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Abstract

Owning to its clinical accessibility, T1-weighted MRI

has been extensively studied for the prediction of mild cog-

nitive impairment (MCI) and Alzheimer’s disease (AD). The

tissue volumes of GM, WM and CSF are the most commonly

used measures for MCI and AD prediction. We note that

disease-induced structural changes may not happen at iso-

lated spots, but in several inter-related regions. Therefore,

in this paper we propose to directly extract the inter-region

connectivity based features for MCI prediction. This in-

volves constructing a brain network for each subject, with

each node representing an ROI and each edge representing

regional interactions. This network is also built hierarchi-

cally to improve the robustness of classification. Compared

with conventional methods, our approach produces a signif-

icant larger pool of features, which if improperly dealt with,

will result in intractability when used for classifier train-

ing. Therefore based on the characteristics of the network

features, we employ Partial Least Square analysis to effi-

ciently reduce the feature dimensionality to a manageable

level while at the same time preserving discriminative infor-

mation as much as possible. Our experiment demonstrates

that without requiring any new information in addition to

T1-weighted images, the prediction accuracy of MCI is sta-

tistically improved.

1. Introduction

As the most common neurodegenerative disease,

Alzheimer’s disease (AD) is a progressive and eventually

fatal disease of the brain, characterized by memory failure

and degeneration of other cognitive functions. Early diag-

nosis of AD is not easy, because the pathology may begin

long before the patient experiences any symptom and often

lead to volumetric or shape changes at certain brain struc-

tures. With the aid of medical imaging techniques, it is pos-

∗Data used in this article were obtained from the Alzheimer Disease

Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI).

sible to study in vivo the relationship between brain struc-

tural changes and mental disorders, and further provide a

diagnosis tool for early detection of AD. Current studies fo-

cus on MCI (mild cognitive impairment) subjects who are

in a transitional state between normal aging and AD. Iden-

tifying MCI subjects is important, especially for those who

eventually convert to AD, because they may benefit from

the therapies that could possibly slow down the progression

of AD when the disease is mild.

Although T1-weighted MRI has been studied for a

decade, it continues to attract researchers due to its easy ac-

cess in clinical practice. The neuroimaging measurements

for AD detection can be categorized into three groups: re-

gional brain volumes, cortical thickness, and hippocampal

volume and shape [3]. In this paper, we are interested in

regional volume analysis of the whole brain, because the

abnormalities caused by MCI may not be restricted to only

cortical thickness or hippocampus. The affected regions

could be the entorhinal cortex, the amygdala, the limbic sys-

tem, the neocortical areas and so on.

In conventional volume-based methods, the mean tissue

volumes of gray matter (GM), white matter (WM) and cere-

brospinal fluid (CSF) are usually calculated locally within

Region of Interest (ROI), and used as features for classifica-

tion. Nevertheless, disease-induced brain structural changes

may not happen at isolated spots, but in several inter-related

regions. The measurement of the correlations between ROIs

may give possible biomarkers associated with pathology,

and hence is of great research interest. However, in the

conventional methods, such correlations are not explicitly

modelled in the feature extraction procedure, but only im-

plicitly considered by some classifiers, such as some nonlin-

ear SVMs, in the classification process. The interpretation

of these implicitly encoded correlations in nonlinear SVMs

is a challenging problem. Based on this observation, we

hypothesize that representing the brain as a system of inter-

connected regions is a more effective way of characterizing

subtle changes than by using local isolated measures, and

directly model the pairwise ROI interactions within a sub-

ject as features for classification. Any criterion that mea-
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sures the correlations between two regions can be employed

for this purpose, such as correlation coefficients and mutual

information. We use the correlation coefficients in our study

to simplify the problem. In particular, each ROI is charac-

terized by a volumetric vector that consists of the volumet-

ric ratios of GM, WM and CSF in this ROI. The interac-

tion between two ROIs within the same subject is computed

as the Pearson correlation of the corresponding volumetric

elements. This gives us an anatomical brain network us-

ing the T1-weighted MRI, with each node denoting an ROI

and each edge characterizing the pairwise connection. Note

that the correlation value measures the similarity of the tis-

sue compositions between a pair of brain regions. When a

patient is affected by MCI, the correlation values of some

brain regions with other regions will be affected, due possi-

bly to the factors such as tissue atrophy.

By computing the pairwise correlation between ROIs,

our approach provides a second order measure of the ROI

volume, while the conventional approaches only employ the

first order measure of the volume. As higher order mea-

sures, our new features may be more descriptive, but also

more sensitive to noise, such as registration errors. There-

fore, a hierarchy of multi-resolution ROIs is introduced to

increase the robustness of classification. Effectively, the

correlations are considered at different scales of regions,

thus giving different levels of noise suppression and dis-

criminant information, which can be sieved by the classifi-

cation scheme as discussed below. This approach considers

the correlations both within and between different resolu-

tion scales, because a certain “optimal” scale often cannot

be known a priori.

However, the dimensionality of the network features is

much higher than that of the volumetric features. Without

identifying a small set of the most discriminative features,

it may be intractable to train an efficient classifier. There-

fore a classification scheme is proposed by employing Par-

tial Least Square analysis to embed the original features into

a much lower dimensional space as well as optimally main-

taining the discrimination power of features. This approach

outperforms some commonly used unsupervised and super-

vised methods as shown in our experiment. The most im-

portant advantage of our proposed hierarchical anatomical

brain network is: without requiring any new information

in addition to the T1-weighted images, the prediction ac-

curacy of MCI is statistically improved as evaluated by the

data sets randomly drawn from the ADNI dataset [7]. Our

study shows that this improvement comes from the use of

both regional interactions and the hierarchical structure.

The merits of our proposed method are summarized as

follows. Firstly, the proposed method utilizes a second-

order volumetric measure that is more descriptive than

the conventional first-order volumetric measure. Secondly,

while the conventional approaches only consider local vol-

ume changes, our proposed method considers global in-

formation by pairing ROIs that may be spatially far away.

Thirdly, our proposed method seamlessly incorporates both

the local volume features and the proposed global network

features into the classification by introducing a whole-brain

ROI at the top of the hierarchy. By correlating with the

whole-brain ROI, each ROI can provide a first order mea-

surement of local volume. Fourthly, the proposed method

involves only linear methods, leading to easy interpretations

of the classification results. Note that the nterpretation is

equally important as classification in neuro-imaging analy-

sis. Finally, for the first time, the proposed method inves-

tigates the relative disease progression speeds in different

regions, providing a complementary perspective of the spa-

tial atrophy patterns to conventional methods.

2. Method

The overview of our proposed method is illustrated in

Fig. 1. Each brain image is parcellated in multi-resolution

according to our predefined hierarchical ROIs. The local

volumes of GM, WM, and CSF are measured within these

ROIs and used to construct an anatomical brain network.

The edge weights of the network are used for the classifi-

cation. This gives rise to a large amount of features. With-

out efficiently removing many noisy features, the training of

classifier may be intractable. Therefore, both feature selec-

tion and feature embedding algorithms are used to identify

those essentially discriminative features for training classi-

fiers which can be well generalized to predict previously

unseen subjects.

Figure 1. Overview of our proposed method.

2.1. Image Preprocessing

The T1-weighted MR brain images are skull-stripped

and cerebellum-removed after a correction of intensity in-

homogeneity. Then each MR brain image is further seg-

mented into three tissues, namely GM, WM, and CSF.

To compare structural patterns across subjects, the tissue-
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segmented brain images are spatially normalized into a tem-

plate space by a mass-preserving registration framework

proposed in [13]. During the image warping, the tissue den-

sity within a region is increased if the region is compressed,

and vice versa. After mass-preserving spatial normalization

of each subject into a template space, we can measure the

volumes of GM, WM, and CSF of each ROI in this subject.

The definitions of hierarchical ROIs are detailed as follows.

2.2. Hierarchical ROI Construction

In this paper, a four-layer ROI hierarchy is proposed to

improve the robustness of classification. Each layer corre-

sponds to a brain atlas with different sizes of ROIs. Let us

denote the bottommost layer that contains the finest ROIs

as L4, while the other three layers are denoted as Ll, where

l = 1, 2, 3. A smaller l denotes a coarser ROI which is in

a layer closer to the top of the hierarchy. In our approach,

the bottommost layer L4 contains 100 ROIs obtained ac-

cording to [8]. These ROIs include fine cortical and sub-

cortical structures, ventricle system, etc. The number of

ROIs reduces to 44 and 20, respectively, in the layers L3

and L2 by agglomerative merging of the 100 ROIs in the

layer L4. In the layer L3, the cortical structures are grouped

into frontal, parietal, occipital, temporal, limbic, and insula

lobe in both left and right brain hemispheres. Each corti-

cal ROI has three sub-ROIs, namely the superolateral, me-

dial and white matter ROIs. The subcortical structures are

merged into three groups in each hemishphere of the brain,

namely, the basal ganglia, hippocampus and amygdala, and

diencephalon. In the layer L2, the sub-groups within each

cortical ROI are merged together. All the subcortical ROIs

are grouped into one ROI. The topmost layer L1 contains

only one ROI, i.e., the whole brain. This layer L1 is in-

cluded because when correlated with the ROIs in other lay-

ers, it gives us a measurement of local volumes. In this

way, the proposed method can seamlessly incorporate both

the local information (obtained by correlating local ROIs

with the whole brain) and the global information (obtained

by correlating local ROIs with each other) for classification.

The ROIs for different layers are shown in Fig. 2 (a).

2.3. Feature Extraction

With the ROI hierarchy defined above, an anatomical

brain network G(V, E) can be constructed for each subject.

Its nodes V correspond to the brain ROIs, and its undirected

edges E correspond to the interactions between two ROIs.

There are two types of nodes in our model (Fig. 3-left): the

simple ROI in the bottommost layer L4, and the compound

ROI in the other layers. Similarly, we have two types of

edges, each modelling the within-layer and between-layer

ROI interactions, respectively (Fig. 3-right).

The brain network may be quite complicated. For in-

stance, Fig. 2 (b) partially shows the network connections

L2

L3

L4

(a) (b)
Figure 2. (a) Hierarchical ROIs in three different layers; (b) Net-

work connections between ROIs within different layers.

Figure 3. Left: Two types of nodes are included in the hierarchi-

cal network: the simple node in L
4, and the compound node in

L
l(l = 1, 2, 3). Right: Two types of edges are included in the hi-

erarchical network, each modeling the within-layer and between-

layer interactions, respectively.

between ROIs in the layers of L2, L3 and L4, respectively.

To efficiently obtaining the informative network features, a

membership matrix is created to indicate the relationship of

ROIs from different layers. The membership matrix is com-

puted offline: it is fixed once the hierarchical structure has

been determined. For a new brain image, we only need to

compute the ROI interactions on the bottommost layer L4,

and then propagate the correlations to other layers effec-
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tively via this membership matrix as shown in (1) and (2).

The process is detailed as follows.

Firstly, let us consider the bottommost layer L4, which

consists of 100 ROIs. Let fi denote the 3 × 1 vector of the

i-th ROI in L4, consisting of the volumetric ratios of GM,

WM, and CSF in that ROI. We can obtain an N4 × N4

matrix C4, where N4 is the number of ROIs in L4. The

(i, j)-th component in C4 corresponds to the weight of the

edge between the i-th node and the j-th node in L4. We

define C4(i, j) = corr(fi, fj), i.e., the Pearson correlation

between feature vectors fi and fj .

For any other layer Ll, let Rl
i represent the i-th ROI in

the layer Ll. The number of ROIs in the layer Ll is denoted

as N l. A membership matrix Ml is used to define the

composition of the compound ROI Rl
i in Ll. The matrix

Ml has N l rows and N4 columns. Each row corresponds to

a single compound ROI in Ll. Each column corresponds to

a single simple ROI in L4. The (i, j)-th component of Ml

takes the value of either 1 or 0, indicating whether the j-th

ROI in L4 is included in the i-th ROI in Ll. For example,

if the ROI Rl
i is composed of the simple nodes R4

m, R4
n

and R4
t in L4, the elements of (i,m), (i, n) and (i, t) in

Ml are set to 1, while the others in the i-th row are set to

0. In particular, for the whole brain in L1, the membership

matrix M1 is a row vector with all N4 elements set to 1.

Within-layer ROI interaction

Given the ROI interactions in the bottommost layer L4, the

ROI interactions within each of the higher layers are com-

puted as follows. Let Rl
i and Rl

j represent the i-th and j-

th ROIs in a certain layer Ll. Again, a matrix Cl is de-

fined similar to C4, but its (i, j)-th component now indi-

cates the correlation between the compound ROIs Rl
i and

Rl
j . Suppose Rl

i and Rl
j contain a and b simple ROIs, re-

spectively. The correlation between Rl
i and Rl

j is computed

as the mean value of all the correlations between a simple

ROI node from Rl
i and a simple ROI node from Rl

j , that is,

corr(Rl
i, R

l
j) =

1

a × b

∑

R4
m∈Sl

i

∑

R4
n∈Sl

j

corr(R4
m, R4

n),

where R4
m and R4

n represent the simple ROIs in L4, and Sl
i

and Sl
j are two sets containing the simple nodes that com-

prise Rl
i and Rl

j , respectively.

Represented in the form of matrix, the correlation matrix

Cl can be computed as follows:

Cl(i, j) = corr(Rl
i, R

l
j) =

1⊤Ki,j ∗ .C41

a × b
, (1)

where Cl(i, j) denotes the (i, j)-th element in the matrix

Cl, the vector 1 is the N l × 1 vector with all elements

equal to 1, the symbol ∗. represents component-wise

product of two matrices, and the N4 × N4 matrix

Ki,j = Ml(i, ·)⊤ ⊗ Ml(j, ·) is the Kronecker product of

the i-th and the j-th rows in the membership matrix Ml.

Between-layer ROI interaction

The benefits to model between-layer interactions are

demonstrated by our experiment in Table 1. The correla-

tion matrix that reflects between-layer interactions can be

defined similarly to that of within-layer interactions. First,

let us consider the correlation matrix for two different layers

Ll1 and Ll2 (where l1 = 1, 2, 3; l2 = 1, 2, 3; and l1 6= l2).

It is defined as:

Cl1,l2(i, j) = corr(Rl1
i , Rl2

j ) =
1⊤K(l1,i),(l2,j) ∗ .C41

a × b
,

(2)

where K(l1,i),(l2,j) = Ml1(i, ·)⊤ ⊗ Ml2(j, ·) is the Kro-

necker product of the i-th row in Ml1 and the j-th row in

Ml2 .

Feature vector construction

Note that the proposed brain network may not have the

property of small-worldness (sparseness) as shown in DTI

and fMRI networks [1], because the connections in our case

are not based on functions or real neuron-connections. The

dense adjacency matrix resulting from the correlation of

tissue compositions implies that WM, GM and CSF frac-

tions of many different brain regions are consistently simi-

lar. Note that the far-away region pairs can have meaning-

ful tissue composition similarity, since distance information

is not included in our framework. Some prior knowledge

could be used to prune the edges if it is believed that two

ROIs are independent of each other conditioned on the dis-

ease. However, we keep all the connections so that new rela-

tionships between structural changes and the disease are not

left unexplored. But on the other side, some commonly used

network features, such as local clustering coefficients, do

not work efficiently as they do for sparse networks in DTI

and fMRI. Therefore, we directly use the weights of edges

as features, that is, we concatenate the elements in the upper

triangle matrices of correlation matrices computed above.

2.4. Classification

When the number of predefined ROIs is large, the tra-

ditional approaches encounter the high feature dimension-

ality problem. Either feature selection or feature embed-

ding has to be used to reduce data dimensionality. For ex-

ample, in [4, 5], a small subset of features are selected by

SVM-Recursive Feature Elimination (SVM-RFE) proposed

in [6] and then fed into a nonlinear SVM with a Gaussian

kernel. In [9], the volumetric features are nonlinearly em-

bedded into a lower dimensional feature space by Laplacian

Eigenmap, and then a clustering method is used to predict

the AD from the normal control.
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The dimensionality of network features is much larger

than that of the volumetric features. For example, given

only 10 discriminative ROIs, there are 45 pairwise interac-

tions to model for just the bottommost level. So even after

feature selection, there still might be many informative fea-

tures left. On the other hand, since our study considers a

hierarchical fully-connected brain network, each subject is

represented by more than 10,000 features. Feature embed-

ding directly on this large number of features becomes unre-

liable. Therefore, either feature selection or feature embed-

ding alone may not be sufficient to identify the discrimina-

tive network features. In this paper, we optimally incorpo-

rate feature dimensionality reduction and classification, and

propose to combine both feature selection and feature em-

bedding in the same framework to efficiently reduce the fea-

ture dimensionality. The key point of the proposed scheme

is Partial Least Square (PLS) analysis [12], which both con-

siders the classification labels and respects the underlying

data structure during dimensionality reduction. PLS espe-

cially has advantages to deal with the characteristics of our

network features, where the size of the samples is much

smaller than the size of the features.

Let the n × d matrix X represent the d-dimensional fea-

ture vectors for the n subjects, and Y represent the corre-

sponding 1-dimensional label vector. PLS models the re-

lations between X and Y by maximizing the covariance

of their projections onto some latent structures. In particu-

lar, PLS decomposes the zero-mean matrix X and the zero-

mean vector Y into

X = TP⊤ + E

Y = UQ⊤ + F (3)

where T = (t1, t2, · · · , tp) and U = (u1,u2, · · · ,up)
are n× p matrices containing p extracted latent vectors, the

d × p matrix P and the 1 × p vector Q represent the load-

ings, and the n× d matrix E and the n× 1 vector F are the

residuals. The latent matrices T and U have the following

properties: each column of them, called a latent vector, is

a linear combination of the original variables X and Y, re-

spectively; and the covariance of two latent vectors ti and

ui is maximized. PLS can be solved by an iterative defla-

tion scheme. In each iteration, the following optimization

problem is solved:

[cov(ti,ui)]
2 = max

||wi||=1
[cov(Xwi,Y)]2,

where X and Y are deflated by subtracting their rank-one

approximations based on ti−1 and ui−1. Once the optimal

weight vector wi is obtained, the corresponding latent vec-

tor ti can be computed by ti = Xwi.

Based on PLS analysis, our proposed method achieves

good classification and generalization in four steps. The

number of features selected in each step is determined by

cross-validation on the training data.

In Step 1, the discriminative power of a feature is mea-

sured by its relevance to classification. The relevance is

computed by the Pearson correlation between each original

feature and the classification label. The larger the absolute

value of the correlation, the more discriminative the feature.

Roughly 200 ∼ 300 features with correlation values higher

than a threshold are kept.

In Step 2, a subset of features are further selected from

the result of Step 1 in order to optimize the performance

of PLS embedding in Step 3. In particular, a PLS model

is trained using the selected features from Step 1. Then a

method called Variable Importance on Projection (VIP) [14]

is used to rank these features according to their discrimina-

tive power in the learned PLS model. The discriminative

power is measured by a VIP score. The higher the score,

the more discriminative the feature. A VIP score for the

j-th feature is

V IPj =

√

d
∑p

k=1 ρ2
kw2

jk
∑p

k=1 ρ2
k

,

where d is the number of features, p is the number of the

latent vectors as defined above, wjk is the j-th element in

the vector wk, and ρk is the regression weight for the k-th

latent variable, that is, ρk = u⊤
k tk. About 60 ∼ 80 features

with the top VIP scores are selected for feature embedding

in the next step.

In Step 3, using the features selected in Step 2, a new

PLS model is trained to find an embedding space which best

preserves the discrimination of features. The embedding is

performed by projecting the feature vectors in the matrix

X onto the new weight vectors W = (w1,w2, · · · ,wp)
learned by PLS analysis. In other words, the representation

of each subject changes from a row in the feature matrix X

to a row in the latent matrix T. The feature dimensionality

is therefore reduced from d to p (p ≪ d).

In Step 4, after PLS embedding, a small number of fea-

tures (4 ∼ 5 components) in the new space are able to cap-

ture the majority of the class discrimination. This greatly re-

duces the complexity of relationships between data. There-

fore, a linear SVM can achieve better or at least comparable

classification accuracies as a non-linear SVM, as shown in

the experiment in Section 3.2.

The advantages of PLS for our network features over

some commonly used unsupervised and supervised nonlin-

ear methods, such as Laplacian eigenmap embedding and

Kernel Fisher Discriminant Analysis (KFDA), have been

evidently shown in our experiment in Section 3.2.
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3. Results

Our experiment involves 125 normal control subjects

and 100 MCI subjects randomly drawn from the ADNI

dataset. Two kinds of comparisons are conducted, that is,

to compare the discrimination power of the network and the

volumetric features, and to compare the performance of dif-

ferent classifiers for the network features. The discussion of

the classification results are given at the end of this section.

3.1. Comparison of Features

Firstly, we compare the efficacy of different features with

respect to classification. The data set is randomly parti-

tioned into 20 training and test groups, each with 150 sam-

ples for training and 75 samples for test. For a fair compari-

son, our proposed classification process is applied similarly

to both the volumetric and the network features.

As aforementioned, our network features differ from the

conventional volumetric features in two aspects: i) the net-

work features model the regional interactions; ii) the net-

work features are obtained from a four-layer hierarchy of

brain atlases. To investigate the contribution of these two

aspects, five methods are tested in the experiment: i) FN:

the proposed method in this paper, using the four-layer hi-

erarchical network features; ii) SN: using only the network

features from the bottommost layer L4; iii) FN-NC: using

the network features from all the four layers, but removing

the edges across different layers; iv) SV: using the volu-

metric features from the bottommost layer L4; v) FV: using

volumetric measures from all four layers.

The results are summarized in Table 1. The classifi-

cation accuracy is averaged across the 20 randomly par-

titioned training and test groups. A paired t-test is con-

ducted between the proposed method (FN) and the other

four methods, respectively, to demonstrate the advantage

of our proposed method. The p-value of the paired t-test

is also reported. It can be seen from Table 1 that the pro-

posed method (FN) is always statistically better (at the sig-

nificance level of 0.05) than any of the other four methods.

Table 1. Comparison of discrimination efficacy of features

Mean Test Accuracy Paired t-test

(%) p-value

FN 85.07 -

SN 83.00 0.00272

FN-NC 83.13 0.00367

SV 81.93 0.00166

FV 81.47 0.00015

From Table 1, we observe the following:

• Our proposed hierarchical network features in FN out-

perform the conventional volumetric features in SV.

The advantage may come from using both regional in-

teractions and the hierarchical structure.

• The better performance of SN over SV, and FN over

FV demonstrate the benefits purely from using the re-

gional interactions. It can be seen from Table 1 that the

hierarchical structure does not improve the discrimina-

tion of volumetric features in FV.

• The better performance of FN over SN demonstrates

the benefit purely from the hierarchy. The advantage of

the four-layer structure is statistically significant over

the single-layer. Moreover, the result that FN statis-

tically outperforms FN-NC indicates the necessity of

using the cross-layer edges in the network.

It is noticed that different ratios of training and test par-

titions may lead to a variation in the classification accuracy.

To reflect the influence of this factor, we test seven differ-

ent numbers of training samples, occupying 50% to 80% of

the total data size. For each number of training samples, 20

training and test groups are randomly generated and the av-

eraged classification accuracy is summarized in Fig. 4. The

classification accuracy goes up slightly in general when the

number of the training samples increases, because the larger

the number of training samples, the more the learned in-

formation. It can be seen that the network features show

a consistent improvement in classification accuracy of ap-

proximately 3% in all cases, compared to those by using the

conventional volumetric features. Averaged across different

numbers of training samples, the classification accuracy be-

comes 84.35% for the network features, and 80.83% for the

volumetric features, which represents an overall classifica-

tion performance of these two different types of features.

A paired t-test is performed on the seven different ratios

of training-test partitions using both features. The obtained

p-value of 0.000024 indicates that the improvement of the

proposed features is statistically significant.
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Figure 4. Classification comparison using network features and

volumetric features with different numbers of training samples.
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3.2. Comparison of Classifiers

The classification performance of our proposed classifi-

cation scheme is compared with other six possible schemes

shown in Table 2. To simplify the description, our proposed

scheme is denoted as P1, while the other six schemes in

comparison are denoted as P2 ∼ P7. To keep consistent

with P1, each of the six schemes P2 ∼ P7 is also divided

into four steps: rough feature selection, refined feature se-

lection, feature embedding and classification, correspond-

ing to Step 1 ∼ Step 4 in P1. Please note that the first step,

rough feature selection, is the same for all schemes P1 ∼ P7.

In this step, the discriminative features are selected by their

correlations with respect to the classification labels. From

the second step onwards, different schemes utilize different

configurations of strategies as shown in the second column

of Table 2.

To clarify the settings of our experiment, the Laplacian

Eigenmap (LE) embedding used in P6 is described as fol-

lows. The embedding is applied on a connection graph that

shows the neighboring relationship of the subjects. Based

on the connection graph, the distance between two sub-

jects is computed as the shortest distance between the cor-

responding two nodes in the graph. This distance is used to

construct the adjacent matrix and Laplacian matrix used in

the LE embedding.

The classification results are summarized in Fig. 5 and

Table 2. Note that the classification accuracy at each num-

ber of training samples in Fig. 5 is an average over 20 ran-

dom training and test partitions as mentioned in Section 3.1.

Also, the overall classification accuracy in Table 2 is an av-

erage of accuracies at different numbers of training samples

in Fig. 5. The best overall classification accuracy of 84.35%
is obtained by our proposed scheme P1: VIP selection +

PLS embedding + a linear SVM. This is slightly better than

P2, where a nonlinear SVM is used. It can be seen that

the classification schemes with PLS embedding (P1 ∼ P4)

achieve an overall accuracy above 84%, better than those

without PLS embedding (P5 ∼ P7). The supervised embed-

ding methods, i.e., PLS (P1 ∼ P4) and KFDA (P7), perform

better than the unsupervised Laplacian Eigenmap embed-

ding (P6). Moreover, PLS embedding (P1 ∼ P4) preserves

more discrimination than the nonlinear supervised embed-

ding of KFDA (P7).

3.3. Spatial Patterns

To get understanding on the regions affected by the dis-

ease, we investigate the network features selected by the

two-step feature selection process in the proposed method.

Note that each network feature characterizes the relation-

ship between two ROIs, instead of an individual ROI as in

the conventional approaches. Therefore, for the first time,

we study the relative progression speed of the disease in
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Figure 5. Comparison of seven classification schemes on network

features. The classification accuracy at each number of training

samples is averaged over 20 randomly partitioned training and

test groups. The scheme configurations are shown in Table 2.

different ROIs of the same subject, which eliminates the

impact of personal variations. On the contrary, the con-

ventional methods study the absolute progression speeds of

ROIs among different subjects. Normalizing subjects by the

whole brain volume in conventional methods may not com-

pletely remove the personal variations.

To be a essentially discriminative network feature, the

two associated ROIs may satisfy one of the two follow-

ing conditions: i) One ROI shows significant difference be-

tween the MCI group and the normal control group, while

the other ROI is relatively constant with respect to the dis-

ease; or ii) both ROIs change with the disease, but their

change speeds are different over two different groups.

Table 3 shows the most discriminative features selected

by more than half of the training and test groups. It can be

clearly seen that hippocampus remains the most discrimi-

native ROI in differentiating the normal controls and MCI

patients. Table 3 is separated into two parts. On the up-

per portion of the table, the two ROIs of a network feature

may be both associated with the MCI diagnosis, such as

hippocampus, entorhinal cortex, fornix, cingulate etc, as re-

ported in the literature [11, 5, 3]. A typical example is the

correlation between hippocampus and ventricle. It is known

that the enlargement of ventricle is a biomarker for the di-

agnosis of the AD [10]. However, different from the hip-

pocampus volume loss that often occurs at the very early

stage of the dementia, the ventricle enlargement often ap-

pears in the middle and late stages. Therefore, the different

progression patterns makes the correlation between the two

regions the discriminative feature. On the lower portion of

the table, the first ROI is associated with the disease, while

the second ROI is not. For example, it has been reported

that the anterior and posterior limbs of internal capsule and

the occipital lobe white matter are not significantly different

between MCI and normal controls in a DTI study [2].
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Table 2. Configurations of classification Schemes

Schemes Configurations classification accuracy

overall (%)

P1 VIP selection + PLS embedding + linear SVM 84.35

P2 VIP selection + PLS embedding + nonlinear SVM 84.03

P3 no selection + PLS embedding + linear SVM 84.11

P4 no selection + PLS embedding + nonlinear SVM 84.10

P5 SVM-RFE selection + no embedding + nonlinear SVM 80.07

P6 no selection + Laplacian Eigenmap embedding + nonlinear SVM 79.16

P7 no selection + KFDA embedding + linear SVM 81.08

Table 3. Selected discriminative features
hippocampus - amygdala

hippocampus - lingual gyrus

hippocampus - uncus

hippocampus - prefrontal/superolateral frontal lobe

hippocampus - globus palladus

hippocampus - entorhinal cortex

hippocampus - cingulate region

hippocampus - ventricle

hippocampus and amygdala and fornix - ventricle

uncus - fornix

hippocampus - posterior limb of internal capsule

globus palladus - anterior limb of internal capsule

hippocampus - occipital lobe WM

4. Conclusion

In this paper, we have presented how hierarchical
anatomical brain networks based on T1-weighted MRI
can be used to model brain regional interactions. Features
extracted from these networks are employed to improve
the prediction of MCI from the conventional volumetric
measures. The discrimination of the network features
is effectively learned by our proposed framework that
addresses the properties of these new features. Without
requiring new sources of information, our experiments
show that the improvement of our proposed approach is
statistically significant compared with the conventional
volumetric measures. Such an improvement comes from
both the network features and the hierarchical structure.
Moreover, the selected network features provide us a new
perspective of inspecting the discriminative regions of the
dementia by revealing the relationship of two ROIs, which
is different from the conventional approaches.
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