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Abstract 

In this paper, the strain hardening behaviors of a low carbon Nb-microalloyed Si-Mn 

quenching-partitioning (Q-P) steel were investigated. The microstructures were analyzed by 

scanning electron microscope (SEM) and transmission electron microscope (TEM). Mechanical 

tests were used to evaluate the room temperature tensile properties of the steel. The work hardening 

behaviors of the tested specimens were analyzed using Hollomon approach. The results showed 

that a two-stage work hardening behavior was observed during deformation processes. In the first 

stage, for the quenched samples, martensite deforms plastically and the hardening exponent 

decreased. For the air-cooled samples, however, the carbide-free ferrite deforms preferentially, and 

then, the carbide-free ferrite and martensite co-deform. In the second stage, due to the effect of 

transformation induced plasticity of retained austenite, the hardening exponent decreased slowly 

and plateaus were observed in the plots of ni-εt until fracture. Variations of the work hardening 

behaviors were related to the martensite and the volume fraction of retained austenite in Q-P steels 

and the microstructural evolution during partitioning and following cooling process.  

Keywords: Q-P process; Mechanical properties; Microstructure; Work hardening; Air-cooling 
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1. Introduction 

The past decades have witnessed the development of high strength low alloy steels, 

martensitic steels, and dual phase steels with yield strength higher than C-Mn steels. Advanced 

high-strength steels (AHSS) contain a ferrite-bainite matrix with a few contents of martensite and a 

certain amount of retained austenite. Due to their good combination of excellent strength and 

ductility, AHSS have been investigated extensively [1]. Quenching-partitioning (Q-P) and 

quenching-partitioning-tempering (Q-P-T) steels have been developed to provide excellent 

mechanical properties among AHSS, and several studies have been carried out on these steels to 

their high feasibility for industrial production [2-5]. Q-P process consists of a two-step 

heat-treatment. The desired martensite fraction is, at first, obtained by quenching steels from the 

fully austenite or intercritical field to the desired quenching temperature. In the second step, the 

quenched steels are held at the temperature same with or higher than the quenching temperature to 

enrich retained austenite (RA) with carbon from the carbon supersaturated martensite [6]. In Q-P 

steels, martensite plays a role in enhancing the strength, and RA appears to be effective in the 

increment of plasticity, due to the effect of delayed fracture during deformation process [7]. 

In the beginning of the study, the Q-P treatment had been mainly performed on the low carbon 

transformation-induced plasticity (TRIP) steels in order to attain potentially higher strength levels 

by replacing bainite with martensite. One important phase in the TRIP steels is metastable RA, 

which is obtained by carbon enrichment of austenite during intercritical annealing and bainitic 

transformation [8-10]. The formation process of RA in Q-P steels is similar to that in TRIP steels. 

The carbon diffusional kinetics and martensite-austenite interface migration dynamics during the 

microstructural evolution have been researched based on a postulated “constrained carbon 

equilibrium” (CCE) [11,12]. Research on the mechanical properties of low and medium carbon Q-P 

steels under different heat-treatment conditions has been very active during the past several years 

[2-5].  
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In order to obtain the two-phase (martensite and RA) microstructure, Q-P steels are usually 

quenched after partitioning either treated by salt bath or continuous annealing equipment. In view 

of industrial production, the continuous annealing equipment is more suitable for the production of 

Q-P steels. In view of the coiling process after continuous annealing in the practical production, the 

air-cooling style after partitioning offers an effective approach to simplify the heat treatment 

process and the production cost savings could be realized. Q-P steels can be easily coiled at 

partitioning temperature due to their lower strength relative to that of final products. However, the 

effects of air-cooling process after partitioning on the mechanical properties of Q-P steels have not 

been well documented. In particular, the work hardening behaviors of Q-P steels treated by 

different partitioning temperatures have been less investigated extensively.  

The purpose of the present study was to simulate the coiling process of the low carbon Si-Mn 

steels in practical production by an air-cooling process after partitioning. The effects of cooling 

styles on the microstructures, mechanical properties and work hardening behaviors of a low-carbon 

Nb-microalloyed Si-Mn steel were systematically investigated. The effects of RA volume fraction 

on the work hardening exponents were also analyzed. 

 

2. Experimental procedure 

A low carbon Nb-microalloyed Si-Mn steel was used in this research. The chemical 

compositions of the steel are given in Table 1. In the studied steel, the elimination or suppression of 

the formation of cementite during the isothermal process is achieved by the addition of Si [13] and 

Al [14] and the low carbon content is applied to keep good weldability [15]. Manganese has an 

effect of decreasing the starting temperature of martensite transformation (Ms) and expanding the 

austenitic phase zone [16]. Besides above elements, microalloying elements, such as Nb, play an 

important role in improving strength without reducing ductility [17, 18]. The casting ingots were 

manufactured by a vacuum induction melting method. Ingots were homogenized at 1200 ℃ for 2h, 
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and then hot forged to slabs with width of 100 mm and thickness of 30 mm. These bars were heated 

to 1200 ℃, then held for 2h, and finally hot rolled to sheets with thickness of 3 mm after eight 

passes rolling with the start and finish temperatures of 1150 ℃ and 850 ℃, respectively. These 

sheets were air cooled to room temperature after rolling, and then cold rolled to strips with 

thickness of 1.2 mm by five passes rolling after pickling in 10 % hydrochloric acid. 

Before Q-P treatment, dilatometer test was carried out to determine the austenitization starting 

(Ac1) and finishing (Ac3) temperatures in heating, as well as the Ms in cooling. The dilatometric 

curve of the steel is shown in Fig. 1. The Ac1, Ac3 and Ms temperatures were determined as 720 ℃, 

890 ℃ and 380 ℃, respectively. All the specimens were austenitized at 900 ℃ for 3 min, and 

then quenched to 260 ℃ in order to acquire the microstructure with the approximate volume 

fractions of martensite and RA. The quenched specimens were then directly transferred to a salt 

bath with different temperatures from 350 ℃to 450 ℃ for 120s. After being held at these 

temperatures for 120 s, some specimens were quenched in water - expressed as QPQ, and the others 

were air cooled to room temperature – expressed as QPA. The schedule for Q-P heat-treatment 

cycle is schematically shown in Fig. 2. 

After heat treatment, rectangular tensile specimens (width 12.5 mm, thickness 1.2 mm, and 

gauge length 25 mm) were prepared along the rolling direction. Tensile tests were performed on a 

SANSCMT-5000 tensile machine at room temperature with the strain rate of 2×10-4 s-1. 

Microstructures were analyzed by scanning electron microscope (SEM) and a TECNAI-Q2-20 

transmission electron microscope (TEM). The volume fraction of RA was measured via X-ray 

diffraction (XRD) with CuKα radiation operated at 40kV and 100mA. Samples were scanned from 

40° to 120°, at a scanning rate of 2°/min. The volume fraction of RA (Vγ) was calculated by using 

the following equation [19, 20] : 
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where Iγ and Iα are the integrated intensities of austenite and ferrite diffraction lines, repectively. 

In the present work, the diffraction lines of (200)α, (211)α, (200)γ, (220)γ and (311)γ were 

employed to determine the value of Vγ [20].  

 

3. Results 

3.1 Microstructures 

The SEM microstructures of the Q-P treated samples are shown in Fig. 3. As shown in Fig. 3a 

through d, the QPA samples consist of irregular carbide-free ferrite (black), sometimes called 

“bainitic ferrite” [21], and martensite (light). For the QPQ samples, however, the microstructure is 

almost composed of full martensite (Fig. 3e through h). The SEM micrographs also indicate that all 

the martensite structures in the both sets of samples show a roughening trend with the increase of 

temperature. This microstructural characterization after Q-P treatment has also been reported 

elsewhere [22]. It should be mentioned that it is hard to distinguish the RA clearly in the SEM 

micrographs for the both sets of samples. 

Fig.4 shows the TEM micrographs of RA in the undeformed samples partitioned at 390 ℃. It 

is clear that the flake-like RA is surrounded by lath martensite, which is transformed from the 

original austenite grains during quenching to 260 ℃. The observation of flake-like RA confirms 

that the transformation of martensite during the quenching process has an effect of mechanically 

stabilizing the adjacent flake-like austenite between lath martensites due to the three-dimensional 

hydrostatic pressure, which is one of the reasons to stabilize the RA at room temperature. The N-W 

relationship: [001]α∥[011]γ, α∥γ between the RA and lath martensite confirms that the habit 

plane exists during transformation from austenite to martensite. As shown in Fig. 4d through e, the 

α-γ interface observed in the QPA samples exhibits a bended shape. A higher partitioning 

temperature or longer partitioning time leads to stronger recovery of martensite, which makes the 

α-γ interface migrate significantly and finally become bended [23]. In the current study, the 
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air-cooling process with a relatively slow cooling rate is regarded as the continuation of partitioning, 

which prolongs the partitioning time and results in a bended α-γ interface. For the QPQ samples, 

however, the α-γ interface appears straighter than that in the QPA samples, as shown in Fig. 4a 

through b. It is thought that the relatively short partitioning time and the subsequent quenching 

process are responsible for this feature retained to room temperature. 

 

3.2 Mechanical properties  

The dependence of yield strength (YS), ultimate tensile strength (UTS), total elongation (TE), 

and product of strength and elongation (PSE) of the tested steel on partitioning temperature is 

shown in Fig.5. It can be seen that the YS, UTS and TE of the QPQ samples exhibit a decreasing 

tendency with increasing the partitioning temperature, and the maximum values of YS, UTS and 

TE are obtained as 1140 MPa, 1310 MPa and 12 %, respectively, at the partitioning temperature of 

350 ℃ . However, under air-cooling condition, the YS and UTS decrease gradually with 

temperature at first, then to a minimum value at 390 ℃, and finally they increase when the 

temperature is higher than 390 ℃, as shown in Fig. 5a. The TE and PSE of the QPA samples 

increase over the temperature range from 350 ℃ to 420 ℃, and then it decreases sharply when 

the temperature is higher than 420 ℃, as shown in Fig. 5b. It is worth noting that, the TE and PSE 

of QPA samples has a remarkable improvement in contrast to the TE and PSE of the QPQ samples, 

especially at the partitioning temperature of 420 ℃. This remarkable improvement of ductility is 

considered to be caused by the different final cooling styles, which has not been reported. 

Fig. 6 shows the volume fraction of RA in the undeformed samples. It can be seen that the 

both sets of samples (QPA and QPQ) have significant difference in the volume fraction of RA at 

different partitioning temperatures. With the increase of partitioning temperature from 350 ℃ to 

420 ℃, the volume fraction of RA in the QPQ samples changes slightly. When the partitioning 

temperature is increased to 450 ℃, the precipitation of cementite will occur, and carbon dilution in 
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austenite will be caused, finally the stabilization of the RA will be decreased. Therefore, the volume 

fraction of RA decreases at 450 ℃. However, in contrast to the QPQ samples, the volume fraction 

of RA has an significant increase for QPA samples. It can be due to the formation of carbide-free 

ferrite (Fig. 3) which results in the concentration of carbon in the untransformed austenite and 

further stabilizes this part of austenite. For the same reason with QPQ samples, the retained 

austenite in QPA samples decreases sharply when the partitioning temperature reaches 450 ℃. 

 

3.3  Work-hardening behaviors 

The work hardening behaviors were analyzed by using the following Hollomon equation: [24]  

in
t tK                             (2) 

where σt and εt are the true stress and true strain, respectively, K is the strength coefficient, and ni is 

the instantaneous work hardening exponent. 

The instantaneous work hardening exponent, ni, can be deduced from the Eq. (2) 

                             ( )( )i t t t tn d d                             (3) 

where the ni,  σt and εt in Eq. (3) are the instantaneous work hardening exponent, the true stress and 

the true strain, respectively. 

The plots of ni-εt of the Q-P treated samples with different partitioning temperatures and 

different cooling methods after partitioning were illustrated in Fig. 7. For comparison, ni-εt plots of 

a sample directly quenched from 900 ℃ to room temperature are also illustrated in Fig. 7. The 

martensite fraction of the sample directly quenched from 900 ℃ to room temperature is obtained 

to be 98 % by using the Koistinen-Marburger relationship [25]. In the current study, since the 

directly quenched sample has little RA, the TRIP effect can be also ignored. It is clear that all 

samples exhibit a two-stage deformation process except the directly quenched sample which only 

has one stage during the deformation. As shown in Fig.7, the ni values of the first stage for all the 

samples decrease with increasing the partitioning temperature. In the second stage, the ni values of 
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all the samples are almost unchanged and sustained through to the fracture, but the ni values of the 

QPA samples exhibit a higher value than those of the QPQ samples at this stage. 

The QPA samples at 390 ℃ have a higher strain than that at 350 ℃and 450 ℃. In addition, 

a more remarkable two-stage work hardening of the QPA samples is observed at 390 ℃ than that 

at 420 ℃. In order to further understand the two-stage work hardening behaviors of both the QPA 

and QPQ samples during the deformation, the volume fraction of RA of these two sets of samples 

(partitioned at 390 ℃) at different strain levels were measured by X-ray diffraction. The measured 

data presented in Fig. 8 indicates a variation of the volume fraction with engineering strain, 

revealing that the QPA samples have a higher initial volume fraction of RA than the QPQ ones. 

The RA volume fraction of both the QPA and QPQ samples exhibits a slightly decreasing rate in 

the early stage of strain (~0.06 for QPQ samples and ~0.08 for QPA ones). When the strain exceeds 

the critical value, a significant decrease of RA volume fraction is observed in Fig. 8 for these two 

sets of samples, which is attributed to the continuous martensitic transformation of RA and can be 

treated as the second stage of the work hardening. 

 

4. Discussion 

An interesting feature of the QPA samples is the presence of a certain amount of carbide-free 

ferrite (dark areas) in Fig.3a through d, which has not been reported in the previous researches on 

Q-P steels. In this research, all the samples, quenched from 900 ℃ to 260 ℃, form a certain 

amount of martensite and still 30 % (volume fraction) austenite is retained based on the 

Koistinen-Marburger relationship [25]. During the partitioning process, the martensite shows 

recovery characteristics (Fig. 3) and the RA is enriched by the diffused carbon. However the initial 

carbon content in the steel is insufficient to make all the 30 % RA stable at room temperature, 

which means some of the RA will transform to other phases. The work of Zaefferer et al. [26] on a 

low alloyed TRIP steel indicated that γ grains shrink and the volume fraction of carbide-free ferrite 
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increases with the increase of holding temperature and time. If the steel is held long enough in the 

bainite region, however, much of the metastable austenite will be replaced by carbide-free ferrite. 

In the present work, the partitioning temperature is in the temperature range of the bainitic 

transformation, and the metastable RA will transform to carbide-free ferrite when partitioned long 

enough at a temperature higher than Ms. Due to a much smaller cooling rate in air-cooling than in 

quenching, the air-cooling process can be considered as a continuation of partitioning, prolonging 

the partitioning time. Owing to the low solubility of carbon in carbide-free ferrite, carbon will 

diffuse to the untransformed austenite during the formation of carbide-free ferrite. This process 

increases the carbon content in the RA and improves the chemical stability of the RA. In addition, 

the volume expansion caused by the formation of carbide-free ferrite results in the increase of the 

three-dimensional hydrostatic pressure on the RA, which improves the mechanical stability of the 

RA as well [27]. Consequently, as shown in Fig. 6, the RA volume fraction in the final 

microstructure of the QPA samples is higher than that of the QPQ samples. 

Fig. 7 shows both the QPQ and QPA samples exhibit a two-stage work hardening behavior. In 

the early strain stage, the ni values of both the QPQ and QPA samples solely decreases from high 

initial value. The higher volume fraction of the hard phase, the higher work hardening exponent at 

the initial strain is expected [28, 29]. The higher initial ni value of the QPQ samples than that of the 

QPA ones is attributed to the higher volume fraction of martensite in the QPQ samples. For both 

sets of samples, the strength of martensite decreases gradually with the increase of partitioning 

temperature, and correspondingly a gradually decrease in initial ni is obtained. In order to prove this 

viewpoint, the ni-εt plots of the sample, directly quenched from 900 ℃ to room temperature, was 

illustrated in Fig. 7. It has the highest initial ni among all the samples.  

Previous studies have shown that the instantaneous work hardening exponents of TRIP steels 

in the TRIP effect stage exhibit a large plateau before break [28]. In this stage, the transformation of 

RA relieves the local stress concentration caused by deformation, which delays the generation of 
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microcracks [30]. This delays the necking at the high strain and further enhances the elongation of 

the experimental steel. As a result of the higher volume fraction of RA in the QPA samples, the 

plateau of the QPA samples is larger than that of the QPQ ones, as shown in Fig. 7. That is, the QPA 

samples still have some of the RA available for transformation at a higher strain whereas the RA 

has been exhausted in the QPQ samples. Therefore, as shown in Fig. 5, the QPA samples have a 

relatively high elongation. 

It is clear that the QPQ samples have a relatively lower ni than the QPA ones at the end of the 

first stage, and the onset strain of the QPQ samples is also lower than that of the QPA ones. This 

may be due to the difference in microstructures between the QPQ and QPA samples. The QPQ 

samples consist of martensite and RA, and the martensite deforms plastically in the early strain 

stage. As martensite possesses high strength and low ductility, the local stress concentration occurs 

when the strain is small, and then, the RA will transform in order to relieve the local stress 

concentration. Therefore, the onset strain of the second stage is small. For the QPA samples, 

however, the carbide-free ferrite deforms preferentially in this stage due to its low strength and 

good ductility. As a result of work hardening, the strength of carbide-free ferrite increases. When 

the yield strength of martensite is reached, the martensite deforms plastically as a result of the load 

transfer. Therefore, the onset strain of the second stage of the QPA samples is higher than that of the 

QPQ ones. As shown in Fig. 7, at the end of the first stage, the ni of the QPQ samples (about 0.1) 

are much smaller than that of the QPA ones (about 0.2), which proves that the QPA samples have a 

higher deformation ability.  

It is worth noting that the volume fraction change of RA can be divided into two stages (Fig. 

8), which is consistent with the two stages of work hardening (Fig. 7). When the strain is relatively 

low, there is no obvious change in the volume fraction of RA, while the RA decreases remarkably 

when the strain reaches a certain level, indicating the occurrence of phase transformation of RA. In 

addition, the strain at which significant transformation from RA to martensite occurs in the QPA 



Page 11 of 18 
 

samples is higher than that in the QPQ one, which is attributed to the preferential deformation of 

carbide-free ferrite in the early strain stage. The strains where RA begins to transform to martensite 

remarkably for both QPQ (0.06) and QPA (0.08) samples are in a good consistence with the onset 

strains of the second stage in work hardening. The change of volume fraction of RA against 

indicates the analysis of the two-stage work hardening behavior of the studied steel is reasonable. 

The oscillation of the curve in the first stage when the partitioning temperature reaches 450 ℃ 

(Fig. 7b) is thought to be caused by the generation of Cottrell atmosphere. The work of Zhao et al. 

[31] indicated that the yield strength of ultra-low carbon steel increased with the increase of aging 

time, and the strengthening was caused by the interaction of dislocations and the Cottrell 

atmosphere. Carbon has strong diffusion ability when partitioned at 450 ℃, and it could diffuse 

sufficiently during the subsequent air-cooling process and concentrates around dislocations to 

generate the Cottrell atmosphere which has the effect of solution strengthening. Except for the 

precipitation of carbides, this gives another good explanation for the increase of yield strength with 

the partitioning temperature increasing from 420 ℃ to 450 ℃ in Fig.5. The effect of this 

phenomenon on the Q-P steels will be analyzed in future work.  

 

5. Conclusion 

In this research, a low carbon Nb-microalloyed Q-P steel was studied in details by tensile test, 

XRD, SEM and TEM. The main conclusions are summarized as follows: 

1) Air-cooling treatment enhanced the elongation, especially when the steel was partitioned at 

420℃. The strength of the QPA samples was lower than that of the QPQ ones, while the 

QPA samples had much higher elongation and better mechanical properties than the QPQ 

ones.  

2) The QPQ samples consisted of martensite and RA. The QPA samples, however, exhibited a 

multiphase microstructure of carbide-free ferrite, martensite and RA. The volume fraction 
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of RA in the QPA samples was higher than that in the QPQ ones. 

3) The studied steel exhibited a two-stage work hardening behavior. In the first stage, the 

martensite deformed plastically for the QPQ samples. For the QPA samples, however, the 

carbide-free ferrite deformed preferentially, and then, the carbide-free ferrite and 

martensite co-deformed for the QPA ones. The strain at which significant transformation 

from RA to martensite occured in the QPA samples was higher than that in the QPQ one, 

which was attributed to the preferential deformation of carbide-free ferrite in the early 

strain stage. In the second stage, TRIP effect of RA provided a relatively high hardening 

ability and plateaus of work hardening exponents were observed until fracture for all the 

samples.  
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Figure and Table Captions 

Table 1 Chemical compositions of the experimental steel (wt. %) 

Fig. 1. Dilatation vs. temeprature curve of experimental steel. Ac1, Ac3 and Ms are austenitisation starting and 

finishing temperatures and starting temperature of martensite transformation, respectively. 

Fig. 2. Schematic heat cycle used in this study. 

Fig. 3. SEM micrographs of the (a, b, c, d) QPA and (e, f, g, h) QPQ samples quenched at 260 ℃ and partitioned 

at different temperatures: (a, e) 350 ℃, (b, f) 390 ℃, (c, g) 420 ℃ and (d, h) 450 ℃. 

Fig. 4. TEM micrographs of RA in the undeformed samples quenched at 260 ℃ and partitioned at 390 ℃ 

followed by (a, b, c) water quenching and (d, e, f) air-cooling: (a, d) BF images, (b, e) DF images, (c) SAED of 

RA, and (f) SAED of RA and martensite (N-W relationship). 

Fig. 5. Mechanical properties of Q-P steel as a function of partitioning temperature: (a) UTS and YS; (b) TE and 

PSE. 

Fig. 6. RA fraction of samples as a function of partitioning temperature after different cooling styles. 

Fig.7. Plots of instantaneous work hardening exponent (ni) vs. ture strain (εt) for studied steel with different 

cooling styles after partitioning at different temperatures from 350 ℃ to 450 ℃: (a) QPQ samples, (b) QPA 

samples. 

Fig. 8. Variation of the transformed RA volume fraction with strain for the QPQ and QPA samples quenched at 

260 ℃ and partitioned at 390 ℃. 
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Table 1 Chemical compositions of the experimental steel (wt. %) 

 

 

 

 

 

 

 
Fig. 1. Dilatation vs. temeprature curve of experimental steel. Ac1, Ac3 and Ms are austenitisation starting and 

finishing temperatures and starting temperature of martensite transformation, respectively.  

 

 

 

 

   
Fig.2. Schematic heat cycle used in this study. 

 

C Mn Si Al Nb P S 

0.19 1.53 1.52 0.14 0.048 0.0071 0.0083 
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Fig. 3. SEM micrographs of the (a, b, c, d) QPA and (e, f, g, h) QPQ samples quenched at 260 ℃ and partitioned 

at different temperatures: (a, e) 350 ℃, (b, f) 390 ℃, (c, g) 420 ℃ and (d, h) 450 ℃. 
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Fig.4. TEM micrographs of RA in the undeformed samples quenched at 260 ℃ and partitioned at 390 ℃ 

followed by (a, b, c) water quenching and (d, e, f) air-cooling: (a, d) BF images, (b, e) DF images, (c) SAED of 

RA, and (f) SAED of RA and martensite (N-W relationship). 

 

 

 

 

 
Fig.5. Mechanical properties of Q-P steel as a function of partitioning temperature: (a) UTS and YS; (b) TE and 

PSE. 
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Fig. 6. RA fraction of samples as a function of partitioning temperature after different cooling styles. 

 

 

 
Fig. 7. Plots of instantaneous work hardening exponent (ni) vs. ture strain (εt) for studied steel with different 

cooling styles after partitioning at different temperatures from 350 ℃ to 450 ℃: (a) QPQ samples, (b) QPA 

samples. 

 

 

Fig. 8. Variation of the transformed RA volume fraction with strain for the QPQ and QPA samples quenched at 

260 ℃ and partitioned at 390 ℃. 
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