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Abstract. This paper deals with the question: what are the key requirements for a physical system to perform 

digital computation? Oftentimes, cognitive scientists are quick to employ the notion of computation 

simpliciter when asserting basically that cognitive activities are computational. They employ this notion as if 

there is a consensus on just what it takes for a physical system to compute. Some cognitive scientists in 

referring to digital computation simply adhere to Turing computability. But if cognition is indeed 

computational, then it is concrete computation that is required for explaining cognition as an embodied 

phenomenon. Three accounts of computation are examined here: 1. Formal Symbol Manipulation. 2. Physical 

Symbol Systems and 3. The Mechanistic account. I argue that the differing requirements implied by these 

accounts justify the demand that one commits to a particular account when employing the notion of digital 

computation in regard to physical systems, rather than use these accounts interchangeably. 

 

Keywords: Concrete computation, Computability, Symbols, Semantics, Information Processing, Cognitive 

Systems, Turing Machines. 

Introduction  

All too often, cognitive scientists are quick to employ the notion of computation simpliciter when asserting 

basically that cognitive activities are computational. Unfortunately, it seems that a clearer understanding of 

computation is distorted by philosophical concerns about cognition. Some researchers in referring to digital 

computation simply adhere to Alan Turing’s notion of computability when attempting to explain cognitive 

behaviour. Still, classical computability theory studies what functions on the natural numbers are computable, 

and not the spatiotemporal constraints that are inherent to cognitive phenomena. 

Any analysis of cognitive phenomena, which is based solely on mathematical formalisms of computability, 

is at best incomplete. It has been proven that Emil Post’s machines, Stephen Kleene’s formal systems model, 

Kurt Gödel’s recursive functions model, Alonzo Church’s lambda calculus, and Turing Machines (TMs) – are 

equivalent. They all identify the same class of functions, in terms of the sets of arguments and values that they 

determine, as computable (Kleene 2002: pp. 232-233).  

However, concrete digital computation as it is actualised in physical systems seems to be a more appropriate 

candidate for the job of explaining cognitive phenomena.1 It is not in vain that the reigning trends in 

contemporary cognitive science (whether it be connectionism or dynamicism) emphasise the embeddedness and 

embodiment of cognitive agents. This is one motivation for examining extant accounts of concrete computation, 

before we can make any sense of talk about 'cognitive computation', 'neural computation' or 'biological 

computation'. 

There are many extant accounts of digital computation in physical systems on offer. Only three accounts 

are examined in this paper for lack of space.2  

1. According to the Formal Symbol Manipulation (FSM) account, a physical system performs digital 

computation when it processes semantically interpreted (not just interpretable) symbols (Pylyshyn 1984: pp. 

62, 72). 

                                                             
* This is a preprint of the article appearing in Lecture Notes in Computer Science. It is reproduced with the kind permission 

of Springer-Verlag. The final publication is available at http://link.springer.com/chapter/10.1007/978-3-642-44958-1_12. 
1
 For the purposes of this paper, I shall remain neutral on whether cognition can indeed be fully explained computationally. 

Arguably, cognition also involves the processing of information, and it is not entirely clear that information processing is 

equivalent to digital computation. This question can remain unanswered for now. 
2
 These particular three accounts nicely demonstrate that extant accounts of computation are not only intensionally different, 

but also extensionally different, irrespective of their representational character. For a detailed analysis of Turing’s 

account, Hilary Putnam & John Searle’s trivialisation of computation, a reconstruction of Brian C. Smith’s participatory 

account and the Algorithm Execution account see Fresco (forthcoming). 



2. According to the Physical Symbol Systems (PSS) account, a physical system performs digital computation 

when it consists of symbols and processes operating on these symbols that designate other entities (Newell 

1980: p. 157). 

3. According to the Mechanistic account, a physical system performs digital computation if it manipulates input 

strings of digits, depending on the digits’ type and their location on the string, in accordance with a rule 

defined over the strings (and possibly the system’s internal states) (Piccinini and Scarantino 2011: p. 8). 

No novel account of computation is offered here. The goal of this paper is to examine the conflict among 

well-known accounts and argue that they imply sufficiently distinct requirements for a physical system to 

compute to justify the demand that one commits to a particular account when employing the notion of concrete 

digital computation. Whilst the main driver here is cognitive science, this demand is unbiased. It applies just as 

well to biology, astronomy and any other science in which 'computation' is employed as explanans for some 

physical phenomenon. In the following three sections, I survey the FSM, PSS and Mechanistic accounts 

respectively. In the fifth section, I defend my argument for the non-equivalence of extant accounts of concrete 

computation. 

The Formal Symbol Manipulation Account 

According to this account digital computing systems are formal symbol manipulators. They manipulate symbol 

tokens (or data structures), which themselves are representations of the subject matter the computation is about, 

in accordance with some purely formal principles (Scheutz 2002: p. 13). Although these manipulated symbols 

have both semantic and syntactic properties, only the latter are causally efficacious. Chief proponents of this 

account are Jerry Fodor (1975), Zenon Pylyshyn (1984; 1989) and John Haugeland (1985). Fodor asserts that 

”computations just are processes in which representations have their causal consequences in virtue of their form” 

(Fodor 1980: p. 68). Haugeland’s well-known formalist’s motto stated that “if you take care of the syntax, the 

semantics will take care of itself” (Haugeland 1985: p. 106). And a computing system as an interpreted 

automatic formal system takes care of the syntax. 

 Furthermore, such systems are organised in three distinct levels: the semantic level, the symbolic level and 

the physical level (Pylyshyn 1989: pp. 58-59). This explanation framework of complex systems has some 

similarity to David Marr’s tripartite model of complex systems: the computational level, the algorithmic level 

and the physical level (Marr 1982: p. 22). At the semantic level, symbolic expressions are transformed in the 

computing system in a way that coherently preserve their meaning and ensures that they continue to "make 

sense" when semantically interpreted. Marr’s computational level, however, is a function-theoretic 

characterisation of the system in terms of the function it computes (i.e., its computational capacity). This 

computation may contingently involve the assignment of semantic contents. At the symbolic level the system 

operates in terms of representations and their transformations. Computing systems can operate at the semantic 

level only because of this middle level. Marr’s algorithmic level also need not be aligned with the symbolic 

level, for his analysis is not necessarily committed to symbol-manipulation computation. At the physical level, 

the state transitions of the computing system correspond to some symbolic expressions and are connected by 

physical laws (Pylyshyn 1984: p. 58). This particular level is indeed analogous to Marr’s physical level.  

 The FSM account identifies six key requirements for a physical system to perform digital computation.3 The 

first requirement is that the system be programmable to allow maximal plasticity of function. In order to exclude 

such systems as mere calculators and interpreted automatic systems that are not formal (e.g., analogue 

computers), the class of computing systems is restricted to those that are programmable (Haugeland 1985: pp. 

258-259). It is one of the foundational principles of computer science that the operations of digital computing 

systems be fully programmable (ibid: p. 126). Despite the rigidity of the physical structure of digital computing 

systems and the interconnections of their components, these systems are capable of maximal plasticity of 

function. This plasticity is enabled by their operation being programmable to behave in accordance with any 

finitely specifiable function (Pylyshyn 1984: p. 53). It is also the basis for Turing’s vision that a computer can 

(in principle) be made to exhibit intelligent activity to an arbitrary degree (thereby passing the Turing’s test).  

                                                             
3
 Pylyshyn argues that there is a missing requirement specifying what makes it the case that a symbol X represents, say, a 

particular daisy, rather than something else. The computational theory of mind has always been missing that part 

(Pylyshyn, personal communication). Specifically, he argues that the minimum function needed for this representation 

relation to obtain is that there be some causal or nomologically supported dependency between the daisy and X (Pylyshyn 

2007: p. 82). However, it is not clear that conventional digital computing systems require that a similar causal relation 

obtain between a symbol and an external represented object for them to compute (a representation internal to the 

computing system, e.g., an instruction in memory, is not problematic). 



 The second requirement is that the system operate using internally represented rule-governed 

transformations of interpretable symbolic expressions. As a formal system, by following the formal rules of 

transformation operating on symbolic expressions the semantic interpretation must make sense of those 

expressions. The computing system operates as a black box that automatically manipulates the symbolic tokens 

according to formal rules and when interpreted they make “sense in the contexts in which they’re made” 

(Haugeland 1985: p. 106). The regularities of computing systems are rule-governed, rather than law-like. So any 

explanation of a computational process must make reference to what is represented by the (semantically 

interpreted) computational states and rules, rather than just to causal state transitions (Pylyshyn 1984: p. 57). 

 Moreover, it is a key property of computing systems that semantic interpretations of computational states 

must be consistent. Since computations follow a particular set of semantically interpreted rules, semantic 

interpretations of computational states cannot be given capriciously (ibid: p. 58), still these interpretations need 

not be unique. This is analogous to the rules of existential generalisations, universal instantiations etc. that apply 

to formulas in virtue of their syntactic form, but their salient property is semantical in that they are truth 

preserving (Fodor & Pylyshyn 1988: p. 29). 

The third requirement is that the computational states of the system must correspond to equivalence classes 

of physical states such that their members are indistinguishable from the point of view of their function 

(Pylyshyn 1984: p. 56). There exists a primitive mapping from atomic symbols to relatively elementary physical 

states, and a mapping specification of the structure of complex expressions onto the structure of relatively 

complex physical states. The structure-preserving mapping is typically given recursively. This ensures that the 

relation between atomic symbols (e.g., ‘A’ and ‘B’), and composite expressions (e.g., ‘A&B’), is encoded in 

terms of a physical relation between constituent states that is functionally equivalent to the physical relation used 

to encode the relation between more complex expressions (e.g., ‘A&B’ and ‘C’) and their composite expression 

(e.g., ‘(A&B)&C’). Furthermore, the physical counterparts of the symbolic expressions and their structural 

properties cause the behaviour of the computing system. If you change the symbols, the system will behave 

differently (Fodor & Pylyshyn 1988: pp. 14, 17). 

The fourth requirement is that the system support an arbitrarily large number of representations (Pylyshyn 

1984: p. 62). Conventional computing systems’ architecture requires that there be distinct symbolic expressions 

for each object, event or state of affairs it can represent (Fodor & Pylyshyn 1988: p. 57). This raises the question 

how so many semantically interpreted operations are possible if the number of expressions is arbitrary large. For 

a fixed number of expressions some sort of a lookup table could be implemented. However, this is not possible 

for an arbitrarily large number of representations (Pylyshyn 1984: pp. 61-62). Instead, this capability is achieved 

by the fifth requirement. 

The fifth requirement is that the system be capable of capitalising on the compositional nature of 

expressions as determined by the constituent expressions and the rules used to combine them. By supporting 

simple rules that operate on simple individual symbols the system is capable of an arbitrary large number of 

symbolic expressions. Complex expressions are realised and transformed by means of instantiating constituent 

expressions of representations (ibid). The semantics of composite symbolic expression is determined in a 

consistent way by the semantics of its constituents (Fodor & Pylyshyn 1988: p. 16). For instance, the semantics 

of ‘the daisies in the vase on the table by the door’ is determined by ‘the daisies in the vase on the table’, which 

is determined by ‘the daisies in the vase’. Most of the symbolic expressions in computing systems as interpreted 

automatic formal systems are complexes, whose semantics is determined by their systematic composition 

Haugeland 1985: p. 96). 

Finally, implicitly, the sixth requirement is that the system’s functional architecture include an accessible 

memory. As in the idealised TM, a computing system must have a memory that allows writing of symbolic 

expressions and then reading them. This memory may consist of a running tape, a set of registers or any other 

storage media (Pylyshyn 1989: p. 56). The memory’s capacity, its organisation and means of accessing it are 

properties of the specific functional architecture of the system. Most modern architectures are register-based, in 

which symbols and symbolic expressions are stored and later retrieved by their numeric or symbolic address 

(ibid: pp. 72-73). Although the set of computable functions does not depend on the particular system 

implementation of the memory, the time complexity of computation does vary (retrieving a particular string from 

a table could be, under certain conditions, be made independent of the number of strings stored and the size of 

the table) (Pylyshyn 1984: p. 97-99). 



The Physical Symbol Systems Account 

According to this account, championed by Allen Newell and Herbert Simon, digital computing systems are 

physical symbol systems.4 They consist of sets of symbols, which are physical patterns that can occur as 

components of symbol structures or expressions (Newell and Simon 1976: p. 116). Computing systems also 

include a collection of processes that operate on these expressions to create, modify or destroy other expressions. 

Further, a physical symbol system is situated in a world of objects that is wider than just these symbolic 

expressions. The PSS account is indeed similar to the FSM account (as will be shown below), but there are also 

some differences that cannot be easily dismissed.  

Newell and Simon (1976: p. 117) maintained that a physical symbol system is an instance of a Universal 

Turing machine (UTM). They discovered that UTMs always contain within them a particular notion of symbol 

and symbolic behaviour. Tautologically, physical symbol systems are universal (Newell 1980: p. 155). Their 

capacity to solve problems is accomplished by producing and progressively modifying symbol structures until 

they produce a solution structure, particularly by means of a heuristic search5 (Newell and Simon 1976: p. 120). 

There are two basic aspects to each search, namely its object (i.e., what is being searched) and its scope (i.e., the 

set of objects within which the search is conducted). In computing systems each aspect must be made explicit in 

terms of specific structures and processes, since a system cannot search for an object that it cannot recognise 

(Haugeland 1985: p. 177). Computing systems (as all UTMs) solve problems mostly by using heuristic search, 

for they have limited processing resources. 

The PSS account identifies seven key requirements for a physical system to perform digital computation. 

The first requirement is that the system consist of a set of symbols and a set of processes that operate on them 

and produce through time an evolving collection of symbolic expressions. At any given time, the system contains 

a collection of symbolic structures and processes operating on expressions to produce other expressions. Such 

processes are the creation, modification, reproduction and destruction of symbolic expressions through time 

(ibid: p. 116). These processes operate on and transform internal symbolic structures, or in other words the 

system executes computer programs that operate on data structures (Bickhard and Terveen 1995: p. 92). 

The second requirement is that the system either affect a designated object or behave in ways that are 

dependent on that object. An entity (i.e., a symbol) X designates (i.e., is about or stands for) an entity (e.g., an 

object or a symbol) Y relative to a process P, if when X is P’s input, P’s behaviour depends on Y. Designation is 

grounded in the physical behaviour of P when its action could be at a distance if X (the input to P) stands for a 

distal object. This ‘action at a distance’ is accomplished by a mechanism of access (that is realised in physical 

computing systems) to three types of entities: symbol structures, operators6 and roles in symbol structures. The 

set of processes includes programs, whose input could also be symbolic expressions. If an expression can be 

created at Ti that is dependent on an entity in some way, processes can exist in the system that at Ti+1, take that 

expression as input and behave in a way dependent on that entity. Thus, these expressions designate that entity 

(Newell 1980: pp. 156-157). 

The third requirement is that the system be capable of interpreting an expression, if it designates some 

process and given that expression the system can execute that process. Interpretation is defined as the act of 

accepting an expression that designates a process as input and then executing that process (ibid: pp. 158-159). 

This is similar to the process of indirectly executing computer programs by an interpreter program. The 

interpreter reads an expression E as input and if it is recognised as a program (or a procedure), rather than a data 

structure, it is then executed. This capability is necessary to allow the flexibility of UTMs to create expressions 

for their own behaviour and then produce that very behaviour. The total processes in the computing system can 

be decomposed to the basic structure of (control + (operators + data)) that is paradigmatic in all programming 

languages. The control continuously brings together operators and data to yield the desired behaviour. 

The fourth requirement is the existence of expressions that designate every process of which the machine is 

capable (Newell and Simon 1976: p. 116). This requirement is self-explanatory and is necessary to support the 

full plasticity of behaviour of UTMs. 

The fifth requirement is that the system be capable of distinguishing between some expressions as data and 

others as programs (Newell 1980: p. 166). This is a property of all UTMs that must be able to recognise some 

expressions as data when creating or modifying them at Ti and then interpret them as programs at Tj. The 

                                                             
4 The PSS hypothesis deals primarily with the intelligence of symbol systems and relates to mind and artificial intelligence. I 

will mostly limit my discussion to the PSS account of computation. 
5
 It is not clear that artificial digital computing systems (e.g., physical instantiations of UTMs) must use heuristic search as 

the only means for solving computational problems. Clearly, many algorithms are not based on any search mechanism, 

but rather a finite sequence of instructions to solve a particular problem. 
6 Operators are symbols that have an external semantics built into them (Newell 1980: p. 159). 



concept of universality, which is one of Turing’s seminal contributions, unifies data and programs by way of the 

UTM taking programs of other (simulated) machines as data (as well as the inputs inscribed on the tapes of those 

simulated machines).  

The sixth requirement is that the system have a stable memory to ensure that once expressions are created 

they continue to exist until they are explicitly modified or deleted (Newell and Simon 1976: p. 116). This 

requirement stems from the coupling of read/write operations in computing systems. Each of these operations 

requires its counterpart to be productive in affecting the system’s behaviour. A read operation only retrieves 

expressions that were written to memory (and persisted). Conversely, a write operation of expressions, which are 

never subsequently read, is redundant (Newell 1980: p. 163). 

Lastly, the seventh requirement is that the system be capable of handling an unbounded number of 

expressions and realising the absolute maximal class of input/output functions using these expressions. This 

requirement is weaker than the requirement for unbounded memory. The structural requirements for universality 

are not dependent on unbounded memory. Rather they are dependent on the system’s capability to handle an 

unbounded number of expressions (Newell and Simon 1976: p. 116) and realise the absolute maximal class of 

input/output functions using these expressions (Newell 1980: p. 178). 

The Mechanistic Account of Computation 

According to the Mechanistic account, proposed by Gualtiero Piccinini (2007), digital computing systems are 

digit-processing mechanisms. They are mechanisms, which can be ascribed the function of generating output 

strings from input strings in accordance with a general rule (or map) that applies to all strings and depends on the 

input strings and (possibly) internal states for its application (ibid: p. 516). His account relies essentially on three 

conceptual elements: I. Medium independence of the vehicles (digits) processed. They could be implemented in 

a variety of ways (such as mechanical components, electronic components, optical components etc.); II. The 

function of the system is to process those vehicles irrespective of their particular physical implementation; III. 

The operation of the system is performed in accordance with rules, which need not necessarily be algorithms or 

programs (as in the case of special purpose TMs or finite state automata, hereafter FSA).  

Moreover, the mathematical notion of computation (i.e., computability) only applies directly to abstract 

systems, such as TMs or FSA, but not to physical systems. Computability is typically defined over strings of 

letters (often called symbols) from a finite alphabet (ibid: pp. 509-510). But not every process that is defined 

over strings of letters counts as computation (e.g., the generation of a random string of letters). To overcome this 

gap, Piccinini (2007: pp. 510-512) introduces the notion of a digit as the concrete counterpart to the formal 

notion of a letter. A digit is a stable state of a component that is processed by the mechanism.7 Strings of digits 

(i.e., sequences of digits) can be either data or rules, so they are essentially the same kind of thing and differ only 

in the functional role they play during processing by the computing system (Piccinini and Scarantino 2011: pp. 

7-8). Digits are permutable. Components that process digits of one type are functionally capable of processing 

digits of any other type. 

The mechanistic account identifies four key requirements for a physical system to perform digital 

computation. The first requirement is that the system process tokens of the same digit type in the same way and 

tokens of different digit types in different ways. Under normal conditions, digits of the same type in a computing 

system affect primitive components of the system in sufficiently similar ways, thereby their dissimilarities make 

no difference to the output produced. For instance, two inputs to a XOR gate that are sufficiently close to a 

certain voltage (labelled type '1') yield an output of a voltage sufficiently close to a different specific value 

(labelled type '0'). However, that does not imply that for any two input types, a primitive component always 

yields outputs of different types. Two different inputs can yield the same computational output, such in the case 

of a NOR gate. Input types '1,1', '0,1' and '1,0' give rise to outputs of type ‘0’. Still, it is essential that the NOR 

gate yield different responses to tokens of different types, thus responding to input types '0,0' differently from 

other input types. Differences between digit types must suffice for the component to differentiate between them, 

so as to yield the correct outputs. 

The second requirement is that the system process all digits belonging to a string (of digits) during the same 

functionally relevant time interval and in a way that respects the ordering of the digits within that string. When a 

computing system is sufficiently large and complex, there has to be some way to ensure synchronisation among 

all digits belonging to a particular string. The components of a computing system interact over time, and given 

                                                             
7 In ordinary electronic computers digits are states of physical components of the machine (e.g., memory cells). In other 

cases, such as old punched card computers, strings of digits were implemented as sequences of holes (or lack thereof) on 

cards (Piccinini, personal communication). 



their physical characteristics, there is only a limited amount of time during which their interaction can produce 

the correct result, which is consistent with the ordering of digits within strings. In primitive computing 

components and simple circuits it is mostly the temporal ordering of digits that is responsible for producing the 

correct result. So if, for example, digits, which are supposed to be summed together, enter an adder mechanism 

at times that are too far apart, they will not be added correctly (ibid: p. 513). In more complex components, 

processing of all digits belonging to a string must proceed in a way that also respects the spatial ordering of the 

digits within the string. Each digit in the sequence must be processed until we reach the last digit in the string. In 

some atypical cases the ordering of digits makes no difference to a computation (e.g., summing up all the 

numbers in an array or calculating the length of a sequence of symbols). 

The third requirement is that all the system’s components that process digits stabilise only on states that 

count as digits. Components can be in one of several stable states. In a binary computing system memory cells, 

for instance, can be in either of two stable states, each of which constitutes a digit. Upon receiving some physical 

stimulus (e.g., the pressing of a key), a memory cell enters a state on which it must stabilise. Memory cells 

stabilise on states corresponding to either of two digit types, typically labeled '0' and '1', that are processed by the 

computing system. If memory cells did not have the capacity to stabilise on one of these digit types, the memory 

would cease to function as such and the computer would cease to operate normally (ibid: p. 511). 

The fourth requirement is that the components of the system be functionally organised and synchronised so 

that external inputs, together with the digits stored in memory, be processed by the relevant components in 

accordance with a set of instructions.8 During each time interval, the processing components transform external 

input (if such exists) and previous memory states in a manner that corresponds to the transition of each 

computational state to its successor. The external input combined with the initial memory state constitute the 

initial string of a particular computation. Intermediate memory states constitute the relevant intermediate strings. 

Similarly, the output produced by the system (together with the final memory state) constitutes the final string. 

As long as the components of the system are functionally organised and synchronised so that their processing 

respects the well-defined ordering of the manipulated digits, the operation of the system can be described as a 

series of snapshots. The computational rule specifies the relationship that obtains between inputs and their 

respective outputs produced by modifying snapshots according to a set of instructions (ibid: pp. 509, 515). 

Discussion 

The literature contains many attempts to clarify the notions of computation simpliciter and digital computation, 

in particular. Matthias Scheutz, for example, argued that there is no satisfactory account of implementation to 

answer questions critical for computational cognitive science (1999: p. 162). He does not offer a new account of 

concrete computation. Instead he suggests approaching the implementational issue by starting with physical 

digital systems progressively abstracting away from some of their physical properties until a (mathematical) 

description remains of the function realised. In a similar vein, David Chalmers (forthcoming) also focuses on the 

implementational issue, only to offer a new mathematical formalism of computation that is based on 

combinatorial state automata (supplanting the traditional finite state automata). He too argues that a theory of 

implementation is crucial for (digital) computation to establish its foundational role in cognitive science. The 

motivation behind both Scheutz and Chalmers’ efforts to clarify the notion of implementation is to block 

attempts by Putnam and Searle (and others) to trivialise computation (and undermine computationalism). 

Other notable discussions of computation in cognitive science include David Israel (2002), Oron Shagrir 

(2006), Piccinini (2006, 2011), Smith (2002, 2010) and the (long) list continues. Israel (2002) claims that often it 

seems that a better understanding of computation is hampered by philosophical concerns about mind or 

cognition. Yet “[o]ne would, alas, have been surprised at how quick and superficial such a regard [to 

computation] has been” (ibid: p. 181). Shagrir (2006) examines a variety of individuating conditions of 

computation showing that most of them are inadequate for being either too narrow or too wide. Although he 

does not provide a definitive answer as to what concrete computation is, he points out that neither connectionism 

nor neural computation nor computational neuroscience is compatible with the widespread assumption that 

digital computation is executed over representations with combinatorial structure. 

Importantly, two uncommon examples of genuine attempts to explicate the notion of computation are 

Piccinini and Smith. Piccinini (2006) demonstrates how on various readings of computation, some have argued 

that computational explanation is applicable to psychology, but not, for instance, to neuroscience. Still, 

                                                             
8 Strictly, this requirement applies to systems that Piccinini dubs “fully digital” computing systems (Piccinini, personal 

communication). Other systems, which he dubs “input-output” digital computing systems, take digital inputs and produce 

digital outputs in accordance with a rule, but do not execute a step-by-step program (e.g., some connectionist networks). 



neuroscientists routinely appeal to computations in their research. Elsewhere, Piccinini examines the 

implications of different types of digital computation (as well as their extensions’ relations of class inclusion) for 

computational theses of cognition (Piccinini and Scarantino 2011). 

But as far as I am aware, nobody else in the literature has ever undertaken a more ambitious project than 

Smith to systematically examine the extant accounts of computation and their role in both computer science and 

cognitive science. In his 2002 “The foundations of computing”, Smith lists the following six construals of 

computation: FSM, Effective Computability, Algorithm Execution, Digital State Machines, Information 

Processing and PSS. 9 His Age of Significance project (which is now long coming) aims to shed some light on the 

murky notion of computation, putting each one of these construals under careful scrutiny (Smith 2010). 

Surprisingly enough, Smith concludes that there is no adequate account of computation and never will be one. 

For computers per se are not “a genuine subject matter: they are not sufficiently special” (ibid: p. 38). Pace 

Smith, I do not believe that there is a compelling reason to reject all accounts of computation as inadequate, let 

alone to preclude the possibility of ever coming up with an adequate account. Still, I strongly agree that the 

accounts are different and many of them are indeed inadequate for explaining concrete computation. 

My main argument here proceeds as follows: 

• (P1) There are many accounts of digital computation at our disposal. 

• (P2) These accounts establish different (but not all irreducibly different) requirements for a 

physical system to perform digital computation. 

• (P3) Therefore, extant accounts of computation are non-equivalent. 

• (P4) Cognitive capacities are sometimes explained by invoking digital computation terminology. 

• (P5) When employing an equivocal interpretation, one needs to commit to an explicit interpretation 

(or account). 

• Therefore, one needs to commit to an explicit account of computation when explaining cognitive 

capacities by invoking digital computation terminology. Specifically, any computational thesis of 

cognition is unintelligible without a commitment to a specific account of computation. 

The truth of the first premise is evident in the philosophical literature (cf. Piccinini 2007; Shagrir 1999; and 

Smith 2002, 2010). In addition to the FSM, PSS and Mechanistic accounts examined here, there are also the 

Algorithm Execution account, the Gandy-Sieg account, the Information Processing account as well as others. 

Similarly, premise four (at least) seems self-evident. Computationalists take premise four for granted (Fodor 

1975, Pylyshyn 1984, Newell & Simon 1976, Marr 1982, van Rooij 2008) and so do some connectionists. 

Radical dynamicists do not subscribe to the computational theory of mind (Van Gelder & Port 1995, Thelen & 

Smith 1994), yet they reject it without committing to any particular account of computation proper. For they 

presuppose that digital computation is inherently representational. Other dynamicists do not deny that some 

aspects of cognition may be representational and be subject to a computational explanation. 

Yet, this presupposition is unjustified. Digital computation (but not computationalism) could be explained 

without invoking any representational properties (barring internal representations) by appealing to causal or 

functional properties instead (see Fresco 2010 and Piccinini 2008a). As van Rooij (2008: p. 964) rightly points 

out, computation and computationalism have become associated with the symbolic tradition, but only sometimes 

with specific models in this tradition. Some accounts of concrete digital computation are indeed representational 

(cf. the reconstruction of Smith’s participatory account in Fresco forthcoming as well as the FSM and PSS 

accounts discussed above), but others need not be (cf. Copeland 1996, Chalmers 1994, the Mechanistic account 

discussed above). This simply reinforces the need to commit to a particular account of computation. 

Moreover, premise five simply calls for disambiguation when there is an equivocation in terms. When some 

phenomenon is open to two interpretations or more, we should commit to one interpretation to avoid ambiguity. 

For instance, the concept depression has at least two typical meanings. In the sentence, “The great depression 

started in most countries in 1929 and lasted for a long time”, it is clear that ‘depression’ means a long-term 

downturn in economic activity. On the other hand, in the sentence, “Long depression leads to making irrational 

decisions”, ‘depression’ means something different. Similarly, when one asserts that hierarchical planning or 

linguistic tasks, for example, are computational, one ought to commit to a particular account of computation.10 Is 

it in virtue of executing an algorithm, formally manipulating symbols, or implementing a TM that cognitive 

agents engage in hierarchical planning? Ambiguity may lead to poor communication, which may hinder the 

progress in the relevant research field, for it is clearly a collaborative effort. 
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 In an unpublished chapter from the Age of Significance, Smith adds the following construals: Calculation of a Function, 

Interactive Agents, Dynamics and Complex Adaptive Systems. 
10

 To be clear, digital computation is not ambiguous in the same sense that depression is. The aforementioned accounts offer 

specific proposals for how 'digital computation' should be understood, but they are still related by a more general sense of 

'digital computation'. The example above is simply meant to emphasise the need for disambiguation. 



Furthermore, the commitment to a particular interpretation should be consistent to avoid further ambiguity. 

From the two sentences above it follows that irrational decisions were made in the countries that suffered the 

Great Depression in 1929. This conclusion would only validly follow from its premises, if 'depression' has the 

same interpretation in both premises. Otherwise, whilst this conclusion may be plausible, it does not follow. This 

is also known as the fallacy of equivocation. Similarly, if one explains a particular cognitive capacity in virtue of 

an explicit account of concrete digital computation, one has to consistently adhere to that account. An 

explanation of a linguistic task in virtue of formal symbol manipulation and then in virtue of algorithm execution 

ceases to be a coherent story, since they are not equivalent. 

Importantly, not only are the extant accounts of concrete digital computation intensionally different, they are 

also extensionally different. These accounts offer different perspectives on what a physical computing system 

does. But rather than having the same extension, these accounts end up denoting different classes of computing 

systems. For example, the second requirement of the FSM account excludes computing systems that are neither 

program-controlled nor programmable11. For such systems do not follow semantically represented rules, instead 

the “rules” are hardwired. A physical symbol system is explicitly classified by Newell and Simon as an instance 

of a UTM (1976: p. 117). This classification is also derivable from the conjunction of the fourth and fifth 

requirements of the PSS account. Also, the FSM and PSS accounts exclude computing systems such as Gandy 

machines12 and discrete neural networks, for they violate Turing’s locality condition and do not necessarily 

operate on explicit symbolic expressions. The Mechanistic account, on the other hand, is far less restrictive in 

terms of the systems it classifies as digital computing systems, including UTMs, and special purpose TMs, but 

also FSAs, discrete neural networks, primitive logic gates and even hypercomputers (see figure 1). 

 

 The Mechanistic Account –  

 Logic gates, Flip-flops, Discrete neural nets, hypercomputers 

                                  The FSM Account – 

                                                  Special purpose TMs 

                                                             The PSS Account -  

                               Universal TMs 

 

Fig. 1. With the exception of hypercomputers, UTMs are the most powerful and flexible computing systems in the class 

above (e.g., they can simulate any discrete neural net). Still, UTMs (and physical approximations thereof) do not exhaust all 

types of digital computing systems. The Mechanistic account is the broadest of the three accounts examined. 

Prima facie, it might seem that premise two is self-defeating, but this is not the case. A possible 

consequence of all the requirements not being irreducibly different is some overlap between requirements of 

various accounts. Thus, the requirements that are implied by one account could be reduced to some of the other 

requirements.13 And if all the requirements could be reduced to a coherent minimal set of key requirements, then 

this would constitute a single account of computation. Premise three would then no longer follow from the 

preceding premises. However, premise two suggests that although some of the requirements may overlap, not all 

of them do. For instance, the fourth key requirement of the Mechanistic account presupposes the existence of 

memory (whose cells stabilise on certain digits). Similarly, the sixth requirement of the PSS account and the 

sixth requirement of the FSM account both demand memory for storing and retrieving symbolic expressions. 

Still, some requirements of one account, such as spatiotemporal synchronisation of processing digits belonging 

to the same string (i.e., the Mechanistic account second requirement), cannot be reduced to any of the 

requirements of the competing accounts. 

Possible challenges to my conclusion might be that some of the key requirements implied by different 

accounts could be synthesised or that one could simultaneously subscribe to two accounts or more. The first 
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 A special purpose TM is an example of a program-controlled system that is not programmable. 
12

 A Gandy machine (introduced by Turing’s student, Robin Gandy in 1980) can be conceptualised as multiple TMs working 

in parallel, sharing the same tape and possibly writing on overlapping regions of it. 
13

 An overlap among requirements clearly does not imply reduction from one requirement to another. My intent here is to 

address a possible criticism to the effect that premise three would no longer follow as an intermediate conclusion from its 

preceding premises. 



challenge may result in sidestepping the demand to commit to an explicit account. But even if that were the case, 

such a synthesis would simply yield a new (possibly adequate!) account of computation. The second challenge 

needs unpacking. It can be interpreted in one of two ways. Firstly, it could be interpreted as subscribing to more 

than one account simultaneously for explaining different cognitive capacities respectively. I do not see that as a 

problem. There is still a need to commit to a particular account for each relevant cognitive capacity. But this 

could have some other consequences, such as explaining cognitive behaviour in a non-unified manner by 

resorting to a plethora of computational models. It will require a compelling account of how the different 

computational (cognitive) subsystems interrelate. Further, it may require telling an evolutionary story about 

cognition that justifies different types of computation when a single type could, in principle, suffice. 

Secondly, the challenge could be interpreted as subscribing to several accounts simultaneously, since 

cognitive explanations by nature span multiple levels. This is consistent with Marr’s (1982) tripartite analysis. 

For instance, we could hold that (1) cognitive computations are inherently representational. At the same time, we 

could also hold without being inconsistent that (2) these computations are constrained in terms of any one of the 

formalisms of computability, and lastly that (3) they occur in the brain, which is embodied and situated in the 

real world. This is all well and good. Still, as I have argued above, concrete computation (but perhaps not 

cognitive computation) could be explained without necessarily invoking any representational properties (e.g., by 

the Mechanistic account above or the Algorithm Execution account in Copeland 1996). If one wishes to commit 

to a representational account of digital computation, since cognition is representational, one should firstly justify 

why computation proper is representational. Also, subscribing to an account of concrete computation and to a 

formalism of computability simultaneously does not introduce any conflict. 

Although some of the key requirements of the three accounts overlap, others do not, suggesting that there is 

sufficient dissimilarity between these accounts. For example, the conjunction of the fourth14 and fifth 

requirements of the PSS account can be reduced to the FSM account’s first requirement. The PSS account’s 

fourth and fifth requirements amount to the universality property of soft-programmable computing systems that 

is achieved by means of symbolic expressions used either as data or as programs ensuring maximal plasticity of 

function. In addition, both the FSM account’s fourth requirement and the first part of the PSS account’s seventh 

requirement demand the capacity to handle an unbounded number of representations15 (or symbolic expressions 

designating some entities). 

Another seemingly important similarity between the FSM and PSS accounts (but not the Mechanistic 

account) is that computing systems engage in information processing at the symbolic level. For instance, Fodor 

and Pylyshyn (1988: p. 52) claim that “conventional computers typically operate in a 'linguistic mode', inasmuch 

as they process information by operating on syntactically structured expressions”. As well, Newell and Simon’s 

(1972: p. 870) fundamental working assumption is that “the programmed computer and human problem solver 

are both species belonging to the genus IPS” (that is information processing systems). The Mechanistic account, 

on the other hand, does not equate information processing and digital computation.16 Still, it is not clear in what 

sense the information-processing characterisation of computing systems adds anything operative to the 

classification of certain physical systems as performing digital computation. This is stipulating that processing of 

information amounts to the production, modification and deletion of information. 

A well-known non-semantic reading of information is based on Claude Shannon’s concept of information 

(1948), but it is not clear what processing of Shannon Information amounts to. His theory dealt with information 

syntactically: whether and how much information is conveyed. Its basic idea is coding messages into a binary 

system at the bare minimum of bits we need to send to get our message across while abstracting from the 

physical media of communication. The amount of information conveyed is defined as the uncertainty (or 

entropy) associated with particular messages. The deletion and modification of information is only possible in 

the presence of noise. Noisy channels may displace information, but this is not the same as a deliberate deletion 

of information in computing systems, say to free up memory resources or reduce the size of a database. Although 

error detection and correction methods modify information to offset noise, symbolic expressions could be 
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 The PSS account’s fourth requirement demands the existence of expressions that represent every process of which the 

machine is capable to support the full plasticity of behaviour of the computing system. But it is not clear why it is 

necessary that every such expression exist. There could be a mismatch between the set of all functions and the set of all 

expressions representing them. For instance, some functions could be the serial invocation of several expressions 

(themselves representing other functions). 
15 Only that the FSM account explicitly states that the unbounded number of representations is produced by means of 

compositionality. 
16

 Instead, according to the Mechanistic account, information processing entails generic computation (the superclass of both 

digital computation and analogue computation) (Piccinini and Scarantino 2011: pp. 33-34). For information is a medium-

independent concept. However, digital computation does not entail information processing, because although digits could 

carry information, they need not do so essentially.  



modified for many purposes other than error correction. The production of new information is more problematic, 

for the only source of new information, according to Shannon (1948: p. 12), is uncertainty. 

Another possible non-semantic reading of information is based on Algorithmic Information, which was 

introduced by Ray Solomonoff and Andrei Kolmogorov. But even on this reading, it is not immediately clear 

what information processing amounts to in the context of concrete computation. The algorithmic information of 

a string X is defined as the length of the shortest program on a UTM that generates X as its output. Algorithmic 

information seems a more suitable candidate as the basis of an information processing characterisation of 

computation. For it is defined over algorithms, rather than over randomness of messages. Yet, the problem of 

processing algorithmic information remains, as it is invariant to the process of computation itself.  

Importantly, as stated by Solomonoff, the actual value of Kolmogorov complexity of a string is 

incomputable, it can only be approximated (2009: pp. 6-7). This limitation prevents us from actually having a 

full description of all the possible optimal algorithms (that are also enumerable) to solve a specific problem 

(Calude 2009: p. 82, Calude et al, forthcoming). Still, a variation on algorithmic information theory, which is not 

based on UTMs but rather on Finite State Transducers, does allow us to compute the complexity of strings. This 

variation, however, comes at the cost of Turing universality that does not apply to finite state transducers, since 

there is no universal transducer (Calude et al, forthcoming). Yet, algorithmic information theory will have a 

limited capacity to explain cases in which information is deleted and/or modified whilst the overall information 

complexity of the computing system does not decrease. 

Other possible candidates for the information processing characterisation of computing systems alluded to 

by the FSM and PSS accounts are based on a semantic reading of information. The two main types of semantic 

information are factual information and instructional information. The former type is objective propositional 

information representing some facts or states of affairs, and arguably only qualifies as information if it is true 

(yet, this is a contentious claim). The latter type is not about facts or state of affairs, so it is not qualified 

alethically (Floridi 2009: pp. 35-36). Instructional information is conveyed either imperatively (e.g., step 1: do 

this, step 2: do that) or conditionally (e.g., if X do this, otherwise do that). The subtleties of semantic information 

are not discussed further here for lack of space. However, since algorithms are finite sets of instructions, 

instructional information seems a plausible candidate as the basis of characterising digital computation as 

information processing.  

Moreover, the Mechanistic account is grounded in physical mechanisms that perform computations, whereas 

both the FSM and PSS accounts are grounded in symbolic computation and semantics. Digits in the Mechanistic 

account are not symbols, but rather states of components (and are as physical as it gets). So, they have no 

representational character and their processing is independent of any (external) semantics. The second 

requirement of the FSM account, in contrast, emphasises that symbolic expressions are manipulated according to 

formal rules and must always be semantically interpretable even following numerous manipulations. The second 

requirement of the PSS account emphasises that symbols are manipulated in virtue of their semantics. 

Incidentally, the semantics of symbols and their manipulation is a key difference between the PSS and FSM 

accounts. Although both accounts are based on the manipulation of symbols at the heart of the computational 

process, they diverge on how semantics enters this process. According to the FSM account’s second 

requirement, symbols are formally manipulated in virtue of their syntax, but they are always semantically 

interpretable. It is a property of automatic formal systems that symbolic expressions continue to “make sense” 

when manipulated by truth-preserving rules. On this view, the formal manipulation of symbols based on their 

syntax is sufficient for the operation of the computing system. And the semantics of the manipulated symbolic 

expressions is epiphenomenal on their syntax.  

However, the second requirement of the PSS account reveals that processes in computing systems are 

causally affected by the semantics of symbols. The behaviour of a process P (with X as its input) depends on a 

potentially distal entity Y, which is designated by X. The designation requirement is vague, for it leaves the ways 

in which a process depends on some entity unspecified. It might be the case that Newell and Simon took it for 

granted that symbols symbolise by definition and so they have not explicated where their (external) semantics 

comes from. If indeed external semantics is required for computation, then this gap is too big to be left 

unexplicated. Internal access to symbols and expressions in a conventional digital computer is an assignment 

operation of, say, a symbol to some other internal entity and it is a primitive in its architecture (e.g., for memory 

retrieval). But there is no similar primitive for the external environment (Bickhard and Terveen 1995: pp. 93-94).  

Additionally, the Mechanistic account emphasises the importance of synchronisation of processing digits 

belonging to the same string, whereas both the PSS and FSM accounts ignore temporal constraints of concrete 

computation. According to the second requirement of the Mechanistic account, with the growth in complexity of 

the computing system it becomes more crucial that digits belonging to the same string be processed in the same 

functionally relevant time interval. The other two accounts, while recognising the temporal aspects of concrete 

computation, do not explicitly mandate any temporal constraints on computing systems. 



In sum, the above differences discussed as well as others clearly confirm that the extant accounts of concrete 

digital computation are not equivalent. The key motivation behind both the FSM and PSS accounts is advancing 

a substantive empirical hypothesis about how human cognition works, namely, that cognition is essentially a 

computational system of the specified sort. The Mechanistic account, on the other hand, has a different and less 

ambitious motivation. Rather than advancing an empirical hypothesis, Piccinini’s goal in formulating his account 

is to provide a general characterisation of digital computing systems. He attempts to exclude as many 

paradigmatic cases of non-computing systems (such as planetary systems, digestive systems, mouse traps, etc.) 

as possible. At the same time, his account classifies many (but not too many) systems as performing digital 

computation. The FSM account is more restrictive and excludes any systems that are neither programmable nor 

program-controlled from the class of computing systems. The PSS account is even more restrictive, as it includes 

only UTMs (and physical approximations thereof) as genuinely computational.17 Regardless of the (doubtful) 

representational character of computation presumed by the FSM and PSS accounts, they are simply too 

restrictive as accounts of concrete computation proper. 

Conclusion 

There is no question whether mathematical formalisms of computability are adequate analyses of abstract 

computation, but they are of the wrong kind to explain concrete computation. Any particular formalism does not 

specify the relationship between abstract and concrete computation. It is at the physical level that the algorithm 

(or more precisely, program) is specified and constrained by the implementing physical medium. So, stipulating 

that any complete account of a physical phenomenon must also consider its physical implementation, an explicit 

account of concrete computation has to be specified for a complete account of concrete computing systems. 

 My main argument was that well-known accounts of concrete computation entail sufficiently distinct 

requirements for a physical system to compute, justifying the demand that one commits to a particular account 

when employing the notion of concrete computation. But despite the apparent straightforwardness of this 

argument, all too often its implied moral is surprisingly ignored by philosophers and cognitive scientists alike. 

The notions of computation simpliciter and digital computation, in particular, are employed without much 

awareness of what they mean exactly. At times, extant accounts are even used interchangeably as though they 

were equivalent (when they are not even extensionally equivalent). If we take cognition to be a physical 

phenomenon that can be explained computationally, we should state explicitly what we mean by (digital) 

computation. Otherwise, any computational thesis of cognition remains unintelligible. 
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