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Modeling and Experimental Investigation of
Rotational Resistance of a Spiral-Type Robotic

Capsule Inside a Real Intestine

1

2

3

Hao Zhou, Gursel Alici, Trung Duc Than, and Weihua Li4

Abstract—In this study, the rotational resistance of a spiral-type5
capsule rotating inside a small intestine is investigated by in vitro6
experiments and analytical modeling, on which a limited literature7
is available. The results presented exhibit viscoelastic nature of the8
intestinal tissue. The significance of various spiral structures and9
rotating speeds is quantitatively evaluated from the propulsion10
point of view. Also, an analytical torque model is proposed and11
subsequently validated. The close match between the experimental12
results and numerical results from the model shows that the model13
is reasonably accurate to estimate the rotational resistance torque14
of the small intestine. Both the experimental and modeling works15
provide a useful guide to determine the torque required for a spiral-16
type endoscopic capsule operating in a “really” small intestine.17
Therefore, the proposed torque model can be used in the design18
and optimization of in-body robotic systems, which can remotely19
be articulated using magnetic actuation.20

Index Terms—.
Q1

21

I. INTRODUCTION22

THE wireless capsule endoscope (WCE) has been univer-23

sally used as a first-line medical tool to diagnose diseases24

in the gastrointestinal (GI) tract, especially in the small intes-25

tine, where traditional endoscopes are hard to access [1]–[3]. It26

is believed that more attractive applications of WCE, such as27

targeted drug delivery and telepresence surgery, will be realized28

in the near future if a robotic capsule with active locomotion is29

developed to break its dependence on the natural peristalsis for30

movement [4].31

Significant effort has been dedicated to exploring novel loco-32

motion mechanisms [5]–[8]. Among them, magnetic propulsion33

is promising since it does not require onboard batteries and the34

control unit is moved out of the capsule, too. Therefore, much35

space can be saved, which is a vital advantage for a millisized36

robotic device or even smaller size. In addition, a limited opera-37
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tion time will no longer be a problem due to remotely powering 38

of a magnetically propelled robotic device. 39

Two approaches are generally adopted to implement mag- 40

netic propulsion. The first approach [9]–[11] is straightforward, 41

exerting a direct pulling force on an internal magnetic part by 42

producing a magnetic field gradient. However, this pulling force 43

decays rapidly when the gap between the robot and the mag- 44

netic source increases. The second approach [12], [13] is based 45

on embedding a magnet with its magnetization lateral to the 46

capsule’s axis and then generating a rotating magnetic field so 47

that the capsule can be acted upon by a magnetic torque and 48

hence the capsule spins about its axis. When a spiral structure is 49

mounted on the capsule’s surface, the rotation is converted to a 50

translational movement. Compared to the direct-pulling method, 51

the propulsion of a spiral-type robot is advantageous because 52

the maximum torque available to the robot is proportional to the 53

magnetic field intensity, which declines slower than the mag- 54

netic field gradient over a long distance. Three-axis Helmholtz 55

coils with three separate sinusoidal current inputs are able to 56

produce a rotating magnetic field with a uniform intensity and 57

an adjustable rotational axis so that the robot is propelled and 58

steered along the curved GI tract [13]. 59

To develop a spiral-type WCE, the geometry of the helical 60

structure must be optimized since it plays a significant role 61

in determining the propulsion efficiency. As a medical micro- 62

robot traveling in a deflated, winding, and slippery lumen, the 63

complexity of its working environment makes this optimization 64

problem even more critical. Therefore, the resistant characteris- 65

tics of the GI tract should be evaluated in order to provide more 66

accurate data with the optimization process. 67

Recently, some research work has been reported on the biome- 68

chanical and tribological properties of the GI tract. Baek et al. 69

measured the frictional resistance of capsules with different 70

shapes and dimensions moving along porcine small intestinal 71

samples and concluded that a smooth cylindrical capsule with a 72

smaller diameter performed better in avoiding translational fric- 73

tion [14]. In their work, they investigated the small intestine’s 74

properties further and reported on a viscoelasticity model for the 75

stress relaxation [15] as well as an analytical model [16] to pre- 76

dict the friction from a linear movement of a smooth cylindrical 77

capsule inside the small intestine. Wang and Meng conducted 78

a series of tests with 15 plastic capsules of various diameters 79

and lengths inside the segments of porcine small intestine [17]. 80

The resistant forces from 20 to 100 mN were measured for the 81

capsules which had the diameters in the range of 8–13 mm and 82

the translational speed of 0.5 mm/s. Wang and Yan performed 83

1083-4435/$31.00 © 2012 IEEE



IE
EE

Pr
oo

f

2 IEEE/ASME TRANSACTIONS ON MECHATRONICS

the tests by pulling a set of specially prepared frictional samples84

with different surface profiles on planar open intestinal sam-85

ples [18]. The tests showed that a flat contact surface caused86

the least resistance while a triangular one led to the most. Terry87

et al. performed experiments on active forces from the myen-88

teron, biomechanical response, mucus adhesivity, and tribology89

of the porcine small intestine [19]. By comparing the in vivo and90

in vitro tribometry tests, it was suggested that the coefficient of91

friction (COF) might slightly drop as the tissue became dead.92

Bellini et al. proposed a constitutive model, with parameters93

identified from planar biaxial test data, to predict biomechan-94

ical response of the small bowel under complex loading [20].95

All these work has contributed to a better understanding of96

the mechanical properties of the small intestine for active cap-97

sule endoscopes. However, none of them studied the frictional98

resistance for a spiral-type capsule rotating inside a small intes-99

tine, which represents the real operation condition of a robotic100

capsule. This study aims to close this gap in the literature by101

establishing a mathematical model to predict the mechanical102

torque required to rotate the robotic capsule in a viscoelastic103

environment such as the GI tract.104

This paper investigates the rotational resistance of a spiral-105

type capsule rotating inside the GI tract. From a physiological106

point of view, this is the resistance which the robotic capsule107

must overcome in order to start and maintain its rotation. The108

small intestine of a porcine was employed for the in vitro exper-109

iments since its mechanical properties were reported to be quite110

similar to those of a human being [21]. Four capsules with differ-111

ent spiral structures were tested under various rotating speeds.112

The rotational resistance was measured and presented in the113

form of torque. Furthermore, an analytical model was proposed114

for the prediction of this frictional resistance. Some parame-115

ters were identified with one set of experimental results and116

other sets of experimental results were used to further validate117

the model. This study provides a useful guide to characterize118

the required torque for a spiral-type capsule and to undertake the119

design and optimization of the microrobots’ traction topology.120

II. EXPERIMENTS121

A. Experimental Setup122

Dummy Pillcam SB2 capsules (Given Imaging) were adopted123

as the bases of the microrobots. For each capsule, a segment124

of wire (φ 1 mm) was wounded around the outer surface and125

acted as the spiral structure. The winding area was within the126

cylindrical part of the capsule so that every spiral structure127

had the same dimension (15 mm) in the longitudinal axis. Four128

spiral-type capsules of such were fabricated, with the helical129

angles of 5◦ (No. 1), 10◦ (No. 2), 15◦ (No. 3), and 20◦ (No. 4),130

respectively, as shown in Fig. 1. For each of them, only one131

spiral was attached on the surface.132

A steel rod was fixed to one end of the capsule so that the133

assembly could be connected to a torque sensor, which was able134

to output real-time measurements to its indicator. Via an RS232135

cable and an interface program, the data were consequently sent136

to a PC for recording. During the tests, the capsule was kept still137

and the small intestine was spinning instead. The segment was138

Fig. 1. Capsules with different spiral structures.

Fig. 2. General view of the experimental setup.

mounted on a custom-built device, comprised of two coaxial 139

plastic tubes and two aluminum bars for supporting. Then, this 140

device was attached to an electric motor, whose rotating speed 141

was adjusted by a Labview program sending commands via a 142

data-acquisition (DAQ) board and a control module. In order 143

to avoid the influence from the gravity, the devices were lined 144

up vertically. The general view of the experimental setup is 145

illustrated in Fig. 2. 146

B. Experimental Procedures 147

The intestinal specimens, kept in a refrigerator, were unfrozen 148

a few hours before the experiments. Then, they were immersed 149

in a jar of physiological saline, which was helpful to prevent tis- 150

sue rupture. One intestinal segment and one capsule were placed 151

as shown in Fig. 2 each time. The small intestine was rotated 152

at a constant speed for several seconds by the electric motor 153

so that the real-time frictional torque could be measured by the 154

torque sensor. An initial test was carried out with one specimen 155
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Fig. 3. Initial test with the small intestine Sample 1.

(Sample 1). Afterward, a set of tests were performed with the156

other two intestinal specimens successively. The internal di-157

ameters were 10.9 mm (Sample 2) and 11.1 mm (Sample 3),158

respectively. Both of them had the thickness of 1 mm. For each159

set of test, the rotating frequencies in the range of 0.5–3 Hz were160

applied.161

The small intestine would be dried out fast once it was dis-162

placed out of the fluid. However, the saline could not be sprayed163

on the segment during the experiment since it would change164

the frictional properties of the intestine, as explained in the fol-165

lowing section. Therefore, in order to keep the experimental166

conditions as consistent as possible, the tests were finished in a167

short time for either Sample 2 or Sample 3. Additionally, after168

each measurement, the sample was inspected whether a slight169

twist occurred due to the contact with the capsule. If so, a quick170

and simple treatment would be conducted manually to bring it171

back to the original state.172

When all the tests for one specimen were finished, the in-173

testinal tube was cut open and flattened on a table immediately.174

By using a force sensor and a smooth capsule with the mass of175

3.98 g, the COF was determined for each intestinal specimen by176

the following equation:177

μ =
f

mg
(1)

where f is the force to overcome the friction, and m is the mass178

of the pulled capsule, and g is the gravity of earth.179

All the experiments were carried out in an air-conditioned180

space, which maintained the room temperature at 25 ◦C.181

C. Results and Discussions182

Fig. 3 shows the torque measurements with the capsule No. 2183

(helical angle = 10◦) and the small intestine Sample 1 under184

the rotating frequency of 1 Hz. Fig. 4 shows the results with two185

different segments. From Fig. 4, a slightly higher static friction186

occurs first and then a relatively steady dynamic friction can be187

observed. After spraying some saline on Sample 1, a reduction in188

the frictional resistance is quite apparent, implying the change of189

the tissue’s biomechanical and tribological properties due to the190

absorption of liquid. Therefore, humidifying the intestine during191

Fig. 4. Torque Measurement with the small intestine Sample 2.

the tests is inappropriate for the consistence of the experimental 192

environment. 193

In the tests with Sample 2 and Sample 3, the measurements 194

of dynamic friction are compared to each other as different 195

combinations of capsule and intestinal specimens as well as 196

frequency were adopted. 197

Sample 2 was tested with the capsules No. 1 (helical angle = 198

5◦) and No. 2, respectively. The results are shown in Fig. 4. From 199

the graph, it is seen that the frictional torque increases as the 200

rotation frequency rises, indicating the rotational resistance has 201

a relationship with the rate of strain of the small intestine. This 202

dependence reveals the viscoelasticity of the GI tract to some 203

extent. Due to the introduction of the spiral, the cross section 204

of the capsule in the lateral direction is raised, increasing the 205

deformation of the intestine. This increase becomes larger when 206

the helical angle gets smaller. Therefore, when the number of 207

spiral is the same, a capsule with a smaller helical angle causes 208

more strain in the intestine, and consequently, confronts a higher 209

frictional resistance. In this case, from 0.5 to 3 Hz, the capsule 210

No. 2 (helical angle = 10◦) causes a torque in the range of 211

0.6–1.8 mN·m while the capsule No. 1 (helical angle = 5◦) 212

results in the magnitude between 0.8 and 2.3 mN·m. At low 213

frequencies, the torque is almost proportional to the frequency 214

and the proportionality constant is bigger when the helical angle 215

is smaller. 216

Sample 3 was tested with all the four capsules one by one. The 217

torque measurements are presented in Fig. 5. For the same com- 218

binations of capsule, specimen, and frequency, the results are 219

slightly different from those of Sample 2 due to the discrepancy 220

of two intestinal specimens’ conditions. However, the magni- 221

tude of the resistant feature is still in the same order. Moreover, 222

the trend is nearly identical to that of Sample 2. 223

The COFs of two intestinal segments were also determined 224

by (1) for the parameter identification of the analytical model 225

proposed in the following section. Fig. 6 shows a sample mea- 226

surement of the force versus time for the smooth capsule to 227

overcome the friction on the cut-open and flattened small intes- 228

tine (Sample 2). Since the mass of the capsule is already known, 229
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Fig. 5. Torque Measurement with the small intestine Sample 3.

Fig. 6. Force history for a smooth capsule to overcome the friction on the
cut-open and flattened small intestine Sample 2.

the COF for Sample 2 can be calculated as 0.28. The same230

method is used to find the COF for Sample 3, which is equal to231

0.51. We postulate that the difference between these COFs can232

be due to different wetness conditions on the inner surfaces of233

these two samples. The inner surface of Sample 2 was slightly234

humidified with the saline before it was tested while the same235

treatment was not applied to Sample 3. As reported before, a236

small amount of lubrication could change the friction in a small237

intestine dramatically [17].238

III. MODELING239

A. Viscoelasticity Model240

Generally, the relationship between stress and strain of a vis-241

coelastic material can be illustrated by a generalized Maxwell242

model including multiple viscous dashpots and elastic springs243

[22]. Fig. 7 shows a five-element linear viscoelastic model,244

which is employed to describe the mechanical behavior of the245

small intestine in this study. The constitutive equation is ex-246

Fig. 7. Five-element viscoelasticity model.

Fig. 8. Conversion of the inner intestinal wall’s profile.

pressed as follows: 247

σ(t) = ε(t)
[
E1 exp

(
− tE1

η1

)
+ E2 exp

(
− tE2

η2

)
+ E3

]

(2)
where σ and ε denote the stress and the strain at the time t, 248

respectively, and E1 , E2 , and E3 are the elastic modulus of 249

springs, and η1 and η2 represent the viscosities of dashpots. 250

B. Analytical Model for Rotational Resistance 251

As discussed earlier, attaching a spiral structure on the surface 252

increases the cross section of the capsule in its lateral direction. 253

In Fig. 8, the left-hand side profile describes the inner wall’s 254

cross-sectional profile of the small intestine after its deforma- 255

tion due to the insertion of the spiral-type capsule. The bulge 256

results from the spiral structure and the parameter D indicates 257

the diameter of the cylindrical part of Pillcam SB2 capsule 258

(11 mm). To simplify the analysis, as the capsule rotates, the 259

contour is converted to a circular geometry whose perimeter is 260

comparable to the total length of the original one, which means 261

the circumferential extension of the intestinal tract is kept the 262

same. The right-hand side profile in Fig. 8 shows the converted 263

circular profile of the deformed intestine’s inner surface with 264

a new diameter of D′. Since the spiral is only wounded on the 265

cylindrical part, D′ is just applied to calculate the strain of tissue 266

for this area. The practical dimensions are used for the frontal 267

and rear parts. 268

In addition to this geometrical simplification, a few assump- 269

tions are made to develop the model. 270

1) The intestinal tissue is an isotropic and incompressible 271

material. 272

2) The volume and the wall thickness of the small intestine 273

are constant. 274
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Fig. 9. Pressure vessel for the intestinal tract modeling.

3) The deformation of the intestine corresponds to the contact275

area and is symmetrical toward the radial direction after276

the geometrical simplification.277

In order to analyze the normal load exerted on the capsule,278

the internal pressure generated by the intestinal tract due to279

circumferential extension has to be determined. Therefore, the280

intestine is modeled as a cylindrical pressure vessel [23] shown281

in Fig. 9. The pressure can be calculated from282

p(θ) =
σ(θ)2d

D′ (3)

where d is the thickness of the small intestine, and D′ is the283

diameter of the converted inner intestinal surface’s profile, and284

σ and p are the circumferential stress and the corresponding285

pressure at the azimuth θ, respectively.286

For a rotational movement, the time t is the division of the287

azimuth θ by the angular velocity ω. Hence, (2) can be written288

to express the relationship between the stress σ and the rotating289

frequency f as follows:290

σ(θ) = ε(θ)
[
E1 exp

(
−θE1

ωη1

)
+ E2 exp

(
−θE2

ωη2

)
+ E3

]

(4)

ω = 2πf. (5)

For every lateral cross section, the circumerferenital strain291

due to capsule insertion is determined by292

ε =
Dafter − Dbefore

Dbefore + d
(6)

where Dbefore and Dafter are the inner diamters of the intestinal293

tract before and after deformation, respectively. For the middle294

part with the spiral, Dafter is equal to D′. For the frontal and295

rear parts without the spiral, only the contact areas are taken296

into account. Since these parts are semispheres, Dafter varies297

with the axial position and can be calculated with the spherical298

radius, which is 5.5 mm.299

The total normal load for one cross section can be obtained300

by using (3) to integrate the pressure along the circumference.301

Once the frictional coefficient μ is evaluated, the circumferential302

friction can be calculated with Coulomb’s law of friction. Since303

the distance between the force and rotating axis is fixed, the304

TABLE I
IDENTIFIED PARAMETERS FOR THE SMALL INTESTINE SAMPLE 2

Fig. 10. Variation of the frictional torque with the capsule No. 2 rotating inside
the small intestine Sample 2.

rotational resistance can be solved in the form of a resistive 305

torque. The equations are expressed as follows: 306

f = μ

∫
p(θ)dθ (7)

τ =
fDafter

2
. (8)

where f is the frictional force in the circumferential direction 307

and τ is the resistant torque as a result of rotation. 308

C. Parameter Identification and Model Validation 309

To identify the elastic modulus and viscosities in the model, a 310

nonlinear least square optimization process is employed in this 311

study. Based on the nonlinear relationship between the frictional 312

torque and the rotating frequency, these material parameters 313

were estimated by means of minimizing the summed square of 314

the error vector with the experimental data presented earlier. A 315

numerical search method, which is the interior-reflective New- 316

ton algorithm, was used to solve the problem. It acquires the 317

approximate solution of a system by utilizing the method of 318

preconditioned conjugate gradients at each iteration. It is sug- 319

gested that this method is efficient for nonlinear optimization 320

problems [24]. 321

For the small intestine Sample 2, the measurements with the 322

capsule No. 2 (helical angle = 10◦) was used to estimate the 323

parameters. The numerical values are listed in Table I. The 324

experimental and predicted frictional torques corresponding to 325

the frequencies are shown in Fig. 10. 326

The measurements with the capsule No. 1(helical angle = 5◦) 327

was used to validate the model for the small intestine Sample 2 328

shown in Fig. 11. With reference to these results, the estimated 329

values are quite consistent to the experimental results, indicat- 330

ing that the analytical model is effective enough to predict the 331
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Fig. 11. Validation for the small intestine Sample 2.

TABLE II
IDENTIFIED PARAMETERS FOR THE SMALL INTESTINE SAMPLE 3

rotational resistance resulting from the spiral-type capsule ro-332

tating inside the small intestine Sample 2.333

Though the trend of mechanical behavior is identical, the spe-334

cific viscoelasticity of the intestinal tract may be different from335

one sample to another due to many experimental factors such as336

the freezing period, humidification level, and even variation in337

the tissue’s microstructure. Therefore, the nonlinear least square338

optimization was repeated to identify the elastic modulus and339

viscosities of the model for the small intestine Sample 3. The340

measurements with the capsule No. 3 (helical angle = 15◦) was341

employed. The estimated parameters are listed in Table II. The342

experimental and predicted resistant torque values are presented343

in Fig. 12. These results also demonstrate the efficacy of the an-344

alytical model in predicting the mechanical torque needed to345

overcome resistive effects associated with the viscoelastic in-346

testine environment.347

To evaluate the accuracy of the model for Sample 3, the348

measurements with other three capsules were compared to the349

predicted values with the estimated parameters, as illustrated350

in Fig. 13. With reference to these results, the model performs351

well when predicting the rotational resistance (i.e., torque) of352

the capsule No. 2 (helical angle = 10◦). Though the prediction’s353

accuracy is a bit lower for the other two capsules, the prediction354

is still in a reasonable range. We postulate that the discrepancy is355

possibly due to the effect of the stress concentration around the356

spiral structure, which is neglected in this model. In addition,357

the condition of the small intestine Sample 3 might slightly358

change during the tests due to a relatively longer experimental359

time compared to that with Sample 2.360

From the estimated parameters for Sample 2 and Sample 3, it361

can be seen that the mechanical properties of different segments362

Fig. 12. Variation of the frictional torque with the capsule No. 3 rotating inside
the small intestine Sample 3.

Fig. 13. Validation for the small intestine Sample 3.

(i.e., samples) exhibit some variance as expected, though they 363

both show the viscoelastic properties and exert the rotational 364

resistance in the same order of magnitude on the inserted capsule 365

due to the deformation and rotation. 366

IV. CONCLUSION 367

The rotational resistance of a spiral-type capsule rotating in- 368

side the small intestine is investigated by both in vitro exper- 369

iments and mathematical modeling and analysis, on which a 370
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limited literature is available. The experimental results show371

the viscoelastic nature of the intestinal tissue and the effects of372

various spiral structures and rotating speeds. At low rotating fre-373

quencies (0.5–3 Hz), a capsule (φ 11 × 26 mm) wounded with374

a 1-mm-high spiral works against a frictional torque varying375

from 0.5 mN·m to several mN·m. The torque increases with the376

increase of the frequency. Due to the same number of spiral in377

the tests, the helical structure with a smaller helical angle raises378

more in the lateral cross section of the robotic capsule, which379

results in more circumferential deformation of the small intes-380

tine and more rotational resistance. Viscoelastic properties of381

the “real” intestine are identified using a nonlinear optimization382

method. The validation results show that the proposed torque383

model is reasonably effective to estimate the rotational resistive384

torque of the small intestine. For different intestinal samples,385

though the rotational resistance is in the same order of magni-386

tude, their biomechanical and tribological properties may show387

some variance due to the different conditions such as the du-388

ration of freezing time, intestine size, capsule weight, and hu-389

midification level. Both the experimental and modeling work390

provide a useful reference to characterize the required torque391

for a spiral-type capsule and, therefore, helps to undertake the392

design and optimization of the microrobots for medical use in393

the GI tract. However, before such a spiral-type robot is used394

in a real GI tract, in vivo experiments should be conducted in395

a highly unstructured, slippery, deformable, and nonsmooth en-396

vironment to obtain a more accurate estimate of the rotational397

resistance.398

Further work will aim to conduct more experiments with var-399

ious intestinal specimens and improve the analytical model so400

that the stress concentration and viscoelastic properties due to401

variable-size spiral structures can be taken into account. Further-402

more, some addition will be made to the current experimental403

setup so that a rotational and translational movement can be404

allowed between the capsule and the inner wall of the small405

intestine. The rotational resistance with different translational406

speed of the capsule will be investigated and compared to the407

current results.408
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