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Development of SiPM-based scintillator tile detectors for a multi-layer fast
neutron tracker

Abstract
We are developing thin tile scintillator detectors with silicon photomultiplier (SiPM) readout for use in a
multi-layer fast-neutron tracker. The tracker is based on interleaved Timepix and plastic scintillator layers. The
thin 15 x 15 x 2 mm plastic scintillators require suitable optical readout in order to detect and measure the
energy lost by energetic protons that have been recoiled by fast neutrons. Our first prototype used dual SiPMs,
coupled to opposite edges of the scintillator tile using light-guides. An alternative readout geometry was
designed in an effort to increase the fraction of scintillation light detected by the SiPMs. The new prototype
uses a larger SiPM array to cover the entire top face of the tile. This paper details the comparative performance
of the two prototype designs. A deuterium-tritium (DT) fast-neutron source was used to compare the relative
light collection efficiency of the two designs. A collimated UV light source was scanned across the detector
face to map the uniformity. The new prototype was found to have 9.5 times better light collection efficiency
over the original design. Both prototypes exhibit spatial non-uniformity in their response. Methods of
correcting this non-uniformity are discussed.
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Abstract. We are developing thin tile scintillator detectors with silicon photomultiplier (SiPM) readout for 

use in a multi-layer fast-neutron tracker.  The tracker is based on interleaved Timepix and plastic scintillator 

layers. The thin 15 x 15 x 2 mm plastic scintillators require suitable optical readout in order to detect and 

measure the energy lost by energetic protons that have been recoiled by fast neutrons. Our first prototype used 

dual SiPMs, coupled to opposite edges of the scintillator tile using light-guides. An alternative readout 

geometry was designed in an effort to increase the fraction of scintillation light detected by the SiPMs. The 

new prototype uses a larger SiPM array to cover the entire top face of the tile. This paper details the 

comparative performance of the two prototype designs. A deuterium-tritium (DT) fast-neutron source was used 

to compare the relative light collection efficiency of the two designs. A collimated UV light source was 

scanned across the detector face to map the uniformity. The new prototype was found to have 9.5 times better 

light collection efficiency over the original design. Both prototypes exhibit spatial non-uniformity in their 

response. Methods of correcting this non-uniformity are discussed. 

1 Introduction  

Fast neutron detection often relies on measuring the 

energy deposited in a detector by elastically recoiled 

nuclei. As fast neutrons undergo elastic collisions with 

the target nuclei, the kinetic energy transferred to the 

nucleus depends on the angle of recoil, with the 

remaining kinetic energy carried away by the scattered 

neutron. 

In order to measure the energy and direction of an 

incoming neutron, more sophisticated techniques are 

required. Under development is a multi-layer detector, 

based on Timepix pixellated semiconductor detectors 

interleaved with thin plastic scintillator tiles [1, 2]. The 

plastic scintillators provide a hydrogenous target in which 

fast neutrons may elastically collide with hydrogen nuclei 

(protons), with some recoiling protons escaping the 

plastic and being measured by the neighbouring Timepix 

detector. Timepix is a single-quantum counting pixellated 

silicon detector [3]. In the tracker it operates in time-over 

-threshold mode, where the charge deposited in each 

individual pixel is measured. A map of the ionisation 

track of the proton is produced, which allows its direction 

and energy on entry to the detector to be determined. By 

measuring information at multiple scattering points, the 

original incident neutron’s energy and direction may be 

calculated [4]. 

With suitable optical readout, the scintillator can 

provide two additional functions; to generate a trigger for 

the accompanying Timepix detector acquisition, and to 

measure the energy lost by the escaping protons in the 

scintillator volume, which can be used to improve 

reconstruction resolution. This paper describes work to 

optimise the design of the plastic scintillator component 

of the tracker.  

Two different readout geometries are compared, with 

the aim in improving the proportion of scintillation 

photons reaching the SiPM active area. This quantity is 

described as the light collection efficiency (LCE). 

2 Detector design and readout  

The tile detector to be used in the multi-layer detector has 

a number of unique design requirements. The thin tile has 

dimensions of 15 x 15 x 2 mm. The 2 mm thickness is 

sufficiently small that a proportion of recoiling protons 

are able to escape the volume of the scintillator. The 

lower 15 x 15 mm side facing the Timepix cannot be 

painted or have a reflective wrapping, as this would 
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The preamplifier signals were digitized by a 

PX14400 digitizer running in segmented mode and 

internally triggered on one channel. The DT spectrum for 

each prototype was collected for 16 minutes. Triggers 

associated with SiPM dark noise were rejected during 

data post-processing using anti-coincidence 

rejection [10]. 

3.1 Results  

The energy spectra, reconstructed from the summed 

signals from both channels are displayed in figure 3. The 

DT endpoints were arbitrarily fixed at the lower threshold 

where the integral (cumulative) count rate falls below 

0.1 cps. The endpoints for the dual SiPM and SiPM array 

prototypes were 7,800 and 74,000 respectively (arbitrary 

units). The SiPM array design tile provides a 9.5-fold 

improvement in LCE.  

 

 

Fig. 3. DT Fast Neutron Spectra measured using the two 

detector prototypes.  

4 Uniformity test with collimated UV LED  

The uniformity of response with respect to position is an 

important characteristic of a detector used for 

spectroscopy. In this particular detector, it is expected 

that there may be some non-uniformity due to varying 

light collection efficiency across the face. 

Previously, a proton micro-beam was used to measure 

the response of the dual-SiPM detector in a number of 

locations across its face [5]. This measurement could be 

further extended by scanning the micro-beam to build a 

complete map of detector spatial response. For an initial 

assessment, a collimated UV light source was used to 

excite the scintillator at different positions across its face. 

4.1 UV excitation of plastic scintillator 

Scintillators exhibit both an absorption spectrum and a 

corresponding emission spectrum at longer wavelengths, 

with some overlap between the two. A 365 nm UV LED 

was chosen to excite scintillation from the tile. A 

240 - 400 nm band-pass filter was placed in front of the 

LED to filter out fluorescent light emitted from the epoxy 

lens. 

  The tile transmission was measured using the 

365 nm LED to confirm that the UV was being fully 

absorbed in the 2 mm thickness. This was to ensure that 

the UV light was not penetrating through the scintillator 

and being detected directly by the SiPM array. The LED 

emission was measured with and without the 2 mm of 

EJ-204 in place with an Avantes AvaSpec spectrometer; 

results are shown in figure 4. The UV penetration was 

deemed insignificant in comparison to the intensity of the 

longer wavelength scintillation light. 

 

 

Fig. 4. 365 nm UV transmission through 2 mm thick EJ-204.  

4.2 UV scan of tile 

A UV scanning apparatus was constructed using a 

365 nm UV LED mounted within a metal enclosure 

illuminating a 250 µm diameter pinhole at a distance of 

8 cm. The UV LED was driven with 15 ns wide pulses, 

with 2 ns rise and fall times, from an Agilent 81110A 

pulse generator.  The metal enclosure was attached to an 

optical table with an x-y translation stage. The detector to 

be tested was mounted on a fixed stage 1 mm beneath the 

UV collimator.  

The pre-amplified pulses were digitized using the 

DRS-4 digitizer. The digitizer was triggered externally by 

the pulse generator synchronisation signal. Software was 

written to control the digitizer acquisition, process the 

pulses and record an intensity spectrum for each scan 

position across the detector face. Once the tile was 

scanned, a Gaussian fit of each spectrum was performed 

and the mean intensity determined.  

4.3 Uniformity results 

The spatial response of each prototype is displayed as a 

contour map in figure 5 and figure 6. Both detectors 

exhibit a degree of non-uniformity. The uniformity was 

quantified as the relative standard deviation of the 

response measurements across the scintillator face. 

The dual SiPM design showed a 7% non-uniformity. 

There is an enhanced response when the excitation occurs 

close to the waveguides. 

02004-p.3
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Fig. 5. Spatial response of dual SiPM detector. The light guides 

are attached on the left and right edges of the plot. 
 

The SiPM array detector had a greater non-uniformity 

of 13%. The response of the SiPM array detector falls off 

towards the edges with the minimum response in each 

corner.  

 

 

Fig. 6. Spatial response of SiPM array detector.  

4.4 Possible uniformity improvements 

The non-uniformity in both designs is significant enough 

to degrade the overall energy resolution. As such, 

methods to improve or correct this are of interest. 

With the SiPM array detector, it may be possible to 

partially improve the uniformity by applying weights to 

each of the SiPM outputs. To investigate this, the 

uniformity test will be re-run using 3 preamplifier 

channels to digitize the edge, corner and centre SiPM 

groups separately. Various weighting schemes may then 

be trailed in post processing. 

Ultimately, in the multi-layer neutron tracker, the 

Timepix layer measures the position and direction of the 

incoming proton. The impact point for a 3 MeV proton 

can be determined with 1 µm precision by fitting the 

measured cluster with a numeric model that accounts for 

the proton ionization profile (Bragg peak) and charge 

sharing between pixels [1]. In such case, the non-

uniformity may be corrected event-by-event using the 

location of the scintillation. This would require a map of 

response to correct the measured energy. The above UV 

scanning technique may be used for this; however a 

proton micro-beam allows a better spatial resolution due 

to a smaller spot size.  

5 Conclusions and future work 

Two designs of thin scintillator tile detectors with SiPM 

optical readout were built and characterised for their 

relative performance. Irradiation with 14 MeV fast 

neutrons show that the new design, using a large area 

array of SiPMs, provides a near ten-fold improvement in 

scintillation light collection efficiency.  

A collimated UV LED was used to map the response 

of the detector across the scintillator face.  Both designs 

exhibited a degree of non-uniformity, with a standard 

deviation in response of 7% for the dual SiPM design and 

13% for the SiPM array. Methods to correct for this non-

uniformity will be investigated.  
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