eq. (40), we can find the constant a as follows:

∞∑
h=2i

[
exp(−1/

√
k)

h!kh/2
+ (−1)h/2 πh

h!

]
+

∞∑
h=2i+1

a

h!k(h−1)/2

= −1 + exp

(
− 2√

k

)
, (43)

where i is a nonnegative integer, i = 0, 1, 2, . . . . Equation (43) gives us the value of
constant a

exp

(
− 1√

k

)
cosh

(
1√
k

)
+ cos π + a

√
k sinh

(
1√
k

)

= −1 + exp

(
− 2√

k

)
, (44)

using

cosh t = et + e−t

2
and sinh t = et − e−t

2
, (45)
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we have a = −e−1/
√

k/
√

k. Now eq. (42) can be written as

Y (h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(−1/
√

k)

h!kh/2
+ (−1)h/2 πh

h! , h = 0, 2, 4, 6, . . .

−exp(−1/
√

k)

h!kh/2
, h = 1, 3, 5, 7, . . .

. (46)

Finally, we obtain the following exact solution:

y(x) =
∞∑

h=0

Y (h)xh

= exp

(
− 1√

k

) ∞∑
h=0

(−1)h

h!
(

x√
k

)h

+
∞∑

h=2i

(−1)h/2 (πx)h

h!
= exp

(
−x + 1√

k

)
+ cos(πx), (47)

where i is a nonnegative integer.

Example 4.3. Consider the following linear differential equation [33,34]:

y ′′ − 4y = 4 cosh(1), 0 < x < 1 (48)

with the boundary conditions

y(0) = y(1) = 0. (49)

Solution: The transformed version of eq. (48) can be written as

2Y (2) − 4Y (0) = 4 cosh(1),

(h + 1)(h + 2)Y (h + 2) − 4Y (h) = 0 for h = 1, 2, 3, . . . . (50)

The boundary conditions in eq. (49) can be transformed at x = 0 as

Y (0) = 0, Y (1) = a and
∞∑

h=0

Y (h) = 0. (51)

Also, it follows from eqs (50) and (51) that

Y (2) = 4 cosh(1)

2! , Y (3) = 4a

3! , Y (4) = 42 cosh(1)

4! ,

Y (5) = 42a

5! , Y (6) = 43 cosh(1)

6! , Y (7) = 43a

7! , . . . . (52)

So we get the following:

Y (h) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, h = 0

2h−1a

h! , h = 1, 3, 5, 7, . . .

2h cosh(1)

h! , h = 2, 4, 6, 8, . . .

. (53)
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From the third condition of eq. (51), we can find the constant a. Now, we have

a

∞∑
h=2i−1

2h−1

h! + cosh(1)

∞∑
h=2i

2h

h! = 0, (54)

where i is a positive integer, i = 1, 2, 3, . . . . Equation (54) gives us the value of
constant a

a

2

∞∑
h=2i−1

2h

h! + cosh(1)

∞∑
h=2i

2h

h! = 0, (55)

a sinh(2)

2
+ cosh(1)(−1 + cosh(2)) = 0, (56)

we have a = −2 sinh(1). Then eq. (53) can be written as

Y (h) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, h = 0

−2h sinh(1)

h! , h = 1, 3, 5, 7, . . .

2h cosh(1)

h! , h = 2, 4, 6, 8, . . .

. (57)

Finally, we obtain the following closed form solution:

y(x) =
∞∑

h=0

Y (h)xh

= − sinh(1)

∞∑
h=2i−1

(2x)h

h! + cosh(1)

∞∑
h=2i

(2x)h

h!

= − sinh(1) sinh(2x) + cosh(1) cosh(2x) − cosh(1)

= cosh(2x − 1) − cosh(1), (58)

where i is a positive integer.

Example 4.4. Finally, we consider the following nonlinear boundary value problem [38]:

u′′(x) − u2(x) = 2π2 cos(2πx) − sin4(πx), 0 < x < 1 (59)

with the boundary conditions

u(0) = u(1) = 0. (60)

Solution: The transformed version of eq. (59) can be written as

U(k + 2) = 1

(k + 1)(k + 2)

k∑
r=0

U(r)U(k − r)

+2k+1πk+2

(k + 2)! cos

(
kπ

2

)
− V (k)

(k + 1)(k + 2)
, (61)
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where V (k) = 0, k = 1, 3, 5, . . . and

V (0) = 0, V (2) = 0, V (4) = π4, V (6) = −2π6

3
,

V (8) = π8

5
, V (10) = −34π10

945
, . . . . (62)

The boundary conditions (60) can be transformed at x = 0 as

U(0) = 0, U(1) = a, (63)

where a is an unknown constant to be determined later.
Substituting (62) and (63) in (61), we can obtain the following term

u(x) =
∞∑

k=0

U(k)xk

= ax + π2x2 +
(

a2

12
− π4

3

)
x4 + aπ2

10
x5

+2π6

45
x6 +

(
a3

252
− aπ4

63

)
x7 +

(
11a2π2

1680
− π8

315

)
x8

+
(

aπ4

360
+ aπ6

810

)
x9 +

(
a4

6048
− 11a2π4

11340
+ 2π10

14175

)
x10 + · · · .

(64)

Now we obtain the following series solution up to O(x11):

û1(x) = πx + O(x2),

u2
1(x) = π2x2 + O(x3),

û2(x) = πx − π3

3! x3 + O(x4),

u2
2(x) = π2x2 − π4

3
x4 + O(x5),

û3(x) = πx − π3

3! x3 + π5

5! x5 + O(x6),

u2
3(x) = π2x2 − π4

3
x3 + 2π6

45
x6 + O(x7),

û4(x) = πx − π3

3! x3 + π5

5! x5 − π7

7! x7 + O(x8),

u2
4(x) = π2x2 − π4

3
x3 + 2π6

45
x6 − π8

315
x8 + O(x9),

û5(x) = πx − π3

3! x3 + π5

5! x5 − π7

7! x7 + π9

9! x7 + O(x10),

u2
5(x) = π2x2 − π4

3
x3 + 2π6

45
x6 − π8

315
x8 + 2π10

14175
+ O(x11),

...
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Table 2. The DTM results for y(x) for the first four term approximations in
comparison with the analytical solutions when k = 2 for Example 4.2.

x |y1 − yDTM| |y2 − yDTM| |y3 − yDTM| |y4 − yDTM|

0.1 2.3507275429e-09 2.3507351264e-09 2.9995954064e-06 1.3173696289e-09
0.2 5.9981167446e-07 5.9981360077e-07 9.1863178944e-05 1.3369774284e-06
0.3 1.5288676013e-05 1.5288725002e-05 6.6745351408e-04 7.5962469603e-05
0.4 1.5155232705e-04 1.5155281264e-04 2.6901350652e-03 1.3214389488e-03
0.5 8.9452299847e-04 8.9452587078e-04 7.8479194224e-03 1.1988893688e-02
0.6 3.8007259812e-03 3.8007382382e-03 1.8654726969e-02 7.1926331479e-02
0.7 1.2863373914e-02 1.2863415667e-02 3.8482708381e-02 3.2391389343e-01
0.8 3.6839050271e-02 3.6839170875e-02 7.1529923126e-02 1.1812234427e-00
0.9 9.2825621146e-02 9.2825928290e-02 1.2272207780e-01 3.6635232949e-00
1.0 2.1135284298e-01 2.1135355123e-01 1.9754438069e-01 9.9940046928e-00

Table 3. The DTM results for y(x) for the first six term approximations in
comparison with the analytical solutions when k = 2 for Example 4.2.

x |y1 − yDTM| |y2 − yDTM| |y3 − yDTM| |y4 − yDTM|

0.1 1.9285283585e-15 1.9285283745e-15 2.8882797569e-09 8.5578714296e-15
0.2 7.8864206284e-12 7.8864206936e-12 3.5775803116e-07 1.3952355892e-10
0.3 1.0204685621e-09 1.0204685705e-09 5.9147657323e-06 4.0399398848e-08
0.4 3.2093837859e-08 3.2093838123e-08 4.2870852933e-05 2.2416855468e-06
0.5 4.6476600840e-07 4.6476601223e-07 1.9774369039e-04 5.0235147891e-05
0.6 4.1194644750e-06 4.1194645089e-06 6.8521902651e-04 6.3373597706e-04
0.7 2.6012189622e-05 2.6012189837e-05 1.9488150259e-03 5.3732785844e-03
0.8 1.2811596577e-04 1.2811596683e-04 4.7956607732e-03 3.4038026631e-02
0.9 5.2180790241e-04 5.2180790674e-04 1.0564091767e-02 1.7248635540e-01
1.0 1.8291040136e-03 1.8291040289e-03 2.1320118818e-02 7.3264448681e-01

Table 4. The DTM results for y(x) for the first ten term approximations in
comparison with the analytical solutions when k = 2 for Example 4.2.

x |y1 − yDTM| |y2 − yDTM| |y3 − yDTM| |y4 − yDTM|

0.1 3.6039608644e-29 3.6039608644e-29 5.8991382824e-16 1.6138010393e-26
0.2 3.7766065986e-23 3.7766065986e-23 1.1820292120e-12 6.7542829561e-20
0.3 1.2544792313e-19 1.2544792313e-19 1.0003267365e-10 5.0354578932e-16
0.4 3.9499348609e-17 3.9499348609e-17 2.3172356180e-09 2.8088624801e-13
0.5 3.4194610196e-15 3.4194610196e-15 2.6391669541e-08 3.7825421517e-11
0.6 1.3078757771e-13 1.3078757771e-13 1.9183282756e-07 2.0720780242e-09
0.7 2.8464498417e-12 2.8464498417e-12 1.0227438732e-06 6.0993309419e-08
0.8 4.0997944051e-11 4.0997944051e-11 4.3457534993e-06 1.1391347820e-06
0.9 4.3077616973e-10 4.3077616973e-10 1.5526629443e-05 1.5025785118e-05
1.0 3.5290799544e-09 3.5290799544e-09 4.8381681003e-05 1.5061202092e-04
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Figure 1. Exact solution and 4, 6, 10 terms approximation of Example 4.1.

From the above, we have

û(x) =
∞∑

k=0

(πx)2k+1

(2k + 1)! = sin(πx). (65)

Now from the above solutions, we obtain

u(x) =
∞∑

k=0

U(k)xk

= ax + a2

12
x4 + aπ2

10
x5 + a3

252
x7

+11a2π2

1680
x8 +

(
aπ4

360
+ aπ6

810

)
x9 + · · · + sin2(πx). (66)
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x
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6 terms
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Figure 2. Exact solution and 4, 6, 10 terms approximation of Example 4.2.
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Figure 3. Exact solution and 4, 6, 10 terms approximation of Example 4.3.

The above solution must satisfy the boundary conditions. Imposing the boundary condi-
tion (60) at x = 1 in the above equation, we obtain the value of the parameter a = 0.
Finally, we obtain the closed form solution as

u(x) = sin2(πx), (67)

which is the exact solution of eq. (59).
Further, to demonstrate the convergence of differential transform method, the numerical

results of Example 4.2 are provided in tables 2, 3 and 4. It is concluded from tables 2, 3
and 4 that, the accuracy of the series solution is increased by computing more terms for

0.2 0.4 0.6 0.8 1.0
x

2.0

1.5

1.0

0.5

0.5

1.0

u

10 terms

6 terms

4 terms

Exact

Figure 4. Exact solution and 4, 6, 10 terms approximation of Example 4.4.
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large values of x. Also, exact and approximate solutions of Examples 4.1, 4.2, 4.3 and 4.4
with 4, 6 and 10 term approximations are presented in figures 1–4.

5. Conclusion

In this article, the application of differential transform method was extended to obtain
explicit solutions of the delay differential equations as well as boundary value problems.
The method provides the solution as infinite series of functions with easily computable
components. Several numerical experiments were considered to show the effectiveness of
the method. As an application, time-delayed nonlinear Burgers equation was considered
to illustrate the validity and the great potential of the differential transform method in
solving delay differential equations. It is concluded that the method is very powerful and
efficient in finding analytical solutions for a wide class of nonlinear equations.
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