View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Online

University of Wollongong

Research Online

Faculty of Engineering and Information Faculty of Engineering and Information
Sciences - Papers: Part A Sciences
1-1-2013

Path Planning with a Lazy Significant Edge Algorithm (LSEA)

Joseph Polden
University of Wollongong, jpolden@uow.edu.au

Zengxi Pan
University of Wollongong, zengxi@uow.edu.au

Nathan Larkin
University of Wollongong, nlarkin@uow.edu.au

Stephen Van Duin
University of Wollongong, svanduin@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers

b Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation

Polden, Joseph; Pan, Zengxi; Larkin, Nathan; and Van Duin, Stephen, "Path Planning with a Lazy Significant
Edge Algorithm (LSEA)" (2013). Faculty of Engineering and Information Sciences - Papers: Part A. 1531.
https://ro.uow.edu.au/eispapers/1531

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://core.ac.uk/display/36997786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F1531&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F1531&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F1531&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/1531?utm_source=ro.uow.edu.au%2Feispapers%2F1531&utm_medium=PDF&utm_campaign=PDFCoverPages

Path Planning with a Lazy Significant Edge Algorithm (LSEA)

Abstract

Probabilistic methods have been proven to be effective for robotic path planning in a geometrically
complex environment. In this paper, we propose a novel approach, which utilizes a specialized roadmap
expansion phase, to improve lazy probabilistic path planning. This expansion phase analyses roadmap
connectivity information to bias sampling towards objects in the workspace that have not yet been
navigated by the robot. A new method to reduce the number of samples required to navigate narrow
passages is also proposed and tested. Experimental results show that the new algorithm is more efficient
than the traditional path planning methodologies. It was able to generate solutions for a variety of path
planning problems faster, using fewer samples to arrive at a valid solution.

Keywords
Isea, planning, algorithm, path, edge, significant, lazy

Disciplines
Engineering | Science and Technology Studies

Publication Details

Polden, J., Pan, Z., Larkin, N. & Van Duin, S. (2013). Path Planning with a Lazy Significant Edge Algorithm
(LSEA). International Journal of Advanced Robotic Systems, 10 (198), 1-8.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/1531

https://ro.uow.edu.au/eispapers/1531

INTECH

open science | open minds

ARTICLE

International Journal of Advanced Robotic Systems

Path Planning with a Lazy Significant
Edge Algorithm (LSEA)

Regular Paper

Joseph Polden'’, Zengxi Pan', Nathan Larkin' and Stephen Van Duin'

1 Defence Material Technology Centre, Faculty of Engineering, University of Wollongong, Australia

* Corresponding author E-mail: jwp973@uowmail.edu.au

Received 21 Jun 2012; Accepted 18 Sep 2012

DOI: 10.5772/53516

© 2013 Polden et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract Probabilistic methods have been proven to be
effective for robotic path planning in a geometrically
complex environment. In this paper, we propose a novel
approach, which utilizes a specialized roadmap
expansion phase, to improve lazy probabilistic path
planning. This expansion phase analyses roadmap
connectivity information to bias sampling towards objects
in the workspace that have not yet been navigated by the
robot. A new method to reduce the number of samples
required to navigate narrow passages is also proposed
and tested. Experimental results show that the new
algorithm is more efficient than the traditional path
planning methodologies. It was able to generate solutions
for a variety of path planning problems faster, using
fewer samples to arrive at a valid solution.

Keywords Path Planning, Lazy Evaluation, Probabilistic
Roadmap (PRM), Bridge Test

1. Introduction

The general path planning problem is given as; “planning
a collision free path for a robot made of an arbitrary
number of polyhedral bodies among an arbitrary number

www.intechopen.com

of polyhedral obstacles, between two collision free
positions of the robot” [1]. Path planning methods
developed during earlier years approached this problem
by generating explicit representations of the robots
surrounding environment, so that it can be navigated via
the use of mathematical algorithms. However, as path
planning applications became more complex, these
planners began to struggle with the amount of data
required to process a valid solution.

A major breakthrough in the field of path planning came
with the development of probabilistic path planning
methods, such as the Probabilistic Roadmap (PRM)
planner [2]. These planners utilize a randomized
sampling based approach, which builds a simplified
model of the robot’s free space. This removes the high
computational load involved in calculating an explicit
representation of the environment. The random nature of
sampling the environment ensures that probabilistic
planners have a probabilistic
completeness: if a solution is possible the planner will
find it, provided that the time frame is not finite.
Probabilistic methods, however, suffer from the fact that
they cannot explicitly recognize if a solution will be
geometrically impossible.

quality known as

Int J Adv Robotic Sy, 2013, Vol. 10, 198:2013

Goal

Figure 1. A network, or roadmap, graph (G) represents the Cre
space of a robots environment.

Probabilistic planners have been utilized extensively
since their development and have been applied to a
variety of different applications. The research presented
in this paper focuses on the development of new, more
effective, sampling methods which are implemented on a
traditional lazy probabilistic path planner [3]. This is
done through an iterative process of roadmap analysis
intelligently guides the
construction of the network graph. The overall result is a
planner with a similar operation to traditional methods,
but that is able to solve path planning queries in complex
environments more quickly.

and enhancement that

2. Background and Literature Review

Probabilistic methods generally operate on the premise of
a robot and its associated configuration space (Cspuc).
Loosely termed, Csuce is the group of all kinematically
feasible configurations of a robot about its workspace. For
path planning applications, it is common to separate Cspace
into two distinct subsets; Cpee and Cporvia. Cree represents
the free configuration space of the robot: a group of
configurations that do not clash with the surrounding
environment. Chomia, the forbidden
configuration space, represents a collection of robot
configurations that are. Generally speaking, probabilistic
methods try to capture a simplified representation of the
robot’s Cre space. Once the planner has a sufficient
understanding of the regions the robot can move about in
without clashing, a series of clash free motions to solve a
given path planning query can be generated.

Conversely

An important tool utilized by a variety of probabilistic
planners is an undirected network graph, commonly
referred to as the Roadmap (G), as shown in Figure 1. The
nodes of G are used to represent individual Cse robot
configurations captured by the sampler and the
interlinking edges are used to represent a clash free
motion between them. G can be used to solve a given
path planning query by linking start/goal configurations
(gstart & qgoat, Tespectively) to G and then using traditional
graph searching techniques to trace a path from qsan to

Int J Adv Robotic Sy, 2013, Vol. 10, 198:2013

qsea. This path can then be translated into a series of clash
free motions used to direct the robot’s subsequent
movements. By utilizing G as a simplified representation
of Cs we can solve path planning problems without
having to generate an explicit representation, which can
be costly to compute. Currently, network based planners
are used in industry to solve path planning problems for
a variety of industrial
manipulators [3], mobile robot navigation [4], assembly
tasks [5] and computer game animation. This is a
testament to the flexibility, power and ease of use of
probabilistic methods.

applications including;

PRM planners were an early development in probabilistic
methods that made effective use of the roadmap graph
structure. PRM planners remain popular even today.
They are effective for use in complex problems, whilst
remaining relatively simple and robust in their operation.
PRM planners operate in two distinct phases; the
construction of G, and querying G to solve the path
planning problem. The first phase consists of building G
by incrementally sampling random robot configurations
for a clash. Samples found to lie in Cse are added to the
map as network nodes. Subsequent motions between
these nodes are also tested for clashing and are added as
edges if they lie entirely in Cse. This process continues
iteratively until a certain density of nodes/connections is
achieved. The roadmap is then stored for querying. The
query phase involves linking qswart & qgoa to the stored
roadmap and then utilizing graph searching techniques
to return a path between them. If no path is available,
further sampling can be done. If the environment remains
unchanged, the roadmap can be utilized multiple times to
solve different path planning queries. Experiments show
that the PRM planner is very effective. With the basis of
its operation reinforced by probabilistic completeness, it
proved to be both fast and reliable even when in use in
environments featuring high dimensionality [2], or robots
with many degrees of freedom (DOF) [6].

The probabilistic concepts and network structure used in
PRM planners provide an effective framework to solve
complex path planning problems. However much
research has been devoted to improving the details of
how these roadmap style planners operate. Observations
of the PRM planners operation noted that the majority of
computation time is devoted to clash checking robot
configurations. In order to reduce the number of clash
checks required to generate a solution, many heuristic
sampling techniques were developed to replace basic
random sampling strategies. Many of these heuristic
sampling methods attempt to generate a portion of
samples nearby the boundary of clash objects in the
workspace. This was done explicitly using geometric
information [7] or by using paired samples of specific
clash criteria [8]. Other attempts involve partitioning the
workspace in order to categorize the different regions in

www.intechopen.com

terms of their complexity [9], [10]. If the sampler knows
the “difficult’ regions, it is able to bias its sampling to
these spaces, in order to more effectively utilize
computational resources. Another focus of research
centres on probabilistic methods” weakness in sampling
narrow passages in Ceqpae. Random sampling schemes
employed by traditional PRM planners greatly reduce the
likelihood of sampling multiple configurations inside
these narrow passages. An effective method of
addressing this is the bridge test, as shown in Figure 2
[11]. The bridge test will sample a pair of configurations.
If these both fail, the midpoint is tested. If this midpoint is
Cfre, only then is it inserted into G. Bridge testing proves
effective at adding samples directly in narrow passages,
not just at the boundaries of clash objects and is easily
implemented into the structure of network based
planners.

Figure 2. Bridge test criteria.

The ‘Lazy-PRM’ planner [3] provided a simple and robust
method for reducing the number of clash checks to solve
a given query. From a high level standpoint, the Lazy-
PRM algorithm operates in a similar fashion to its
predecessor, the traditional PRM. However a significant
difference in operation comes from applying a delayed,
or ‘lazy’, evaluation of clash. The algorithm initially
constructs a kinematically sound roadmap, which is
assumed to be entirely clash free. Then, repeatedly, the
shortest available path through the roadmap is sent to the
clash checker for evaluation. If a clash is detected on the
path, the offending element (node/edge) is removed from
G. If sufficient elements are removed, causing the start
and goal configurations to become disconnected, an
expansion phase is initiated. The expansion phase adds
more nodes in order to reconnect the roadmap. The
search then continues iteratively until a continuous clash
free path is found, or it is deemed that no solution is
available. The Lazy-PRM planner effectively reduces the
amount of samples required to solve path planning
queries. By delaying the clash checks, redundant
sampling of regions that could never provide a solution
are removed, saving on computational expenses.

The PRM algorithm spends a large portion of its
calculation time pre-processing the roadmap, making it

www.intechopen.com

more suited for applications in which a road map can be
queried multiple times. Tree based algorithms were
developed for applications that needed a solution
generated rapidly for single use. [12] developed a notable
variant of this style of planner, which grows its G
outwards from an initial root node, one vertex at a time,
towards the goal configuration. The growth of the tree
can be controlled in a variety of different ways and many
approaches have been investigated. Multiple tree
approaches have also been made in which two trees are
grown simultaneously, with the goal of connecting them
together to solve the given query [13].

Recent research focuses on developing planners for
specific or complex applications, such as for use on
robots with non-holonomic constraints [14], hyper
redundant
dynamic environments [4], or to generate paths that are
more optimal [15]. It is important to note that recent
research focuses predominantly on the modification of
some component of the probabilistic methodology,
rather than on entirely new planning methods; a
testament to the reliability and power of probabilistic
methods in general.

manipulators [6], robots operating in

3. Lazy Significant Edge Algorithm (LSEA)

This section is devoted to describing a new method of
lazy path planning. The method offers improvement over
the traditional Lazy-PRM planner by reducing the
amount of clash checks required to arrive at a solution
and is also more effective at navigating difficult regions
of Cspace.

3.1 Algorithm Overview

LSEA, like many other path planners, is an iterative
based planner. It constructs an initial roadmap which is
then analysed and augmented in a repetitive manner
until a termination criteria is met. The algorithm is
terminated if a solution to the given query is found, or if
no solution is found within a given timeframe. The
pseudo code of LSEA is shown in Figure 3. The planner
begins by generating a roadmap of kinematically viable
nodes and edges, which are initially assumed to be clash
free. The algorithm searches for the shortest path
through G, which is tested for collision. If a clash is
found on this path the subsequent edge/node is
removed from G and the next shortest path is searched
for. If no path is returned, the roadmap graph has been
reduced to a discontinuous state and a roadmap
expansion phase is initiated. The expansion phase re-
joins the discontinuous components of the roadmap by
intelligently adding nodes to areas of interest. A portion
of nodes in this step are generated through uniform
random sampling as well, so as to maintain the
probabilistic completeness of the algorithm.

Joseph Polden, Zengxi Pan, Nathan Larkin and Stephen Van Duin:
Path Planning with a Lazy Significant Edge Algorithm (LSEA)

1: generate Ginit

2: Main Loop

3: return shortest path, Ps, through Ginit

4: If Ps exists: - clash check Ps

5: If (Ps € Cee): > solution found. exit Main loop.

6 else clash detected in Ps - remove element.

7: else Ps does not exist: comp (qstart) =/= comp (qgoal)
- Expansion Phase (see detail)

8: End Loop

Expansion Phase
1: Collect all edges, Eforvid, in G (Eforbid € Crorbid)

2: for each € Eforbia:
3: add Eorid(i) back into G.
4: if comp (qstart) = comp (qgoal)
- add Ei to significant edge group, SE.
5: end for
6: for each € SE
7: distribute Nsamp nodes about midpoint of SE(i)
8: end for
9: lazy bridge test: generate nodes.
10: connect all expansion nodes to G (component- strategy)
11: return main loop

Figure 3. Pseudo code of LSEA operation

The expansion phase is the most important stage of this
algorithm. It wuses the component connectivity
information of the existing roadmap to determine which
regions of the workspace have not been successfully
navigated by the robot. Roadmap edges which pass
through un-navigated clash objects, named significant
edges, are used to bias the sampling strategy. The overall
effect of the expansion phase is a scheme of sampling that
adds more samples to regions of Csyuaee that have not been
successfully navigated, effectively reducing the amount
of redundant sampling carried out. In addition to the
roadmap expansion, a type of 'lazy' bridge test (LBT) is
implemented. LBT is only activated in certain instances
and wuses prior clash information to reduce the
computational expense of traditional bridge testing
techniques. Details of the algorithms’ components and
their methods of operation are detailed in the following

chapter sections.
3.2 Construction of Initial Roadmap

To build the initial roadmap (Ginir), Ninit configurations are
generated using uniform random sampling about the
robots Cspuce. These nodes are then connected to the
nearest Nueigiw nodes using the component-n [16] connection
strategy. If an edge is not kinematically feasible (e.g., out
of joint or orientation limits) it is not included in Ginir. At
this stage, all nodes and edges in Giuit are assumed to be
clash free. As the algorithm progresses, the values of Ninit
and Nuwigw will have a significant effect on both the
optimality of the returned path and the time taken to find
a solution and so should be selected carefully for the
given path planning problem.

Int J Adv Robotic Sy, 2013, Vol. 10, 198:2013

3.3 Selection of shortest path and clash test

There exist many different methods of selecting the
shortest path through a connected network graph, each
with varying levels of complexity and performance.
LSEA utilizes the A* search algorithm [17] to return the
shortest path through G between qstert & qgoat.

When the shortest path through the roadmap is found,
each element in the path is checked for clashes. All nodes
along the path are tested first, followed by the edges. If
any node/edge is found to be clashing, the process is
terminated immediately and the offending element is
removed from G. If it is a node that is removed, all edges
that are connected to the node are removed as well. If the
entire path is clash free, we have found a solution to the
given query and the path planning process is successfully
completed. To save processing time, all results of clash
tests are stored in the roadmap structure, so that these
elements do not need to be tested again over future
iterations.

3.4 Iterative Expansion Phase

In a complex path planning problem, Gt will not be
sufficient to solve the given search query. When the
query fails, we are left with a disconnected roadmap
consisting of at least two separate components. Upon
reaching this condition, we initiate the expansion phase
of LSEA. The roadmap is augmented by analysing its
current state and placing new samples in areas that have
not yet been navigated by the robot. These areas are
found by utilizing roadmap component connectivity
information to determine a collection of significant edges
about the roadmap. The expansion phase then actively
samples about these significant edges. Following this, if
certain conditions are met, lazy bridge testing is carried
out in an attempt to place clash free nodes in narrow
passages of the workspace.

3.4.1 Significant edge search.

To determine a list of significant edges, we initially collect
a group of candidate edges; edges that have been
removed from G (note that edges that were removed with
nodes are not considered as candidates). For each of these
edges, we place them back into G and check to see if the
start and goal queries have been rejoined into the same
component. If a candidate edge satisfies this condition we
have successfully defined a significant edge. Significant
edges always occur about a clash object that has not been
navigated by the robot yet. If an edge is obstructed by a
clash object, but does not reduce the component count
(refer detail iv in figure 4), the clash object has effectively
already been navigated by the robot. Once a collection of
significant edges has been determined, we randomly
select a portion of them to be used as the basis for
sampling during the expansion phase.

www.intechopen.com

— A - A — _e-a
[— R —
’] 8] @]
-7 ~ -
T o
X A A
i) Clash tests ii) Significant ii) New samples added iii) Path found iv) These edges are not deemed

disconnect qstart & edges found about significant edges. G significant. The component

Agoal reconnected. count is not reduced as the object

goa.

Figure 4. Graphic overview of the LSE algorithm operation

Nsmp samples are placed about each significant edge via
the use of a bivariate distribution [3], centred at the mid-
point of the edge. The shape/size of the distribution is
controlled by the length and direction of the edge. The
newly distributed nodes are then connected to G in the
same manner as during the construction phase. After all
significant edges have been sampled, Nt nodes are also
distributed randomly about the roadmap, in order to
ensure probabilistic completeness and help the expansion
of the roadmap over future iterations. In some rare
instances no significant edges are present in G, which
indicates that whilst the current query has failed, the
general exploration of Cpe is progressing. In these
instances, random sampling carried out as normal to re-
connect the roadmap and the algorithm progresses as
normal. Once the expansion phase is completed, the
roadmap’s connectivity is returned to a sufficient state to
continue the planners operation. The expanded roadmap
is passed to the shortest path search and the algorithm
continues its iterations. To reduce cyclic behaviour in
roadmap expansion, significant edges are not used
multiple times. If a significant edge has been defined
once, it is not utilized by expansion phases over future
iterations.

3.5 Lazy Bridge Tests (LBT)

Bridge testing is a proven method of -effectively
navigating complex regions and narrow passages [11].
The bridge test operates by testing pairs of samples,
within a given distance of one another, continually until
both samples are found to be clashing. Once this criteria
is met, the midpoint of these samples is tested and only if
this configuration is Cre is it then placed in G. Bridge
testing ensures that samples are placed in narrow regions
of the configuration space, however the method requires
that three successive clash tests of a specific criteria must
be met in order to place only one single node in G.

In order to increase the efficiency of the traditional bridge
test, a lazy method of bridge testing is implemented in
LSEA. It operates by first collecting all nodes in G that
failed their clash test, or lie in Cpmis. For each pair of
nodes in this set (within distance Durigge of each other) a

www.intechopen.com

has already been navigated

sample is generated at the midpoint. If the mid-point lies
in Cpe, we have satisfied the bridge criteria and this
sample is added to G. By utilizing previously determined
Crrvia samples, the number of clash checks required to
produce a bridge sample in G is reduced. The Lazy
Bridge test requires a sample of previously clash checked
nodes, so it is implemented after each iteration of the
expansion phase. To avoid cycles, once a bridge between
two Cpnia samples has been found, it is never used again.
In certain instances, LBT is not needed. At the end of each
iteration of the main algorithm, if a certain ratio of failed
samples to good samples produced is not met, LBT is not
carried out.

4. Experiment and Results
4.1 Experimental Setup

Three path planning problems, each featuring varying
levels of complexity, were created to test LSEA. To
evaluate performance, LSEA was benchmarked against
the Lazy-PRM path planner [3]. Both algorithms were run
100 times in each environment and the results were
averaged. Both algorithms utilize the same set of
variables that control the operation of the planner. For
each environment, these variables were optimized (see
Table 1.) and implemented before the testing process.
Both planners made wuse of the component-n [16]
neighbour connection strategy, which provided better
results for both planners in each of the given
environments. The effectiveness of lazy bridge testing
techniques was carried out separately. In the medium-
scatter environment, LBT was compared to traditional
bridge testing as a means to effectively sample inside
narrow passages. All algorithms and environments were
developed and tested in the MATLAB programming
language.

Each of the three environments is a 2D plane scattered
with randomly distributed objects to navigate. The robot
is a planar robot with three degrees of freedom (x, y and
rotation Rz). The sparse-scatter environment (Figure 5.
detail i) features oddly shaped objects, sparsely
distributed about the configuration space. The robot is

Joseph Polden, Zengxi Pan, Nathan Larkin and Stephen Van Duin:
Path Planning with a Lazy Significant Edge Algorithm (LSEA)

relatively free to move about this environment and the
robots orientation is not critical in order to pass between
many of the objects. The second environment, medium-
scatter, has more objects dispersed throughout. Their
positions create several narrow passages the robot has to
navigate in order to solve the given path planning query.

The final environment has many smaller clash objects
densely-scattered at random. The density of the clash
objects drastically restricts the robot’s motion and the
orientation of the robot is critical in order to navigate
through many sections of the workspace.

O*O b -
(\,:7 C;Do
CU RS A
e} Cb O o 8 o o
o O - °

i)

O

?
O

o o iii)

°© O% o)
(o]

Figure 5. The testing environments, the robot is shown in the bottom left corner, and the goal is the black star in the top right. Detail: i)

Sparse-Scatter ii) Medium-Scatter iii) Dense-Scatter
4.2 Results
4.2.1 Results of LSEA

The box plots in Figure 6 display the times taken per
query for both planners. The whiskers encapsulate the
entire spread of the data, the shaded box represents the
lower quartile and the lighter shaded box above shows
the upper quartile of the data. The boundary between
these boxes represent the median time taken to complete
the tests. Using the box plots, we can see that LSEA
outperforms the traditional lazy planner in every
environment. The improvement was smaller in the sparse
scatter environment, but became more apparent in the
medium and densely scattered environments.

70 100

60

50

40

Time (sec)
Time (sec)
v
&

30

40 -

20 T 30

W
th,i

0 o

L-PRM, LSEAL-PRM, LSEA L-PRM, LSEA
i) ii) i)

Figure 6. Box plots of results. i) Sparse-scatter ii) Medium-scatter
and iii) Dense-scatter.

In the sparsely-scattered environment LSEA provided
some degree of improvement. It was observed that the

Int J Adv Robotic Sy, 2013, Vol. 10, 198:2013

sparseness of the obstacles meant that both planners were
able to solve the majority of the problems with the initial
roadmap alone, few expansion iterations were required.
Both algorithms use the same methods for generating
Ginit, so their results are fairly similar. Regardless, the
average time to find a solution was reduced by 40% and
the spread of the results was also reduced somewhat. The
advantages of LSEA became more apparent in the
remaining environments. In the medium-scatter test, LSEA
reduced the average time to reach a solution by 52% and
the spread of data was reduced significantly. This result
can be attributed to LSEA distributing its sampling
workload towards areas that had not effectively been
navigated by the robot. The traditional Lazy algorithm
was observed redundantly sampling regions already
navigated, slowing the average time to reach a solution.
This same phenomenon was observed to a greater degree
in the densely-scattered environment. The average time
taken to solve the problem was reduced by 57%. LSEA
was more intelligently able to discern which regions had
been cleared by the robot and then push the sampling
strategy away from these areas. Results from the testing
are presented in Figure 7. The reduction in time for LSEA
can be directly attributed to the reduced number of clash
checks done in order to solve each path planning query.
The roadmaps generated to solve the problems had fewer
nodes and the percentage of roadmap nodes that were
clash checked (shown in the brackets) was also lower,
providing a more ‘lazy” solution.

4.2.2 Results of LBT

To test the effectiveness of Lazy Bridge testing, another
testing scheme was created using the medium-scatter
environment. This environment was used as it features
scattered obstacles, as well as narrow passages which
need to be navigated, providing a good environment to
test the overall performance of LBT. To gain both an

www.intechopen.com

absolute and relative understanding of LBT effectiveness,
two tests were created. In the first, the medium-scatter
environment was used to test LSEA with and without
LBT. LBT was found to improve the time taken to solve
the query by 33.1%. When the planner is using LBT, fewer
samples are required, because they are more effectively
used during the process. The second test compared the
effectiveness of LBT against traditional bridge testing
techniques. Once again, the lazy method showed
improved performance over the traditional method. A
17.8% reduction in time was observed and on average,
2934 fewer clash checks were required to reach a solution.
These results can be attributed to the fact that LBT utilizes
previously calculated clash results, reducing the overall
amount of clash tests required to generate valid bridge
samples. Granted, LBT has to substitute many more
distance checks between nodes. However, the relative
cost of these distance checks is small compared to the cost
of the extra clash checks required when carrying out the
traditional bridge testing. If LBT was employed on a more
complex system, which requires a longer time to check
the clash status of samples, a greater reduction in time
would be observed.

100 tests. Sparse. Lazy-PRM | LSEA
AveTime (s) 15.2 9.1
Ave Clash Checks 66898 44525

The trade off to this approach is that whilst a solution can
be found faster, there is the possibility that the optimality
of the returned path may not be as good. If, for instance,
the LSEA planner navigates a certain obstacle poorly, the
likelihood of adding more samples to this region and
improving this local path over future iterations is low.
Whereas, if the Lazy-PRM navigates a certain object
poorly, there is a greater chance that future iterations of
the algorithm will continue to place samples about this
object, which could improve the local path. This effect can
be reduced considerably via post process optimization of
the path solution.

The observed performance advantage LSEA has over
Lazy-PRM is directly attributed to the reduced amount of
clash checks required to solve a path planning query. In
the 2D test environments used, these clash checks are
relatively simple and can be carried out very rapidly
(~0.0001 sec). If LSEA planner was implemented in a
more complex system that requires a much longer time to
process a clash check, we can expect the performance
advantage of LSEA to be even higher.

MNodes Used (% CC)

308 (78%)

186 (75%)

]

Variable Value
Nimit 70,150,150
NNeighb 55,5
Seeds/SE’s per iteration 10,10,10
Nsamp 2,22
Nrand 10,10,10

100 tests. Medium. Lazy-PRM | LSEA
AveTime (s) 28.8 13.9
Ave Clash Checks 120712 65348
Nodes Used (% CC) 385 (84%) 241 (80%)

i)

100 tests. Dense Lazy-PRM | LSEA
AveTime (s) 43.1 18.3
Ave Clash Checks 177903 83522
Nodes Used (% CC) 444 (90%) 249 (85%)
iii)
Figure 7. Tabulated results for each environment: i) Sparse-
scatter ii) Medium-Scatter iii) Dense-Scatter

5. Discussion

LSEA was developed as an improvement over the
traditional Lazy-PRM planner [3]. From a high level
standpoint, both algorithms operate in a similar fashion.
The main operational difference between LSEA and Lazy-
PRM comes from the roadmap expansion phase. Lazy-
PRM carries out its roadmap expansion by adding
additional samples to regions deemed likely to be at the
boundary of clash objects. LSEA takes this expansion
method a step further by adding its samples to regions
nearby clash objects that have not yet been navigated by
the robot. By doing this a solution can be discovered
faster, as no time is wasted by continuing to sample about
a clash object that has already been cleared.

www.intechopen.com

Table 1. Variables used for each of the three environments
(sparse, medium, dense) for both LSEA and Lazy-PRM during
testing.

6. Conclusions and Future Work

In this paper, a new path planning algorithm that utilizes
connectivity information to bias the expansion of the
roadmap was presented. The algorithm was tested in
three environments featuring different levels of
complexity. Its performance was benchmarked against a
traditional Lazy-PRM planner. In each test LSEA
outperformed its counterpart considerably, despite
having a similar method of operation. It was able to solve
path planning queries faster, utilizing fewer samples to
achieve its solution. In more difficult environments, it
was able to process a valid solution twice as fast as its
traditional counterpart. A lazy method of bridge testing
was also proposed and tested. The lazy method was
observed to sample narrow passages more effectively,
utilizing fewer clash checks in order to generate valid
bridge samples.

Future work regarding LSEA involves adapting its
operation to plan paths for 6DOF
manipulators operating in a 3D environment. In such a
system, clash checking algorithms place an even larger
burden on computational resources. It is envisaged that

articulated

Joseph Polden, Zengxi Pan, Nathan Larkin and Stephen Van Duin:
Path Planning with a Lazy Significant Edge Algorithm (LSEA)

8

when LSEA is implemented on such a system, the
reduction in required clash checks will further increase
the performance advantage LSEA has over traditional
Lazy-PRM methods. The LSEA algorithm is still in early
stages of development. Many performance modifications
are being investigated and further tuning of the algorithm
for increased performance is to be carried out

7. Acknowledgments

This work was supported by the Defence Materials
Technology Centre (DMTC), which was established and
is supported by the Australian Government’s Defence
Future Capability Technology Centre (DFCTC) initiative.

8. References

[1] Tsianos K, Sucan I, Kavraki L (2007) Sampling-Based
Robot Motion Towards Realistic
Applications. Computer Science Rev. 1: pp 2-11.

[2] Kavraki L, Svestka P, Latombe JC, Overmars M (1996)
Probabilistic Roadmaps for Path Planning in High-
Dimensional Configuration Spaces. IEEE Trans. On
Robotics and Automation. 12: pp 566-580.

[3] Bohlin R, Kavraki L (2000) Skin Path Planning Using
Lazy PRM. Proc. IEEE Int. Conf. on Robotics &
Automation. California, USA.

[4] Jaillet L, Simeon T (2004) A PRM-based Motion
Planner for Dynamically Changing Environments.
IEEE Int. Conf. on Intell. Robots & Systems. 2: pp
1606-1611, Sendai, Japan.

[5] Thomas U, Iser R (2010) A new Probabilistic Path
Planning Algorithm for (Dis)assembly Tasks. ISR 415t
International Symp. On Robotics. Munich, Germany.

[6] Lanteigne E, Jnifene A (2011) Small Tree Probabilistic
Roadmap Planner for Hyper-Redundant
Manipulators. Lec Notes in Comp. Science. Vol 6752.
pp 11-20.

[7] S.A. Wilmarth, N.M. Amato, P.F. Stiller (1999)
MAPRM: A probabilistic roadmap planner with

Planning;:

Int J Adv Robotic Sy, 2013, Vol. 10, 198:2013

sampling on the medial axis of the free space. IEEE
1999 Int. Conf. on Robotics and Automation, pp
1024-1031.

[8] Boor V, Overmars M, Stappen F.V.D (1999) The
Gaussian Sampling Strategy for Probabilistic
Roadmap Planners. Proc. of the 1999 IEEE Int. Conf
on Robotics & Automation. USA.

[9] Rantanen M (2011) A Connectivity-Based Method for
Enhancing Sampling in Probabilistic Roadmap
Planners. J. Intell Robot Syst. 64: pp 161-178.

[10] Klasing K, Wollherr D, Buss M (2007) Cell-based
Probabilistic Roadmaps (CPRM) for Efficient Path
Planning in Large Environments. ICAR. 13th Int.
Conf. on Adv. Robotics. pp 1075-1080.

[11] Sun Z, Hsu D, Jiang T, Kurniawati H, Reif] (2005)
Narrow Passage Sampling for Probabilistic Roadmap
Planning. IEEE Trans. On Robotics. 21: pp 1105-1115.

[12] Kuffner J, LaValle S (2000) RRT-Connect: An Efficient
Approach to Single-Query Path Planning. Proc. IEEE
Int. Conf. on Robotics & Automation. pp 995-1001.

[13] Sanchez G, Latombe JC (2003) A single-Query Bi-
Directional Probabilistic Roadmap Planner with Lazy
Collision Checking. Springer Tracts in Adv. Robotics.
6: pp 403-417.

[14] Cheng P, Shen Z, LaValle S (2000).
randomization to find and optimize
trajectory for nonlinear systems. Allerton Conf. on
Communications, Control, Computing, pp 926-935

[15] Nieuwenhuisen D, Overmars M, (2004) Useful Cycles
In Probabilistic Roadmap Graphs. Proc. IEEE Int.
Conf. Robotics & Automation. 1: pp 446-452

[16] Geraerts R, Overmars M (2005) Sampling and node
adding in probabilistic roadmap planners. Robotics
and Autonomous Systems. 54: pp 165-173.

[17] Latombe JC (1991) Robot Motion Planning. Kluwer,
Boston, USA.

Using
feasible

www.intechopen.com

	Path Planning with a Lazy Significant Edge Algorithm (LSEA)
	Recommended Citation

	Path Planning with a Lazy Significant Edge Algorithm (LSEA)
	Abstract
	Keywords
	Disciplines
	Publication Details

	tmp.1386309243.pdf.jdTnv

