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Abstract 

With the rapid development of high-speed railways, vibration control for maintaining 
stability, passenger comfort, and safety has become an important area of research. In 
order to investigate the mechanism of train vibration, the critical speeds of various 
DOF with respect to suspension stiffness and damping are first calculated and 
analyzed based on its dynamics equations. Then, the sensitivity of critical speed is 
studied by analyzing the influence of different suspension parameters. Upon on these 
analyses, conclusion is drawn that secondary lateral damping is the most sensitive 
suspension damper. Subsequently, the secondary lateral dampers are replaced with 
magnetorheological fluid (MRF) dampers. At last, a high-speed train model with 
MRF dampers is simulated by a combination simulation of ADAMS and MATLAB 
and tested in a roller rig test platform to investigate the mechanism of how the MRF 
damper affects the train’s stability and critical speed. The results show that the 
semi-active suspension installed with MRF damper substantially improves the 
stability and critical speed of the train. 
 
Keywords:  

High-speed train, Critical speeds, Magnetorheological fluid (MRF) damper, 
Simulation, roller rig experimental platform 

1. Introduction 

High-speed trains are an efficient solution of the demand for high speed transportation 

in a globalized economy. Compared with other forms of transportation, high-speed 
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trains stand out for they are friendlier to the environment, they have cheaper unit 

delivery costs and they are safer [1-3]. However, as the speed of the train increases, a 

big challenge occurs that the train-induced vibration and noise increases significantly, 

which may lead to a series of problems such as ride instability, environmental noise in 

the neighborhood, possible accumulated damage to buildings and premature fatigue 

failure of the vehicle body [3,4].  

Generally, two main reasons induce the high-speed train vibration: the resonance and 

instability of the vehicle/structure system. Resonance refers to the phenomenon that 

the external disturbance of the vehicle is equal or close to the natural frequency of the 

whole system. For solving this resonance issue, a well-designed passive damper is 

commonly used. However, the parameters of passive damper are fixed, which means 

that once the system is designed, the damper cannot be adjusted. Additionally, a fixed 

passive damper may become ineffective due to other phenomena such as instability of 

the vehicle which is speed dependent. When the train speed reaches a critical value, 

the amplitude of the train vibration grows exponentially with time and theoretically 

reaches infinity in a linear system. For the reason that this instability of the 

vehicle/structure system is intrinsic and independent of the excitation type, a 

conventional passive damper is inadequate to maintain the system stability [5]. It is 

therefore crucial to study the mechanism of this train instability and find a 

controllable damper that can address the issues. 

The mechanism of instability at critical speeds has been an important research topic in 

developing high-speed vehicles. In early 1916, Carter develops an instability theory 

mainly investigating the mechanism of high-speed train instability. [6]. In his dynamic 

model, the bogie consists of two wheelsets which are rigidly mounted in a frame. 

Following his work, a number of researchers develop four or more DOF models to 

analyze the instability problem [7-9]. Wu found that the suspension has an important 

influence on ride stability [10]. Liu made a number of studies on the effects of 

coupling stiffness and damping coefficient on ride comfort [11]. Zeng investigates a 

method for predicting the linear and non-linear critical speeds of train. In his paper a 



17-DOF train model is established and then the influence of secondary lateral 

damping on its critical speed is presented [12]. In the published book by Zhang, a 

train model of 17 DOF is proposed and qualitatively analysis about the influence of 

the stiffness and damping of the bogie on the critical speeds of train is given [13]. It is 

concluded from his analysis that the suspension parameter significantly impacts the 

critical speed of trains. Based on the above literatures, the stiffness and damping of 

train bogies has been recognized as the important parameters that affect the critical 

speed of trains, which means the effect of the suspension parameters on the critical 

speed should be paid more attention. However, these literatures only focus on one 

critical speed-the critical speed of the whole train and the fact is that most of the train 

DOFs exist critical speeds. One of the highlights of this paper is that all the critical 

speeds of train DOFs are considered. Researches on each DOF’s critical speed reveal 

the different stability of each train components. This revelation offers guidance for the 

design of train suspension parameters.  

As mentioned above, finding a controllable suspension to suppress the vibration in 

high speed trains becomes urgent.  Apart from passive control, active control and 

semi-active control can also improve the system performances over a wide range of 

train speeds. However, the active control is largely limited for common use for its 

requirements of large control force, more power and complex control 

strategies.[14-15]. Furthermore, an active control strategy adds extra power into the 

train system, which poses a threat to the strain stability. Recently, semi-active control 

has gained considerable interests because it requires less energy and can adjust system 

parameters in real time [16-17]. Many researchers have done excellent jobs on 

semi-active control of railway vehicle [18-20]. Variable orifice dampers have mainly 

been considered to control train vibration. ONeill and Wale [21] have done some 

pioneer work on the use of semi-active suspension to improve the ride quality of 

trains, although at present, the composition of the oil cylinders and mechanical valves 

reduces the stability of variable orifice dampers and increases their maintenance costs.  

Another method used to realize semi-active control is to place controllable fluids into 



the damper. Electrorheological (ER) fluids and magnetorheological (MR) fluids are 

two typical controllable fluids which can change from a free flowing viscous fluid 

into a semi-solid. Their composition without extra moving parts makes them simple 

and reliable. ER fluids are excited by high voltage, which limits its use in many areas 

because of safety concerns. Comparatively speaking, MR fluids only need a low 

voltage source to excite a magnetic field, which means a semi-active suspension with 

MR fluids is more suitable for high-speed trains. A Magnetorheological fluid (MRF) 

damper makes use of the unique characteristics of MR fluids whose mechanical 

properties can be quickly and reversely controlled by an external magnetic field. Thus, 

this material provides simple, quiet, rapid-response interfaces between electronic 

controls and mechanical systems. The performance of an MRF damper falls into two 

distinct states: the passive state (or off-state) and the active state (or on-state). The 

passive state is a situation where no magnetic field is present and the MR fluid 

behaves as a Newtonian fluid, but when an external magnetic field alters its rheology, 

the MR fluid changes its apparent viscosity, which is defined as the active state. In the 

event of a power supply or control system fails, the MR fluid damper can still 

function as a typical passive damper [22-23], which ensures its continuing reliability 

as a damper. MR technology has been widely used to suppress vibration [24-25]. The 

application of MR technology in the vehicle field has been reported by a few groups 

developing semi-active suspension systems for attenuating vibration in automobiles 

and car seats [26-27]. Wang and Liao did simulation and theoretical analysis in 

studying railway vehicles using MRF dampers [28-29]. However, research into the 

application of MR dampers in high-speed railway systems is very rare.  

In this article, a dynamic model of a high-speed train is developed, including the 

train’s dynamic equations. Based on this dynamic model and equations, the damping 

ratio of each train DOF is calculated. When the damping ratio reduces and crosses the 

zero line, the train becomes unstable and reaches its critical speed. Thus, the critical 

speeds of various train DOFs with respect to suspension stiffness and damping can be 

worked out. The sensitivity of a train’s critical speed with respect to the suspension 



parameters are analyzed in this paper. The result reveals that the secondary lateral 

damper impacts the train’s critical speed most. As a result, the secondary lateral 

damper which is the most influential damper is replaced with a controllable MRF 

damper to improve train stability. In order to investigate the effect of MRF dampers 

on train’s critical speed, a high-speed train installed with MRF dampers is simulated 

by a combined simulation of ADAMS and MATLAB. Then the MRF dampers 

installed in a high-speed train are tested in a roller rig test platform to explore the 

effect of MRF damping on train stability.  

2. Mathematical model and calculation of train critical speeds 

Many other typical train mathematical models have been presented in existing 

literatures [28,12]. Liao [28] establishes a 17-DOF train model to study the effect of 

semi-active suspension on train stability. Liu [30] proposes four different train 

dynamic models with 17-DOF 19-DOF, 31-DOF, and 35-DOF respectively in his PhD 

thesis. However, considering all the DOFs for characterizing train dynamics is not 

necessary, instead, it makes the calculation procedure more complicated. On the other 

hand, many researchers put forward a train component dynamic model with less DOF. 

For example, Scheffel proposes an 8-DOF train wheelset model [8]. The main 

advantage of these component models is that they cannot reflect the dynamic 

performance of the whole train. However, a 15-DOF model proposed by Garg [31] 

can effectively characterize the main dynamic performance, it is therefore a 15-DOF 

high-speed train dynamic model is adopted in this section. The damping ratio of each 

DOF, as well as the train critical speed is worked out based on the train dynamic 

equations.  

2.1. Analytical model of high-speed train 

As shown in Fig.1, the dynamic model established in this paper is a typical high-speed 

train containing front truck frame and rear truck frame. Each truck frame built in this 

paper contains primary suspension and secondary suspension. Primary suspension is 

the connecting component of wheelset and bogie frame. Secondary suspension is the 

connecting component of bogie frame and car body. The detailed structure of the 15 



DOF is illustrated in Table 1. The nomenclature used in developing the 15 DOF 

passenger vehicle model are defined in Table A.1 in the appendix. 2.2. The dynamic 

equations of motion for the wheelsets, truck frames, and car body are as follows: 

2.2.1. Car body dynamics 

The following equations are the car body dynamics characterized by the lateral (ݕୡ), 

yaw (߰ୡ), and roll (ߠୡ) motions.  

c c sy c sy t2 sy t1 sy t1 sy t2 sy c sy 4 c 4 sy c2 2 2 2           m y C y C y K y C y K y K y C h h K         (2.1) 

2
cz c sy t1 sy t2 sy b sy c sy b t1 sy b t2 sy b t1 sy b t2(2 2 )             I K K K l K C l y C l y K l y K l y  

2
sy b c2  C l                                                                                               (2.2)                            

2 2 2 2
cx c sz 4 sy 4 c sz 3 sy 4 c sy 4 t1 sy 4 t2 4 sy t1(4 2 ) (4 2 )         I C b C h K b K h C h y C h y h K y  

sy 4 c 4 sy t2 4 sy c2 2  C h y h K y h K y                                                                               (2.3) 

2.2.2. Truck dynamics 

The governing equations of the truck dynamics of high-speed trains can be 

characterized by the lateral (ݕ୲௜), yaw (߰୲௜) motions, in which the subscript i=1, 2 (1 is 

the leading truck and 2 is the trailing truck). The equations for the leading truck are as 

follows:   

t t1 pd py sy t1 py 1 py 2 sy c sy c py sy t1 sy b c(2 2 ) (2 )               m y K K K y C y C y C y K y C C y K l

              pd py 1 pd py 2 sy 4 c sy b c 4 sy c sy b c( ) ( )             K K y K K y C h C l h K K l     (2.4) 

2
tz t1 py 1 py 2 py t1 sy c px 1 pd py sy t12 2 8 (4 8 8 )             I C y C y C K K b K K K  

2 2
pd py 1 pd py 2 1 px 1 1 px 2(2 2 ) (2 2 ) 2 2         K K y K K y b K b K               (2.5) 

The equations for the trailing truck are as follows:                                                                                                  

t t2 pd py sy t2 py 3 py 4 sy c sy c py sy t2(2 2 ) (2 )             m y K K K y C y C y C y K y C C y  

pd py 3 pd py 4 sy 4 c sy b c 4 sy c sy b c( ) ( )             K K y K K y C h C l h K K l  (2.6) 

2
tz t2 py 3 py 4 py t2 sy c px 1 pd py sy t22 2 8 (4 8 8 )             I C y C y C K K b K K K  

2 2
pd py 3 pd py 4 1 px 3 1 px 4(2 2 ) (2 2 ) 4         K K y K K y b K b K                 (2.7) 



 2.2.3. Wheelset dynamics 

The high-speed train includes four wheelsets. Two of them are installed in the leading 

truck while the other two are installed in the trailing truck. The lateral (ݕன௜, i=1-4) and 

yaw (߰ன௜, i=1-4) motions are used to characterize the wheelsets dynamics. The lateral 

motions (ݕன௜, i=1-4) of the governing equations of the wheelsets are given by: 

1 1 py 22 1 c 22 pd py 1 py t1 py t1 pd py t1[ (2 ) / ] ( 2 ) 2 (2 2 )                m y C f v y K f K K y C y C K K

                pd py t1( ) K K y                                                                                                         (2.8) 

2 2 py 22 2 py t1 py t1 c 22 pd py 2 pd py t1[ (2 ) / ] 2 ( 2 ) (2 2 )               m y C f v y C y C K f K K y K K

                  pd py t1( ) K K y                                                                                                       (2.9) 

3 3 py 22 3 pd py t2 c 22 pd py 3 py t2 py t2[ (2 ) / ] ( ) ( 2 ) 2                m y C f v y K K y K f K K y C y C

                pd py t2(2 2 ) K K                                                                                                 (2.10) 

4 4 py 22 4 pd py t2 py t2 py t2 c 22 pd py 4[ (2 ) / ] ( ) 2 ( 2 )              m y C f v y K K y C y C K f K K y

                  pd py t2(2 2 ) K K                                                                                               (2.11) 

The yaw motions (߰ன௜, i=1-4) of the governing equations of the wheelsets are given 

by: 

2 2 2
z 1 1 px 1 1 px t1 11 o 1 11 o 12 2 [(2 ) / ] [(2 ) / ]            I b K b K f l v f a r y          (2.12) 

2 2 2
z 2 1 px 2 1 px t1 11 o 2 11 o 22 2 [(2 ) / ] [(2 ) / ]            I b K b K f l v f a r y          (2.13) 

2 2 2
z 3 1 px 3 1 px t2 11 o 3 11 o 32 2 [(2 ) / ] [(2 ) / ]            I b K b K f l v f a r y          (2.14) 

2 2 2
z 4 1 px 4 1 px t2 11 o 4 11 o 42 2 [(2 ) / ] [(2 ) / ]            I b K b K f l v f a r y          (2.15) 

The symbols used in above equations are defined in Table A.1 in the appendix. 

2.3. Calculation of the critical speed of a high-speed train  

Based on above equations, the governing equation can be written as  

[ ]{ } [ ]{ } [ ]{ } { }   M q C q K q 0                



(2.16) 

Where 

T
c c c 1 1 2 2 3 3 4 4 t1 t1 t2 t2{ } [ ]               y y y y y y yq  

is the generalized coordinates vector.  

Defining the state vector 

ሼݕሽ ൌ ቄ
ݍ
ሶݍ ቅ                                                        (2.17) 

Then the above governing equation can be written as 

{ } [ ]{ }y yA                                                                                                                          (2.18) 

Where 

ሾۯሿ ൌ ൤
ሾۯଵሿ ሾۯଶሿ
ሾۯଷሿ ሾ૙ሿ ൨                                                (2.19) 

Which is known as the dynamic matrix. Where 

1
1[ ] [[ ] [ ]]A M C  

1
2[ ] [[ ] [ ]]A M K  

3[ ] [ ]A I  

The mass matrix [M], damping matrix [C] and stiffness matrix [K] are obtained by 

the transformation matrix method [13]. Then the eigenvalue of the dynamic matrix λ 

is calculated using MATLAB. 

2 1,2    j j j ji         ( 1, 1 )   i j n                                                                         (2.20) 

Where  n denotes the number of degree-of-freedom 

 ௝ are, respectively, the real and imaginary part of the eigenvalue ofߚ ௝ andߙ

system dynamic matrix. 

The damping ratio can be expressed as follows: 



2 2/     j j j j                                                                                                             (2.21) 

Table 1. Motions of the 15-degree-of-freedom high-speed train model 

Component  
Motion 

Lateral  Roll  Yaw 

Front truck leading wheelset yω1 -- ψω1 

Front truck trailing wheelset yω2 -- ψω2 

Rear truck leading wheelset yω3 -- ψω3 

Rear truck trailing wheelset yω4 -- ψω4 

Front truck frame  yt1 -- ψt1 

Rear truck frame  yt2 -- ψt2 

Carboy  yc θc ψc 

 

 

 

Fig.1. Analytical model of a high-speed train 

Following the above equations, the damping ratio of the 15-DOF can be worked out. 

As the train speed is included in the train dynamic matrix, any variation in the speed 

of the train induces a change in the damping ratio. Thus, as the train speed increases, 



the damping ratios may reduce and cross the zero line. The train speed at the point 

where the damping ratio crosses the zero line is the critical speed. Consequentially, 

the critical speeds of each DOF can be worked out.  

2.4. Theoretical analysis of the effect of an MRF damper on train critical speed 

The motion of the vehicle with MRF dampers is given by 

[ ]{ ( )} [ ( )]{ ( )} [ ( )]{ ( )} [ ( , , )] [ ]     x t v x t v x t A x xM C K F 0                   (2.22) 

Where ሼxሺtሻሽ is the general displacement column, [M], [C] and [K] are the mass, 

damping and stiffness matrices, respectively. They are speed dependent and can be 

derived by multi-body dynamics analysis. FሺA, x, ሷݔ ሻ is the introduced force by MRF 

damper which is related to current A and displacement. 

If the vehicle system has a passive damper, the eigenvalue equation is derived as 

2
p[ ] [[ ( )] [ ]] [ ( )] [ ]    v vM C C K 0                                  (2.23) 

Where [Cp] is the damping of the passive damper. From Eq. (2.22), the eigenvalue of 

the vehicle/structure system is speed dependent. At certain speeds, the real part of the 

eigenvalue may become positive, which induces the vehicle/structure instability. This 

speed is called the critical speed. When the vibration becomes unstable, the amplitude 

of the motion grows exponentially in time and theoretically achieves infinity 

theoretically in a linear system. The intrinsic instability of the vehicle/structure system 

is independent of the type of excitation. Therefore, once the whole system has been 

designed, a passive damper cannot improve the stability property in the system 

because the eigenvalue is determined when the parameters of the system are fixed. 

Similarly, if the vehicle system has an MRF damper, the eigenvalue equation becomes 

2
MR MR[ ] [[ ( )] [ ]] [[ ( )] [ ]] [ ]     v vM C C K K 0                        (2.24) 

Where [CMR] and [KMR] are the MRF dampers induced variable damping and variable 

stiffness, respectively, and these two parameters definitely have an effect on the 

critical speed. With a proper designed MR damper and a suitable control algorithm, 



the critical speed is able to be above the operation speed of railway vehicles. Thus the 

vibration of railway vehicles close to the critical speed can be well controlled by an 

MRF damper.  

3. The effect of train speed on the damping ratio of each train DOF 

The dynamic matrix of a train contains variable parameters and train speed. Thus, as 

the velocity of a train increases, the train damping ratio varies. The damping ratio of 

each DOF determines the train’s critical speed. In order to investigate the different 

influence of each DOF on critical speeds, the damping ratios of the train’s 15-DOF 

with different train speeds are calculated. The damping ratio of the front truck 

wheelsets, rear truck wheelsets, truck frames and car body with respect to train speed 

are shown from Fig.2 to Fig.5 respectively.  

 

Fig.2. Damping ratios of the front truck wheelsets response modes 

The influence of train speed on the damping ratios of the front truck wheelsets is 

presented in Fig.2. The figure shows that the various damping ratios of the front truck 

trailing wheelsets lateral and yaw motion progress similarly with train speed that the 

damping ratios increase slightly until peak at 0.47 and 0.48 respectively then decrease 

continually but do not cross the zero line. The figure also indicates that the damping 
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ratio of the truck leading wheelsets lateral and yaw motion is not sensitive to the train 

speed. An increase in train speed from 40m/s to 160m/s only decreases the damping 

ratio of the truck leading wheelset by 3%. 

 

Fig.3. Damping ratios of the rear truck wheelsets response modes 

Fig.3 shows the influence of train speed on the damping ratios of the rear truck 

wheelsets. The figure indicates that the damping ratio of the rear truck leading 

wheelset reduces significantly and crosses the zero line at 133m /s, which is the 

critical speed of the rear truck leading wheelset. The damping ratio of the rear truck 

trailing wheelset is basically unchanged at first but decreases sharply at a speed of 

100m/s, and then crosses the zero line at 110m /s which is the critical speed of the rear 

truck leading wheelset. 
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Fig.4. Damping ratios of truck frames response modes 

The effect of variations in the train speed on the damping ratios of truck frames is 

illustrated in Fig.4. The damping ratio of the front truck frame is inversely 

proportional to the train speed and does not cross the zero line. The damping ratio of 

the rear truck frame declines until the train speed reaches 100m /s, then the damping 

ratio increases dramatically and levels off at 0.5.  
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Fig.5. Damping ratios of car body response modes 

As shown in Fig.5, the damping ratio of the car body is basically not influenced by the 

train speed. That the damping ratio remains above the zero line means the car body is 

stable even though the train reaches a high level of speed. Based on the above figures, 

the damping ratios of each DOF responding to the train speed vary from each other. 

From the damping ratio analysis, the rear truck wheelset and rear truck frame are 

more unstable than other components of the train. 

4. The influence of suspension parameters on critical speeds of each train DOF 

When the damping ratio reduces and crosses the zero line, the train reaches its critical 

speed. The change of suspension parameter induces a variation of the crossing point 

which determines the train’s critical speed. Therefore, the critical speed of a 

high-speed train is directly related to the suspension parameters and it is crucial to 

study the effect of suspension parameters on the critical speeds of each train DOF.  

As the train speed increases, some certain train DOFs become unstable, which means 

the train reaches its critical speed in these DOFs. In such cases, the whole train 

reaches its critical speed as well. Thus, the critical speed of the whole train can be 
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obtained by taking the minimum critical speed of each train DOF at each point. 

Critical speeds which exceed 200m/s are out of discussion in this paper because the 

current operating speed is much lower than 200m/s. The following figures show the 

effect of the train suspension parameters on the critical speeds of several train DOFs. 

For the sake of simplicity in describing the following figures, C with different 

subscripts represents the critical speeds of different train DOFs. C with two subscript 

letters represents the critical speeds of the truck frame. The first letter (‘f ’or ‘r’) is 

used to represent the front and rear truck frames, respectively. The secondary letter (‘l’ 

or ‘y’) represents the lateral motion and yaw motion. C with three subscript letters 

represents the critical speeds of the truck frame wheelsets. The first letter (‘f’ or ‘r’) is 

used to identify the front truck frame and rear truck frame, respectively. The 

secondary letter (‘t’ or ‘l’) is used to identify the trailing and leading wheelsets. The 

third letter (‘l’ or ‘y’) identifies the lateral and yaw motion. The different meanings of 

each symbol are also shown in table A.2. 

 

Fig.6 Critical speed versus primary lateral damping 

As plotted in Fig.6, the effect of primary lateral damping on the critical speeds of each 

train DOF is demonstrated. The increase in primary lateral damping continually 
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improves the Cfl and Cfy. Dissimilarly, Crtl and Crty decline slightly, although Crll and 

Crly had the same trend of declining first and bottoming out at 120m/s then showing an 

upward trend.  

The critical speed of the whole high-speed train with respect to primary lateral 

damping is the same as the effect of primary lateral damping on Crtl, because the value 

of Crtl is the minimum at each point. In other words the whole train critical speed is 

dominated by lateral motion in the rear truck trailing wheelset when the primary 

lateral damping is changed. Based on the curve, this increase in the primary lateral 

damping reduces the critical speed by 8.3%. 

 

Fig.7 Critical speed versus secondary lateral damping 

Fig.7 shows the effect of secondary lateral damping on the critical speeds of each train 

DOF. As the secondary lateral damping increases Crl and Cry show a basic upward 

trend, whereas Cfty, Cfy and Crll reduce constantly. Cfl, Crly, Crtl and Crty share the same 

trend of reducing before 8×104Ns /m then increasing after that point as the primary 

lateral damping keeps on increasing. Based on the figure, with the variation of 

secondary lateral damping, the whole train critical speed is restricted by the lateral 
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and yaw motion of rear truck frame before 5×104N s /m. Then the rear truck trailing 

wheelset yaw and front truck frame yaw motions dominate the whole train’s critical 

speed in turn. The critical speed of the whole high speed train climbs to 130m/s and 

then levels off as the secondary lateral damping increases. 

 

Fig.8 Critical speed versus primary lateral stiffness 

Fig.8 indicates the effect of primary lateral stiffness on the critical speeds of each train 

DOF. The variation of primary lateral stiffness from 1000N/m to 1×107N/m increases 

Crtl, Crll, Crty and Crly by 43%, 50%, and 49% respectively, whereas Crl and Cry show a 

downward trend, Cfl and Cfy reduce before 7×105N/m and then rise to 200m/s after 

that.  

As shown in Fig.8 the whole train critical speed is limited by the lateral motion in the 

rear truck trailing wheelset and rear truck frame when the primary lateral stiffness is 

changed. Then the critical speed of the high-speed train increases to 110m/s before 

showing a downward trend as the primary lateral stiffness increases.  
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Fig.9 Critical speed versus secondary lateral stiffness 

As shown in Fig.9, Crly and Cfy decrease at first and then show an upward trend, but 

Cry and Crl remain basically the same. The increase in the secondary lateral stiffness 

reduces the Crll and Crl while the increase in secondary lateral stiffness improves Crtl 

and Crty.  

Based on an analysis of the figure, the lateral and yaw motions of the rear truck frame 

confine the whole train’s critical speed. This figure also shows that the critical speed 

of a high-speed train is inversely proportional to its secondary lateral stiffness. This 

increase in the secondary lateral stiffness from 1000N/m to 1×107N/m reduces the 

critical speed by 4%. 

The above four figures provide the effect of a suspension parameter on the critical 

speeds of each train DOF, which offers a guideline to train design. The change trends 

of the critical speed with respect to different suspension parameters vary from each 

other. These four figures also show that the critical speed of the whole train is 

dominated by the critical speeds of the rear truck frame and rear truck wheelset. Thus, 

the conclusion that the critical speeds of rear truck frame and rear truck wheelset 
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restricts the whole train critical speed can be drawn. As a result, more attention should 

be paid to the rear truck frame and rear truck wheelset when we intend to improve the 

train critical speed. 

5. The sensitivity analysis of the critical speed of a high-speed train 

The effect of suspension parameters on the critical speeds of each train DOF is plotted 

in the former section where the influence of various suspension parameters on the 

whole train critical speed is discussed. The sensitivity of the whole train critical speed 

with respect to the suspension parameters is calculated to investigate which parameter 

impacts the train critical speed most.  

The sensitivity analysis is focused on the relationship between the designed variable 

available to the engineer and the system response and has been adopted in many 

research areas [31-33]. Based on the sensitivity analysis, the designer can carry out a 

systematic trade-off analysis [32], and resigning a system can be processed [31]. J 

Jang and Han devise a way to conduct dynamic sensitivity analysis for studying state 

sensitive information with respect to changes in the design variables [34]. Park 

applies sensitivity analysis into the pantograph dynamic analysis for a high-speed rail 

vehicle [35]. The sensitivity analysis for the effect of bogie stiffness and damping on 

the critical speeds contributes a lot to enhance train critical speed. It can predict which 

stiffness and damper will affect the critical speed most and which range of the bogie 

parameter will have a severe impact on the critical speed. Thus, the results of the 

sensitivity analysis will help guide the design of bogie parameters. However, the 

sensitivity of bogie stiffness and damping on the critical speeds is very rare in the 

existing research, to the best of the author’s knowledge.  

In this section the sensitivity of the train critical speed with respect to the suspension 

parameters is measured. A measurement of the sensitivity of the ݅th suspension 

parameter ݔ௜ is given as, 

w

w

/
 

 i

i

C x
S

C x
                                                         (5.1) 



Where S is the sensitivity of the critical speed, ܥ߂୵ is the variation of train critical 

speed induced by the change of suspension parameters, ܥ୵ is the changed critical 

speed, ݔ߂௜ is the variation of the ith suspension parameter, and ݔ௜ is the changed ith 

suspension parameter.   

The result of the train critical speed with respect to lateral and vertical damping is 

shown in Fig.10. Based on this figure the train critical speed is insensitive to the 

variation of primary and secondary vertical damping.  

This increase in primary lateral damping results in a reduction of the train critical 

speed. Compared to the above three curves, the critical speed is more sensitive to 

secondary lateral damping. As the secondary lateral damping increases, the train 

critical speed jumps to 136m/s and then declines gently to 112m/s.  

Fig.11 presents the results of the train critical speed with respect to the lateral and 

longitudinal stiffness. As shown in Fig.11, the train critical speed is less sensitive to 

primary and secondary lateral stiffness compared to primary longitudinal stiffness. 

Similarly, the train speed is not sensitive to any variation of primary longitudinal 

stiffness from 1000N/m to 2×105N/m, but when the primary longitudinal increases 

from 2×105N/m to 2×106N/m, the train critical speed is improved by 300%.  

Fig.12 indicates the sensitivity of the critical speed with respect to vertical and lateral 

damping. It is observed that the train critical speed is affected by secondary lateral 

damping (Csy), secondary vertical damping (Csz), primary lateral damping (Cpy) and 

primary vertical damping (Cpz), but Csz, Cpy, Cpz is not as sensitive as Csy. The figure 

also shows that the sensitivity ascends and peaks at 0.45, which is around 8×105Nm/s, 

and then it shows a downward trend and reduces to 0, around 5×107 Nm/s, as the Csy 

increases.  

Fig.13 shows the sensitivity of the critical speed with respect to secondary lateral 

stiffness (Ksy), the primary lateral stiffness (Kpy), and the primary longitudinal 

stiffness (Kpx). But the sensitivity of critical speeds corresponding to Ksy and Kpy 



remains at a lower level compared with that corresponding to Kpx. This is explained 

that as Kpx increases, the sensitivity remains unchanged at first, and then jumps to 

1.05 around 1×106N/m and descends to 0 when the stiffness increases to 1×107N/m.  

The average sensitivity of different bogie stiffness and damping parameters is 

illustrated in Fig.14 where Kpx and Csy are the two parameters that most affect the 

train critical speed. Here the influence of Ksy, Kpy and Cpy on train critical speed is 

reduced in turn and the Cpz and Csz have almost no effect on the critical speed. 

 

Fig.10 Train critical speed versus various bogie damping 
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Fig.11 Train critical speed versus various bogie stiffness 

 

Fig.12 Sensitivity of train critical speed versus various bogie damping 
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Fig.13 Sensitivity of train critical speed versus various bogie stiffness 

 

Fig.14 The average sensitivity of train critical speed with respect to different bogie stiffness and 

damping parameters 

It can be seen from the above figures that the secondary lateral damping and primary 

longitudinal stiffness are the two most sensitive parameters impacting the critical 
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speed compared to the other bogie parameters of the train. Thus, more attention 

should be paid to these two parameters when we aim to increase the train critical 

speed. It can also be concluded that the most sensitive range of secondary lateral 

damping is from 1×104Ns/m to 5×105Ns/m while the most sensitive range of the 

primary longitudinal stiffness is from 1×105 N/m to 3×106N/m.  

6. The simulation of a high-speed train with an MR damper 

Based on the above analysis, secondary lateral damping has the most influence on 

train critical speed, and as a result, the secondary damper is replaced by an MR 

damper in this simulation. In this paragraph a high-speed train model imbedded with 

four MR dampers is established by ADMAS software and the control strategy is built 

in MATLAB/SIMULINK. In this way the simulation of a high-speed train with MRF 

dampers can be realized and a random irregular track is applied to investigate how the 

MR dampers effect on the train critical speed. 

6.1. Modeling of a high-speed train 

In order to establish the dynamic model of the high-speed train, software called 

ADAMS/RAIL is used in this research because it contains detailed models of 

suspension components such as the wheelset, bogie frame, train body, and so on.  

The model established in this paper is a two-axle railway vehicle containing a front 

truck and rear truck frame, as shown in Fig.15. The truck frames, as shown in Fig.16, 

built in this paper contain primary and secondary suspension. The primary suspension 

consists of four primary vertical dampers and four primary vertical springs while the 

secondary suspension consists of two secondary vertical dampers, two secondary 

vertical springs, and secondary lateral dampers. 



 

Fig.15 Dynamic model of a high-speed train 

 

Fig.16 Dynamic model of suspension of high-speed train 

6.2. Modeling of MR damper  

Different kinds of models have been used to describe the behavior of MR dampers, 

such as the Bingham model, the Bouc-Wen model, the viscoelastic-plastic model, and 

so on. The dynamic phenomenological model adopted in this paper to describe the 

dynamic performance of the MR damper is based on the model built by Yang [36]. 

This model is based on the Bouce-Wen model, including the MR fluid stiction 

phenomenon and the shear thinning effects illustrated in Fig.17. The damper force ܨை 

is determined by following equations. 

1
o o o o o| || | | |       n nz x z z x z A x                                     (6.1) 

o o o o o o o o o( )      oF f z k x c x x m x                                    (6.2) 

2 o( | |)
o o 1( )  

pa xc x a e                                                   (6.3) 



The damping force is determined by Eq. (6.2), and the functional parameter αo is 

governed by the input current. ko, fo and ܿ௢ሺݔሶ௢ሻ are the accumulator, friction force, 

and post-yield plastic damping coefficient respectively. mo is adopted to emulate the 

MR fluid stiction and inertia effect, and Eq. (6.1) represents the Bouce-Wen model. 

The evolutionary variable z is determined by γ, βo, Ao and n. The force-displacement 

and force-velocity relationship of the MR damper used in this simulation is shown in 

Fig.18 

 

Fig.17. MR damper mathematical model 
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Fig.18. Force-displacement (a) and force-velocity (b) relationship of MR damper 

6.3. The control strategy 

The main purpose of the controller is to determine the desired damping force in order 

to enhance the train critical speed. The control strategy adopted in this article is the 

skyhook-groundhook hybrid control. Details of the skyhook-goundhook control 

strategy are as follows: 



F௦௞௬ ൌ ൜
െαܿ୫ୟ୶ሺݔሶଶ െ ሶଶݔሶଶሺݔ												ሶଵሻݔ െ ሶଵሻݔ ൒ 0
െαܿ୫୧୬ሺݔሶଶ െ ሶଶݔሶଶሺݔ												ሶଵሻݔ െ ሶଵሻݔ ൏ 0

                                                                      (6.4) 

 

F௚௡ௗ ൌ ൜
െሺ1 െ αሻܿ୫ୟ୶ሺݔሶଶ െ ሶଶݔሶଵሺݔ												ሶଵሻݔ െ ሶଵሻݔ ൒ 0
െሺ1 െ αሻܿ୫୧୬ሺݔሶଶ െ ሶଶݔሶଵሺݔ												ሶଵሻݔ െ ሶଵሻݔ ൏ 0

                                                          (6.5) 

 
F ൌ F௦௞௬ ൅ F௚௡ௗ                                                                                                                          (6.6) 
 

where  F௦௞௬ is the force generated by skyhook control strategy. F௚௡ௗ is the force 

generated by groundhook strategy. α  is the scalar denoting the force 

proportion generated by skyhook control. The ܿ୫ୟ୶,  ܿ୫୧୬ are the maximum 

and minimum damping coefficient the damper can provide.   ሶଵݔ  ሶଶ are theݔ	,

absolute lateral velocities of bogie frame and car body.  

The skyhook control is used to control the vibration of car body while the goundhook 

control is used to suppress the wheelset’s vibration. The two control strategy is 

connected by parameter α. As the main purpose of this paper is to improve train’s 

critical speed, the parameter α is set to be 0.2. 

6.4. Assembly of semi-active high-speed train and simulation 

The dynamic model of the high-speed train is established in ADAMS, while the MR 

damper model and control strategy are built in MATLAB.. The composition of the 

semi-active train model is shown in Fig.19. 

 



 

Fig.19 Composition of semi-active train model 

6.5. Simulation and results 

The combination of ADAMS and Matlab is adopted in this simulation where the 

high-speed train with the MR damper will be simulated on a random irregular track. 

Three different suspension systems are simulated in this section. They are semi-active, 

passive-on, and passive-off. The definitions of the three suspension systems are as 

follows: semi-active: suspension system with controlled MR dampers mounted on the 

secondary suspension system; passive-on: suspension system with uncontrolled MR 

dampers (constant applied current 1 A by providing relatively high damping) mounted 

on the secondary suspension system; passive-off: suspension system with 

uncontrolled MR dampers (constant applied current 0 A by providing relatively low 

damping) mounted on the secondary suspension system. The simulation results of the 

train installed with passive-on damper, passive-off damper and semi-active damper 

are shown in Fig.20, Fig.21 and Fig.22 respectively.  

Displacement of the wheelset is measured to characterize the train critical speed, it 

will remain at a low level before the train reaches its critical speed but jump to a high 

level after the train reaches the critical speed, which means the critical speed of train 

can be worked out by analyzing the displacement of the wheelsets.  



 

Fig.20 The displacement of wheelset vs the speed of the high-speed train with a passive-off damper 

 

Fig.21 The displacement of wheelset vs the speed of the high-speed train with a passive-on damper 

 

 

Fig.22 The displacement of the wheelset vs the speed of a high-speed train with an semi-acitve MR 

damper 



Fig.20 shows the displacement of the wheelset of a high-speed train with a passive-off 

secondary lateral damper. The figure indicates that the displacement remains at a low 

level before the train speed reaches 275km/s and then it suddenly jumps to a high 

level, denoting that 275 km/h is the critical speed of the high-speed train. Fig.21 

demonstrates the critical speed of the train mounted with passive-on MR damper is 

319km/h. Similarly, Fig.22 indicates that the critical speed of train with a semi-active 

MR damper is 328km/s. From Fig.20 and Fig.21, it can be found out that the increase 

of damping coefficient of secondary dampers leads to the increase of train critical 

speed. Also, the three Figures demonstrate the critical speed of the train with a 

controllable MR damper is higher than the train with passive-on or passive-off 

damper 

In this section a high-speed train with an MRF damper is established by ADMAS and 

MATLAB. The Bouce-Wen model is adopted to model the MR damper and the 

skyhook-groundhook hybrid control strategy is used to control the damping force. The 

simulation result illustrates that the MRF damper significantly improves the train 

critical speed.  

7. The experimental research on the effect of the MRF damper on the stability 

of a high-speed train 

The simulation of the train with an MRF damper verifies that it can enhance the train 

critical speed. In this section, the secondary dampers of a high-speed train are 

replaced by the MRF dampers and then the train is tested in a roller rig test platform 

to verify the simulation result and investigate the effect of MRF damper on train 

critical speed. 

7.1. Experimental facilities 

The high speed train Harmony is used to do the experimental research in this part. It is 

installed onto the roller rig experimental platform, as shown in Fig.23, and it contains 

the front and rear truck frames. Each truck frame built in this paper incorporates 

primary and secondary suspension. The roller rig which is available in the state key 



laboratory for railway is used as an experimental platform to test the high-speed train 

installed with MRF dampers. The roller rig can be viewed as a track simulator which 

simulates an endless track by using rollers. It can test a high-speed train operating at 

different speeds without field tests. The roller rig has six rollers which can move in 

vertical and lateral directions independently under servo control. Of these six rollers, 

four have the ability of gauge variation between 1000 and 1676 mm and two rollers 

can run at different rotational speeds which allow the roller rig to simulate six types of 

irregularities, including cross level, gauge, curve, and so on.  

The MRF dampers are installed between the bogie and car body, as shown in Fig.24. 

A current driver, MRF damper controller, and accelerometers are also included to run 

the experiment. 

7.2. Setup of experiment system 

The high-speed train where four passive secondary dampers are replaced with MR 

dampers is tested on the roller rig experimental platform. The MR dampers are 

installed between the body of the car and the bogie, as shown in Fig.24. The 

irregularity of the high speed train mounted on the roller rig is excited by the vertical 

and lateral motion under servo control. The accelerometers are attached to the bogie 

to measure the transverse acceleration and characterize the vibration and critical speed 

of the train. The output terminals of the accelerometers are connected with a charge 

amplifier and the data measured by accelerometers are amplified by the charge 

amplifier and then processed and transferred to the computer. The MRF damper 

controller is connected with the current driver. The desired current signal generated by 

the damper controller is delivered to the current drivers. The output terminal of the 

current drivers is connected with the MRF dampers such that, based on the current 

signal generated by the damper controller, the current drivers can adjust the input 

current of the MR valve to control the magnetic field intensity of the MRF damper. 

With this variation in the intensity of magnetic field, the damping force is changed. 



 

Fig.23 High-speed railway vehicle 

 

Fig.24 Installation of MR dampers 

7.3. Results of experiment 

In this test the c，control current is changed from 0 to 1.5A to realize the change in 

damping. The train runs at 350 km/h, 320 km/h, 240 km/h, and 200 km/h respectively 

to investigate the influence of the MRF damper on vibration at different train speeds. 

The result of the test is shown in Fig.25. It is noticed that the acceleration of the bogie 



changes slightly from 10g to 11g when the train runs at 200km/h, 240km/h, and 320 

km/h, indicating that the train keeps stable when the acceleration of the bogie varies 

between 10g to 11g. However, when the train runs at 350 km/h and the current of 

MRF damper is 0, the bogie acceleration reaches a high level of 13.25g. In this case 

the train loses its stability and reaches its critical speed. However, the bogie 

acceleration decreases continuously when the suspension damping increases by 

enhancing the current in the MRF damper. 

Based on above analysis, the train reaches its critical speed of 350km/s when the 

current of MRF damper varies from 0 to 0.6A. As the current increases to 0.8A, the 

transverse acceleration of bogie will drop to 10.1g, which means the train would be 

stable running at 350km/s and its critical speed will be higher than 350km/s. Upon on 

the comprehensive analysis, it is naturally concluded that the MRF damper possesses 

the priority to improve the train’s stability and enhance train critical speed compared 

to the passive dampers. 

 

Fig.25 RMS of lateral acceleration of the bogie 

8. Conclusion 

In this article the governing equations of a 15 DOF high-speed train are developed. 

The damping ratio of each train DOF and the critical speed of high-speed trains are 



calculated based on the train dynamic equations. The results reveal that the train 

critical speed is mainly dominated by the truck frame and the rear truck wheelsets. 

The sensitivity of the critical speed with respect to the suspension parameters is 

computed to analyze the different effect of bogie parameters on the train critical speed. 

The results indicate that the secondary lateral damping and primary longitudinal 

stiffness are the two most sensitive parameters impacting the critical speed. Then a 

high-speed train whose secondary dampers are replaced by MRF dampers is 

simulated by a combined simulation of ADAMS and MATLAB. The results of this 

simulation indicate that the MRF damper significantly improve the train critical speed. 

The results of the experiment also verify the semi-active dampers’ ability to improve 

the train’s stability and critical speed.  
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Appendix A. 

Table A.1. Nomenclature of train dynamic model symbol  

Symbol Definition 

mω Mass of wheelset 

Iωx Roll moment of inertia of wheelset 

Iωy Pitch moment of inertia of wheelset 

Iωz Yaw moment of inertia of wheelset 

r0 Centred wheel rolling radius 

mt Mass of truck 

Itx Roll moment of inertia of truck 

Ity Pitch moment of inertia of truck 

Itz Yaw moment of inertia of truck 

mc Mass of car body 

Icx Roll moment of inertia of car body 

Icy Pitch moment of inertia of car body 

Icz Yaw moment of inertia of car body 

kpx Primary longitudinal stiffness 

kpy Primary lateral stiffness 

kpz Primary vertical stiffness 

cpy Primary lateral damping 

cpz Primary vertical damping 

ksy Secondary lateral stiffness 

ksz Secondary vertical stiffness 

csy Secondary lateral damping 

csz Secondary vertical damping 

hts Vertical distance from truck frame centre of 

gravity to secondary suspension 

hcs Vertical distance from car body centre of gravity 

to secondary suspension 

htp Vertical distance from truck frame centre of 

gravity to primary suspension 

hwp Vertical distance from primary suspension to 

truck frame centre of gravity 

l Half of truck centre pin spacing 

b Half of wheelbase 

a Half of wheelset contact distance 

dp Half of primary spring lateral distance 

ds Half of secondary suspension spacing 

v The travelling speed of the vehicle train 

f11 Lateral creep coefficient 

  



 

Table A.1 continue 

Symbol Definition 

f22 Spin creep coefficient 

lc Total length of car body 

lb Half distance of two truck center 

h4 Vertical distance from car body center of gravity 

to secondary springs 

kc Contact stiffness 

δ Effective wheel conicity 

 

Table A.2. Nomenclature of critical speeds of each DOF 

Symbol  Definition 

Cfl  Critical speed of front truck frame lateral motion 

Cfy  Critical speed of front truck frame yaw motion 

Crl  Critical speed of rear truck frame lateral motion 

Cry  Critical speed of rear truck frame yaw motion 

Crll  Critical speed of rear truck leading wheelset 

lateral motion 

Crly  Critical speed of rear truck leading wheelset yaw 

motion 

Crtl  Critical speed of rear truck trailing wheelset 

lateral motion 

Crty  Critical speed of rear truck trailing wheelset yaw 

motion 

Cfty  Critical speed of front truck trailing wheelset 

yaw motion 
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