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treatment significantly improved the fouling resistance property of the RO membrane. When the 
secondary effluent was filtrated at an elevated permeated flux, the virgin RO membrane exhibited 30 
percent flux decline while the heat-treated membrane showed only 12 percent flux decline. This is 
possibly because heat treatment resulted in a denser cross-linked active skin layer, thus reducing the 
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Abstract 

The use of heat treatment to improve solute rejection and fouling resistance of a polyamide 

reverse osmosis (RO) membrane was investigated in this study. Heat treatment was carried 

out by immersing the membrane samples in Milli-Q water at 70 °C for a specific duration. 

Heat treatment (24 hours) reduced the pure water permeability from 4.1 to 2.8 L/m2hbar but 

improved conductivity rejection from 95.5 to 97.0%. As a result, a correlation was observed 

between changes in the two parameters. Marginal changes in the membrane surface 

characteristics (i.e. zeta potential, hydrophobicity, chemistry and roughness) were observed 

as a result of heat treatment. Heat treatment significantly improved the fouling resistance 

property of the RO membrane. When the secondary effluent was filtrated at an elevated 

permeated flux, the virgin RO membrane exhibited 30% flux decline while the heat-treated 

membrane showed only 12% flux decline. This is possibly because heat treatment resulted in 

a denser cross-linked active skin layer, thus reducing the blockage caused by small organic 

foulants. 

Keywords: Membrane fouling; modification; reverse osmosis (RO); water reuse. 
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Introduction 

Fresh water resources for drinking water have been increasingly insecure in many parts of the 

world due to prolonged droughts and increased water consumption. Accordingly, water 

authorities in these regions are considering water reuse and seawater desalination as attractive 

and viable options to supplement their drinking water supply (Elimelech 2006). In these 

applications, reverse osmosis (RO) membrane is often employed for removing pathogenic 

agents, colour, salt and trace organic chemicals (Bellona et al. 2008; Traves et al. 2008; 

Wintgens et al. 2008). However, impurities that are present in wastewater can cause 

membrane fouling after a sustained period of operation (Fritzmann et al. 2007; Matin et al. 

2011). The development of fouling layer on the membrane surface results in an increase in 

energy consumption to maintain a constant water production and consequently it leads to 

frequent chemical cleaning for restoring membrane permeability. 

Commercially available RO membranes consist of a thin active polyamide skin layer on top 

of a porous supporting layer. The permeability, separation performance and fouling 

susceptibility of RO membranes are exclusively governed by the characteristics of their 

active skin layer. Thus, numerous previous studies have investigated the development and 

modification of the active skin layer for better membrane performance (Kang & Cao 2012). 

These investigations include the development of polymerisation monomers materials, 

interfacial polymerisation processes (Lee et al. 2011) and hybrid active skin layers containing 

inorganic particles (Li & Wang 2010). Other approaches have also focused on the active skin 

layer modification using commercial RO membranes. Among them, physical modification 

approaches include adsorption and coating, while chemical modification approaches are 

mainly based on hydrophilisation, radical grafting, chemical coupling and plasma 

polymerisation (Kang & Cao 2012). In fact, when the active skin layer has higher 

hydrophilicity and lower negative charge, less membrane fouling occurs due to reduced 

adsorption of organic matters on membrane surface (Gerard et al. 1998; Bartels et al. 2008). 

A recent study also reported that the anti-fouling property of RO membranes can be improved 

by surface hydrophilic modification using plasma polymerisation (Zou et al. 2011). However, 

the execution of these membrane surface modifications requires manufacturing steps, 

resulting in additional production costs. 
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A recent study by Shintani et al. (2009) applied heat treatment at various air temperatures 

(40-180 °C) to polyamide RO membranes and revealed that the heat treatment of over 80 °C 

decreased permeate flux of the RO membranes but increased their salt rejections. During the 

heat treatment, the polyamide RO membranes were heat-treated for only 30 seconds, which 

may be more economical than the other surface modification techniques. They suggested that 

a denser active skin layer can be developed with the heat treatment, resulting in less solute 

passage and less water permeability. However, Shintani et al. (2009) did not investigate the 

fouling behaviour of the membrane after heat treatment. In fact, to date, no previous studies 

have reported the improvement of anti-fouling characteristics of RO membranes using the 

heat treatment. 

The aim of this study is to identify the effects of the heat treatment of RO membranes on 

membrane fouling. A commercial virgin RO membrane was used for the heat treatment. The 

impact of the heat treatment on fouling development was investigated using secondary 

effluent. The changes in membrane characteristics by the heat treatment were also evaluated 

by examining zeta potential, contact angle, pure water permeability and salt rejection. 

Materials and methods 

Membranes 

The reverse osmosis membrane ESPA2 was supplied by Hydranautics (Oceanside, CA, USA) 

as flat sheet membrane samples. This is a low pressure reverse osmosis (LPRO) membrane 

that possesses a thin polyamide active skin layer supported by a porous polysulfone layer. 

The ESPA2 membrane has been widely used for water reclamation applications (Fujioka et al. 

2012). The maximum operating temperature of the membrane specified by the manufacturer 

is 45 °C. 

Chemicals 

Analytical grade NaCl, CaCl2 and NaHCO3 were obtained from Ajax Finechem (Taren Point, 

NSW, Australia). For background electrolytes during rejection tests, a stock solution of each 

chemical was prepared in Milli-Q water at 2 M (NaCl) and 0.1 M (CaCl2 and NaHCO3). 
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Membrane filtration system 

A laboratory scale cross flow RO filtration system was used in this study (Figure 1). The 

membrane sample was held in a stainless steel cross flow cell with an effective area of 40 

cm2 (4 cm × 10 cm) and a channel height of 2 mm. A high pressure pump (Hydra- 

Cell, Wanner Engineering Inc., Minneapolis, MN, USA) transfers the feed solution from a 

stainless steel reservoir to the membrane cell. The permeate flow rate and cross flow velocity 

were controlled by a bypass valve and back-pressure valve (Swagelok, Solon, OH, USA). 

The permeate flow was monitored using a digital flow meter (FlowCal, GJC Instruments Ltd, 

Cheshire, UK) which was connected to a personal computer. The concentrate flow was 

monitored by a rotameter. The feed solution temperature was controlled in the feed reservoir 

using a stainless steel heat exchanging pipe which was connected to a temperature control 

unit (Neslab RTE 7, Thermo Scientific Inc., Waltham, MA, USA).  

[Figure 1] 

Experimental protocols 

Heat treatment 

Prior to the heat treatment, the membrane samples were rinsed with a copious amount of 

Milli-Q water to remove any preservative chemicals from the membrane surface. They were 

then immersed in Milli-Q water at 70 °C for a specified period (3, 24 or 72 hours). The 

temperature of the Milli-Q solution was controlled using a temperature-controlled water bath 

(SWV20D, Ratek, Victoria, Australia). Following the heat treatment procedure, the 

membrane samples were stored in Milli-Q water at 4 °C in the dark until they were used for 

experiments. 

Filtration experiments 

Prior to each filtration experiment, the membrane sample was compacted at 1,800 kPa using 

Milli-Q water until the permeate flux has been stabilised. Following the compaction step, the 

feed solution was conditioned to 20 mM NaCl, 1 mM CaCl2 and 1 mM NaHCO3 by adding 

appropriate volume of stock solution of each chemical. Thereafter, the permeate flux was 

adjusted to 20 L/m2h. The filtration system was operated for at least 60 min before the 
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permeate and concentrate were sampled for conductivity analysis. The cross flow velocity 

and feed temperature in the reservoir were 0.42 m/s and 20.0 ± 0.1 ºC, respectively. 

Membrane fouling was induced using a secondary treated effluent collected from a sewage 

treatment plant in Wollongong (New South Wales, Australia). The treatment train of the plant 

prior to the sampling point included screening, grit removal, sedimentation, activated sludge 

treatment and clarifier. The wastewater contains a large fraction of low molecular weight 

organics such as building blocks (300-500 Da) and low molecular weight neutrals (<350 Da) 

(Fujioka et al. 2013). Each experiment started with the compaction step as described above. 

Thereafter, feed solution was replaced with the secondary effluent, and the permeate flux was 

elevated to 30 L/m2h to induce membrane fouling. The system was then continuously 

operated for 20 hours maintaining the originally set feed pressure. During the fouling 

development, the cross flow velocity and feed temperature in the reservoir were also 0.42 m/s 

and 20.0 ± 0.1 ºC, respectively. 

Membrane characterisation and analytical techniques 

Analytical techniques 

Conductivity, pH and temperature of solutions were measured using an Orion 4-Star Plus 

pH/conductivity meter (Thermo scientific, USA). Total organic carbon (TOC) concentration 

was determined using a TOC-V CSH analyser (Shimadzu, Japan).  

Zeta potential measurement 

Zeta potential of the membrane surface was analysed using a SurPASS Electrokinetic 

Analyser (Anton Paar GmbH, Graz, Austria). The Fairbrother-Martin streaming potential 

method was used to determine the zeta potential of each sample (Elimelech et al. 1994). The 

background electrolyte solution used in this study was 1 mM KCl. The pH of the background 

electrolyte was initially adjusted around pH 9 using KOH (1M) solution and it was 

incrementally decreased to below pH 3 by a titration of HCl (1M) solution. The background 

solution temperature was 25 ± 1 ºC.  

Contact angle measurement 

Contact angle of RO membrane surface was measured using a Rame-Hart Goniometer 

(Model 250, Rame-Hart, Netcong, NJ). The sample was rinsed with Milli-Q water and air-
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dried for over 24 hours prior to the measurement. The contact angle was measured on ten 

different locations of each membrane sample to obtain the average value and the standard 

deviation. 

Surface chemistry 

Fourier transform infrared spectroscopy (FTIR) spectra were used to analyse functional 

groups of RO membranes. The FTIR spectrophotometer (IRAffinity-1, Shimazu, Kyoto, 

Japan) used in this study is equipped with a diamond crystal plate. The active skin layer of 

membrane samples was fixed on the diamond crystal plate and the spectrum was obtained in 

the range of 400-4000 cm-1 at 2 cm-1 resolution.    

Surface topography 

Membrane surface roughness of the RO membranes was determined using an MFP-3D 

atomic force microscope (AFM) (Asylum Research, Santa Barbara, CA, USA). The scanning 

was performed in air in tapping mode using Nanoworld NCHR silicon cantilevers (spring 

constant of ∼40 N/m). The scanning area was 20 µm x 20 µm. 

Results and Discussion 

Membrane characteristics 

After three hours of heat treatment, the membrane permeability decreased from 4.1 to 2.8 

L/m2hbar (Figure 2a). No further discernible decrease in the membrane permeability could be 

observed as the heat treatment duration increased to 24 and 72 hours. On the other hand, heat 

treatment led to an increase in conductivity rejection (Figure 2b). No further statistically 

significant increase in conductivity rejection was observed after 3 hours of heat treatment. It 

is also noteworthy that changes in the membrane permeability and conductivity rejection due 

to heat treatment appear to be inversely correlated (Figure 3). The effect of the heat treatment 

reported here is consistent with a previous study by Shintani et al (2009), who investigated 

the impact of heat treating a polyamide RO membrane at 100 ºC on water permeability. They 

suggested that heat treatment can result in further cross-linking by inducing reaction between 

the free amine and carboxylic functional groups within the membrane active polyamide skin 

layer. The increase in cross-linking results in a denser active skin layer, thus leading to a 

decrease in permeability and an increase in solute rejection as reported in Figure 2. 
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[Figure 2] 

[Figure 3] 

Conductivity rejection by RO membranes can also be governed by electrostatic interactions 

that occur between charged solutes and the charged membrane surface (Bellona et al. 2004). 

However, no significant changes in the zeta potential of the membrane surface were observed 

(Figure 4). The impact of heat treatment on contact angle, which represents membrane 

surface hydrophobicity, was also insignificant. The membrane remained hydrophilic with 

contact angle value ranging from 25 - 40 º with or without heat treatment. Provided that these 

analysis (i.e. zeta potential and contact angle) fundamentally represents the membrane 

properties of the active skin layer surface, these results indicate that heat treatment affected 

the internal structure and/or internal membrane properties of the polyamide active skin layer 

but not the membrane surface properties. 

Membrane surface characteristics were further investigated using FTIR and AFM. The 

bonding structure of the polyamide active skin layer and the polysulfone supporting layer can 

be found with FTIR spectra of the RO membranes in the range of 1750-750 cm-1. Peaks that 

are associated with polyamides can be found at 1663, 1609 and 1541 cm-1 that represent C-O 

and C-N stretching and C-C-N deformation vibration (amide I), N-H deformation vibration 

and C=C ring stretching vibration of aromatic amide, and N-H in-place bending and N-C 

stretching vibration of a -CO-NH- group (amide II), respectively (Vrijenhoek et al. 2001; 

Tang et al. 2007). No discernible changes in these three peaks were observed with and 

without heat treatment (Figure 5). Heat treatment resulted in a small increase in the 

membrane surface roughness from 89.0 nm (virgin membrane) to 119.4 nm (heat treated for 

24 hours). Overall, membrane surface characterisation results reported here suggest that heat 

treatment did not result in any changes in chemical bonding of the membrane surface. 

However, there were physical changes in the membrane surface evidence by a small increase 

in surface roughness which can be attributed to the contraction of the polymeric matrix of the 

cross linked active skin layer, resulting in an increase in salt rejection.   

[Figure 4] 

[Figure 5] 
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Resistance to Membrane Fouling 

To assess the membrane fouling propensity, filtration of the secondary effluent was 

conducted at an elevated permeate flux value of 30 L/m2h which is 1.5 times higher than that 

typically used in a full scale RO installation for water reuse application. The permeate flux of 

the virgin RO membrane dropped by 20% within the first five hours of filtration and 

gradually decreased further by about 10% (Figure 6). In contrast, the permeate flux of the 

heat-treated (24 hours) ESPA2 membrane exhibited only about 5% drop within the first two 

hours of filtration and a total of approximately 12% decline at the end of the experiment. As a 

result, fouling caused a considerable reduction of permeability from 4.1 L/m2hbar to 2.9 

L/m2hbar for the virgin membrane, while the permeability of the heat-treated membrane 

revealed a negligible reduction from 2.9 L/m2hbar to 2.6 L/m2hbar. In addition to the effect 

on fouling resistant, heat treatment (24 hours) also slightly increased the rejection of TOC 

(from 95 to 96%) and conductivity (from 97.7 to 98.1%). Overall, it appears that heat 

treatment reduced permeability but this was offset by improved fouling resistance and 

separation efficiency.  

Membrane fouling of RO membranes using the secondary effluent mainly progresses with the 

adsorption and deposition of organic matter (Xu et al. 2010). Nevertheless, a fraction of small 

organics permeates through RO membranes and these small organics include building blocks, 

and low molecular weight acids and neutrals (Henderson et al. 2010). Some of these small 

organics may also be trapped within the free-volume hole of the active skin layer, which can 

lead to a decrease in permeate flux. In general, tighter membranes (e.g. RO membranes) are 

less susceptible to flux decline than looser membranes (e.g. nanofiltration membranes) 

(Fujioka et al. 2013). Thus, the denser active skin layer of the heat-treated RO membranes 

may prevent the penetration of low molecular weight organic foulants into the internal 

structure of the active skin layer, resulting in the slower fouling development. Although it is 

beyond the scope of this current study, the measurement of free space of the active skin layer 

may support this hypothesis. 

[Figure 6] 
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Conclusions 

Heat treatment of the polyamide RO membrane ESPA2 reduced the pure water permeability 

but improved the separation efficiency and fouling resistance. On the other hand, the 

membrane surface characteristics (i.e. zeta potential, hydrophobicity, chemistry and 

roughness) were not significantly affected by heat treatment. Fouling development on the 

ESPA2 membrane was retarded significantly by the heat treatment when the secondary 

effluent was filtrated at an elevated permeate flux. It is hypothesised that the denser active 

skin layer of the heat-treated RO membranes may prevent the penetration of low molecular 

weight organic foulants into the internal structure of the active skin layer. Results reported 

here suggest that heat treatment can be possibly used to refresh used membranes which 

usually have decreased salt rejection due to aging and chemical damage. Although heat 

treatment improved fouling resistance, the impact of heat treatment on the long-term 

performance and life-time of membranes is still unknown. Thus, further research is necessary 

to clarify the impact of heat treatment on the integrity and aging of RO membranes. In 

addition, improving the antifouling characteristics and efficiency of the heat treatment by 

clarifying the mechanism of heat treatment impact will be beneficial for further economical 

membrane modification. 
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temperature. Error bars show the standard deviation of three replicate experiments. 315 

Figure 3: Conductivity rejection by the ESPA2 membranes as a function of pure water 316 

permeability. Experimental conditions are as described in Figure 2. 317 

Figure 4: Change in zeta potential of the ESPA2 membranes after the heat treatment with 70 318 

ºC Milli-Q water for 24 and 72 hours. The analysis of zeta potential was carried out in 1 mM 319 

KCl solution. Error bars represent the standard deviation of two replicate experiments. 320 

Figure 5: FTIR spectra of the ESPA2 membranes with and without heat treatment (24 hours). 321 

Figure 6: Fouling development by the virgin and heat-treated (24 hours) membranes using 322 

the secondary effluent (Cross flow velocity 0.42 m/s, feed temperature 20 ± 0.1 ºC, and feed 323 
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