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Inter-Occlusion Reasoning for Human Detection Based on Variational
Mean Field

Duc Thanh Nguyena,∗, Wanqing Lia, Philip O. Ogunbonaa

aSchool of Computer Science and Software Engineering,
University of Wollongong, NSW 2522

Australia

Abstract

Detecting multiple humans in crowded scenes is challenging because the humans are often partially or

even totally occluded by each other. In this paper, we propose a novel algorithm for partial inter-occlusion

reasoning in human detection based on variational mean field theory. The proposed algorithm can be in-

tegrated with various part-based human detectors using different types of features, object representations,

and classifiers. The algorithm takes as the input an initial set of possible human objects (hypotheses)

detected using a part-based human detector. Each hypothesis is decomposed into a number of parts and

the occlusion status of each part is inferred by the proposed algorithm. Specifically, initial detections

(hypotheses) with spatial layout information are represented in a graphical model and the inference is

formulated as an estimation of the marginal probability of the observed data in a Bayesian network. The

variational mean field theory is employed as an effective estimation technique. The proposed method

was evaluated on the popular datasets including CAVIAR, iLIDS, and INRIA. Experimental results have

shown that the proposed algorithm is not only able to detect humans under severe occlusion but also

enhance the detection performance when there is no occlusion.

Keywords:

Occlusion reasoning, non-redundant local binary pattern, mean field method

1. Introduction

In recent years, human detection has received much attention in applications such as video surveillance,

motion analysis, and driving assistant systems [1, 2]. However, the challenges of this task are well known

due to the complexity of the background, the variations of human appearance, postures and viewpoints.

The problem becomes extremely difficult when detecting multiple humans in highly crowded scenes where

humans can be severely occluded. In general, an object is considered occluded if it is not fully perceivable

or observable. There are three types of occlusion: self-occlusion, non-object-occlusion, and inter-object

occlusion.

Self-occlusion is the case in which some parts of the object are occluded by other parts of the same

object. This type of occlusion is mainly caused by the variation of the camera’s viewpoint or pose of the

human object. Figure 1(a) shows examples of self-occlusion in which the arms of the human object are
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occluded and un-occluded by the torso; and one leg is occluded and un-occluded by another leg. It can

be seen that at a certain level of the variation of posture and viewpoint, self-occlusion can be solved by

employing a multi-view object descriptor, e.g. [3]. Furthermore, it is not necessary that all parts of a

human must be visible so that the human can be detected. Some parts, e.g. the arms and hands, are

subject to much variability because of articulation and often not seen clearly in low resolution images.

Thus, they are not usually modelled separately in part-based human detection algorithms, e.g. [4, 5].

Inter-object-occlusion occurs when an object of interest is occluded by other objects. Such occlusion

can be further divided into type-I and type-II inter-object occlusion. Type-I inter-object occlusion occurs

when an object of interest is occluded by another object of the same type (e.g. humans occluding other

humans). Type-II inter-object occlusion occurs when an object of interest is occluded by objects that

are not of interest in the specific application. For human detection, the type-I inter-object occlusion, as

shown in Figure 1(c), is often found in video surveillance of a dense crowd. In these applications, the

camera is often set up to look down towards the ground plane where, as shown in Figure 2, inter-object

occlusion can occur when a human object is blocked by another human object standing between the first

human object and the camera. Examples of type-II inter-object occlusion can be seen in Figure 1(b),

wherein the humans are occluded by a car, chair, table, flag.

This paper focuses on the type-I inter-object occlusion, referred to as inter-object occlusion hereafter

for brevity, and proposes a method for modeling the inter-object occlusion and determining the occlusion

status of the parts of human objects to improve the detection rate in a crowded scene. Specifically, given

an input image, an initial set of human hypotheses is formulated using a part-based human detector.

The initial hypotheses may contain false positives which have been generated without considering the

occlusion status of parts. In this paper, hypotheses and their spatial relationships are represented as a

graphical model and the problem of occlusion reasoning is formulated as estimating a marginal probability

of the observed data. This task corresponds to making inference on appropriate status of hypotheses to

explain the observation. For efficient computation, the variational mean field method is used to estimate

the marginal probability. The proposed occlusion reasoning algorithm was evaluated on commonly used

datasets including CAVIAR, iLDS, and INRIA. Experimental results have verified the effectiveness and

robustness of the proposed algorithm in detecting multiple and partially occluded humans.

The remainder of this paper is organised as follows. In Section 2, we briefly review the related works

on human detection as well as occlusion reasoning. Section 3 describes a part-based human detector

which is used to obtain a set of initial human hypotheses and provides partial detection results for later

occlusion analysis. The problem of occlusion reasoning is formulated in Section 4 and a variation mean

field algorithm is presented in Section 5. Experimental results along with comparative analysis are shown

in section 6. Section 7 discusses some aspects of the proposed method and concludes the paper with

remarks.

2. Related Work

Generally speaking, existing object detection methods can be categorised as either global or local

approach. Global methods focus on detection of a full object using a full object template matcher

[6, 7]. Local methods on the other hand detect objects by locating parts constituting the objects [8, 4].

Compared with global detection, local detection has advantage of being able to detect objects with high

articulation such as human bodies and to cope with the problem of occlusion.
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(a)

(b)

(c)

Figure 1: Illustration of different types of occlusion: (a) self-occlusion, (b) non-object-occlusion and (c) inter-occlusion,
where the occluded areas are highlighted by ellipses.

Figure 2: Ground plane in 3D scene and the corresponding 2D captured image.
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In the history of object detection, many robust features have been proposed to describe the full object

or object parts [1]. These features can be obtained from the low-level information of the object images

such as edge, texture, or colour. To encode the shape of an object or object parts, edge-based features

have often been used. For example, edge contours were predefined through templates in [6, 9, 10],

edgel elements, namely as edgelets in [4, 3], or learned from samples in [11, 12]. In [7], histogram of

oriented gradients (HOG) was proposed. HOG has then received much attention with various extensions,

e.g. [13, 14]. In [15], the covariance matrices of the spatial location, intensity derivatives, and edge

orientations were used. Since the covariance matrices do not lie on a vector space, they were classified on

Riemannian manifolds. In [16], Gao et al. proposed the Adaptive Contour Feature (ACF) constructed

based on the edge magnitudes and orientations in a scale space.

In addition to edge-based features, appearance features describing the texture [8, 17, 18, 19] or colour

[20] have also been explored. For example, Mohan et al. [8] used Haar wavelets to describe the object

texture by encoding the oriented and intensity differences between adjacent regions. Extended from Haar

wavelets, Viola et al. [17] proposed rectangular features with various configurations. These features

were then applied to encode movement patterns of pedestrians in [21]. Grayscale (intensity) patterns

were employed to represent the local appearance of the object parts in [18]. Recently, local binary

patterns (LBP) originally proposed for texture classification [22] were employed in [19, 23]. In [20], a soft

segmentation based on the foreground/background colour was performed by a Fisher discriminant. HOG

was then applied on the segmented image to compute the so-called CHOG feature.

One of the most difficult challenges in human detection is occlusion. A number of methods addressing

the occlusion problem have been proposed in the literature. In general, these methods can be categorised

as window-based or context-based approaches. The window-based approach [23, 24] has been more

successful for situations where the occlusion of human objects is caused by non-human objects and the

problem is solved within each image window. For example, in [23], responses of a holistic linear SVM

classifier to HOG features computed on blocks in the detection window were used to construct an occlusion

map for each human hypothesis. The responses with nearby values on the occlusion map were merged

and segmented into regions using mean-shift algorithm [25]. Regions of mostly negative responses were

inferred as occluded regions while positive regions (implied as non-occluded regions) were classified using

sub-classifiers. A disadvantage of this method is that it is not applicable when other types of object

representation or classifiers (not linear SVM) are employed. In [24], motion (optical flow) and depth

(stereo vision) cues were incorporated in identifying non-occluded regions. This is motivated by the

observation that occluded regions often cause significant discontinuity in motion flows while occluding

obstacles are closers (in depth) to the camera than occluded objects. This method requires the motion and

depth information and thus is not applicable to detecting occluded humans in static images. Some other

methods, e.g. [26], experimentally showed that they could deal with the occlusion problem. However,

there is no explicit mechanism to deal with occlusion proposed in those methods.

For context-based methods, they often start from the detection of body parts and are then followed

by inferring possible inter-object occlusion through a reasoning algorithm. For example, Zhao et al. [27]

formulated the inference process as an optimisation problem and Markov chain Monte Carlo (MCMC)

was applied to find the optimal solution. Similarly, the problem was formulated as the maximisation of a

joint likelihood of human hypotheses in [4, 28, 5, 29, 30, 31] and a greedy-based inference algorithm was

used to obtain the optimal solution. In [4, 28, 5, 29, 30], human hypotheses were sorted in descending

order of vertical coordinate (with respect to the image coordinate) and the optimisation was performed
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(a) Full body structure

(b) Part templates

Figure 3: Part template model.

by verifying whether each hypothesis should be added (e.g. [5, 29, 30]) or removed (e.g. [4, 28]) at a time

to increase the joint likelihood and updating the occlusion map accordingly. However, the verification

of each hypothesis was performed only once. Thus the hypothesis can be rejected or accepted without

considering of the global configuration of the available hypotheses. Recently, Huang and Nevatia [31]

proposed a so-called ”dynamic” search which allows a hypothesis to be added or removed more than one

time. In [32], a logic based reasoning framework was proposed for the occlusion inference. The framework

used a number of logical rules based on the response of each individual part detector and the geometric

relationships between the detected parts. However, these rules do not consider the poses and views of

the detected parts.

3. A Part-based Human Detector

Since occluded humans are not fully visible, part-based human detectors are suitable for the task of

detecting humans in occlusion. In this paper, the human detector proposed by the authors in [33] is used.

The detector employs a shape-appearance based human descriptor and SVM classifier for describing and

classifying human objects respectively. Readers are referred to [33] for more details.

The shape-appearance based human descriptor can be briefly described as follows. A set of contour

templates are used to model the shape of a human body. In order to cope with the occlusion and the

variation of human postures and viewpoints due to the articulation of human body, part-based templates

are employed. In particular, a template model M = {P1, P2, ..., PN} is a collection of N sets of part

templates in which each template T ∈ Pi represents the shape of part i observed at a certain posture and

viewpoint. Figure 3 shows the part templates used in this paper with N = 4 and |Ptop| = 5, |Pbottom| = 8,

|Pleft| = |Pright| = 6 where |Pi| denotes the cardinality of the set Pi. As shown in Fig. 3, the number of

templates to be matched is 5 + 8 + 6 + 6 = 25 (templates) to cover up to 5× 8× 6× 6 = 1440 different

postures. Compared with full body detection approach, the advantage of part-based detection is that the

matching is performed on a small set of templates but covers a variety of human postures.

For each human object image, e.g. a detection window W , a set of best matching part templates
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Figure 4: Forming the feature vector.

{T ∗i }, i = 1, 2, ..., N is determined as,

T ∗i = arg min
T∈Pi

D(T,W ) (1)

where D(T,W ) is the Chamfer distance between a template T ∈ Pi and the edge map, e.g. Canny’s

edge map, of window W . In this paper, the generalised distance transform proposed in [10] is used for

matching templates.

For each best matching part template T ∗i , a set of edge points Ei on the edge map of W and closest to

T ∗i is sampled. This set defines the locations at which the non-redundant local binary patterns (NRLBP)

proposed in [34] are extracted. The NRLBP is a variant of the popular LBP [22] and defined as follows.

Given a pixel c and S is the number of neighbouring pixels whose the spatial distance to c does not

exceed R, we define,

NRLBPS,R(c) = min

{
LBPS,R(c), 2S − 1− LBPS,R(c)

}
(2)

where LBPS,R(c) is the LBP code of c and calculated as,

LBPS,R(c) =

S−1∑
p=0

f(gp − gc)2p (3)

where gp and gc are the intensities of p and c; f(x) = 1 if x ≥ 0, and f(x) = 0, otherwise.

As shown in [34], the NRLBP is more discriminative and offers lower dimension than the original

LBP. In addition, the NRLBP is robust and adaptive to changes of the background and foreground.

For each edge point e ∈ Ei, the NRLBP histogram he of a (2L+ 1)× (2L+ 1)-local region centered

at e is computed on the detection window W . The part descriptor Fi is formed as follow,

Fi =
⊕
e∈Ei

he (4)

where
⊕

is a concatenating operator. Figure 4 illustrates the formation of the part descriptor, e.g. the

bottom part of a human object.

The overall part-based human descriptor F can be simply constructed by concatenating the descriptors
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Figure 5: Occlusion reasoning framework. Each human hypothesis generated by initial detection is represented by a set of
full and part detection scores and a set of best matching templates.

of all parts as,

F =
⊕

i∈{1,2,...,N}

Fi (5)

F and Fi, i ∈ {1, ..., N} of positive and negative samples are created and used to train a set of

classifiers (e.g. SVMs) C and Ci, i ∈ {1, ..., N} for classifying the full human body and body parts

respectively.

4. Occlusion Reasoning Formulation

Suppose that an initial set of hypotheses about the presence of humans (bounding boxes), H =

{h1, h2, ..., hX} are detected from an image I using a part-based human detector (e.g. the one presented

in the above section). Since at the initial stage, there is no information on whether or which parts of

the human body are occluded, the initial set of hypotheses is created by selecting hypotheses hi that

satisfy C(F l(hi)) ≥ φ. Here, F l(hi) is the part-based feature vector describing a candidate object hi at

its location l(hi) defined in (5); C(F l(hi)) denotes the detection score (i.e. the classification score); and

φ is a detection threshold which represents the trade-off between true detections and false alarms. The

threshold, φ, is set for a conservative detection such that true positives are not missed and false positives

may be included. The inter-object occlusion of hypotheses is then represented as a graphical model G on

which the reasoning is formulated. Figure 5 illustrates the reasoning process.

The graphical model G(V,E) where V and E are the vertices and edges can be created as follows.

For each hypothesis hk, k ∈ {1, ..., X}, a binary value is assigned to indicate that the hypothesis hk is a

false positive (value of 0) or true positive (value of 1). Let ok denote the corresponding image region of

a hypothesis hk. Given H, the corresponding image data O = {o1, o2, ..., oX} can be obtained. As the

values of hk, k ∈ {1, ..., X} are to be determined, we treat them as hidden nodes (i.e. state variables)

while the image data ok, k ∈ {1, ..., X} are considered as observable nodes. Finally, we define V = {H,O}.
For the edges E, there are two types: observation-state edge and state-state edge. The observation-

state edges connecting hk and ok represent the observation likelihood p(ok|hk). For overlapping hypothe-

ses, there may exist an inter-object occlusion relationship, thus a link between those hidden nodes, i.e.

state-state edge, is added. It has been observed that, because of the perspective rule, if hk is occluded by

hj then the image region of hj is larger than that of hk and foot position of hj is higher than that of hk

(with image coordinate shown in Figure 2). This observation is reasonable and valid in most surveillance

systems, e.g. [4, 5, 27, 30]. In our model, this property is exploited in defining state-state edges. In

particular, if hk is occluded by hj (determined by the foot positions and/or image areas), there is an
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Figure 6: Left: initial detection hypotheses, Right: the graphical model in which ellipses represent local groups.

edge from hj to hk with a probability p(hk|hj). This design implies that the presence of hj affects the

detection of hk, but not vice versa, since hj occupies the view space of hk from the camera. Figure 6

shows an example of the graphical model G. As can be seen, G can be considered as a Bayesian network

in which hk and ok are state and observed variables respectively.

The initial set of hypotheses, H, may contain false alarms (i.e. incorrect assignment of values to

hk). This is because the initial detection is performed based on recognising individual image windows

independently without considering the geometrical layout of humans in the scene. Note that refining this

set is considered as making inference on appropriate values of hypotheses hk in estimating the marginal

probability of the observed data:

log p(O) = log

∫
H

p(O|H)p(H)dH (6)

where p(H) is the prior and p(O|H) is the likelihood of obtaining the observed data O given states H.

Since each hk takes a binary value, a brute force estimation of (6) would require O(2X) operations.

In the next section, an algorithm is proposed to effectively estimate log p(O) using the variational mean

field method.

5. Reasoning Using Variational Mean Field Method

5.1. Variational Approach

Variational methods have been commonly used for approximate inference and estimation. Basically,

in variational approach, the estimation problem is casted as optimisation problem and an approximate

solution is to be found [35]. This is advantageous especially when the exact solution is not feasible or

practical to obtain. In our problem, instead of estimating log p(O) using (6), we can approximate it by

optimising an objective function J(Q) of a variational distribution Q as follows,

J(Q) = log p(O)−KL(Q(H)||p(H|O)) (7)

where KL is the Kullback-Leibler divergence of two distributions [36] defined as,

KL(Q(H)||p(H|O)) =

∫
H

Q(H) log
Q(H)

p(H|O)
dH (8)
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Substituting (8) into (7), we obtain,

J(Q) = log p(O)−
∫
H

Q(H) logQ(H)dH +

∫
Q(H) log p(H|O)dH

= log p(O)−
∫
H

Q(H) logQ(H)dH +

∫
H

Q(H) log
p(H,O)

p(O)
dH

= −
∫
H

Q(H) logQ(H)dH +

∫
H

Q(H) log p(H,O)dH

= H(Q) + EQ{log p(H,O)} (9)

where H(Q) is the entropy of the variational distribution Q and EQ{·} represents the expectation with

regard to Q.

Since the KL-divergence is nonnegative, maximising the lower bound J(Q) with respect to Q will give

us J(Q∗) as an approximation of log p(O). Note that Q∗ will also be an approximate of the posterior

p(H|O). In addition, an approximation of log p(O) corresponds to finding an appropriate variational

distribution Q(H). In this paper, the simplest variational distribution that all hidden variables are

assumed to be independent of each other is adopted. In particular, we assume,

Q(H) =

X∏
k=1

Qk(hk) (10)

Thus, the entropy H(Q) can be rewritten as,

H(Q) =

X∑
k=1

H(Qk) (11)

where H(Qk) is the entropy of Qk.

Since Q(H) is fully factorised, J(Q) can be optimised with respect to each individual component Qk

at a time. Thus, J(Q) can be estimated by updating the k-th component while other components remain

unchanged, i.e.,

J(Q) = const. +H(Qk) +

∫
hk

Qk(hk)EQ{log p(H,O)|hk} (12)

where EQ{·|hk} is the conditional expectation with respect to the variational distribution Q given hk.

As presented in [35], maximising J(Q) can be obtained by computing Gibbs distributions of Qk(hk):

Qk(hk)← 1

Zk
eEQ{log p(H,O)|hk} (13)

where Zk is the normalisation factor computed as,

Zk =

∫
hk

eEQ{log p(H,O)|hk} (14)

Update equations (13) and (14) will be invoked iteratively to increase the objective function J(Q).

As can be seen, the computation of (13) and (14) requires an estimation of EQ{log p(H,O)|hk} which is

dependent on the configuration of the graphical model. This will be presented in the next section.

9
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5.2. Computation

It is observed that the update of EQ{log p(H,O)|hk} depends only on hk and hypotheses occluded

by hk. In essence, the presence of a node hk affects only the likelihood p(ok|hk) explaining how likely

we have hk given observation data ok and likelihoods of nodes occluded by hk. Thus, EQ{·|hk} can be

factorised over a set of local groups containing nodes related to hk where the update can be performed

locally. In particular, let N (hk) be the set of neighbouring hidden nodes of hk, i.e. hidden nodes which

are directly connected to hk. For each node hj ∈ N (hk), a local group c representing the dependency of

hj on hk is defined as ck,j = (hk, ok, hj , oj). Figure 6 shows an example of groups. The update can be

performed simply as,

EQ{log p(H,O)|hk} ←
∑

hj∈N (hk)

∫
hj

Qj(hj) logψ(ck,j) (15)

where ψ(ck,j) is the potential function of the group ck,j . It can be computed as in a conventional Bayesian

network:

ψ(ck,j) ≡ p(hk, ok, hj , oj) = p(ok|hk)p(hj |hk)p(oj |hj)p(hk) (16)

where p(ok|hk) represents the likelihood of the human hypothesis hk given the observation ok. p(hk) is

the prior of the presence of hk and p(hj |hk) indicates a state transition in a Bayesian network.

Since H is revised iteratively, (15) needs to be updated accordingly with current settings of H. For

example, at each time and based on a particular setting of H, for each hypothesis hk, k ∈ {1, ..., X},
visible parts are determined using (21) and the likelihood p(ok|hk) in (16) can be re-evaluated. To

compute p(ok|hk), the detection scores of visible parts can be used. However, since the parts of a human

object are detected independently, they may not represent any regular configuration of a human body.

Fortunately, with the shape-appearance human detector, it is possible and worthwhile to validate the

combination of parts using the best matching templates {T ∗i } computed in (1). In particular, we define

the likelihood in p(ok|hk) as,

p(ok|hk) =

φ, if hk = 0

p({T ∗i }, {Ci(Fi(ok))}|hk), if hk = 1
(17)

where φ is the detection threshold used to obtain the initial set of hypotheses; {T ∗i } and {Ci(Fi(ok))} are

the sets of best matching part templates and corresponding part detection scores (e.g. the classification

scores of SVMs in our experiments) of visible parts of the observed image data ok. Those sets can be

used to interpret the observation ok.

Assuming that {T ∗i } and {Ci(Fi(ok))} are statistically independent variables given hk, (17) can be

rewritten as,

p(ok|hk) =

φ, if hk = 0

p({T ∗i }|hk)p({Ci(Fi(ok))}|hk), if hk = 1
(18)

To validate the combination of detected parts, p({T ∗i }|hk) is considered as the co-occurrence of part

templates that represents a valid human posture (as hk = 1). In this paper, we model p({T ∗i }|hk) using

a sigmoid function. This is because, the sigmoid function is able to reflect the fact that the higher co-
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occurrence of part templates is (in the training samples), the more confident those parts form a regular

human posture. We define,

p({T ∗i }|hk = 1) =
1

1 + e−mf({T∗
i })

(19)

where m is an empirical parameter and f({T ∗i }) is the frequency with which visible parts {T ∗i } co-occur.

Note that p({T ∗i }|hk = 1) can be computed off-line and retrieved from a look-up table manner.

The term p({Ci(Fi(ok))}|hk = 1) in (18) can be calculated as,

p({Ci(Fi(ok))}|hk = 1) ∝
N∑
i=1

viCi(Fi(ok)) (20)

where vi is a binary parameter indicating whether the part i is occluded or not. More precisely, we define,

vi =

1, if occ(i) < δ

0, otherwise
(21)

where occ(i) indicates the ratio of the area of part i occluded by other detection hypotheses and δ

represents the degree of occlusion accepted by the method.

Essentially, p({Ci(Fi(ok))}|hk = 1) defined in (20) is the sum of the part detection scores of visible

parts of a hypothesis hk. To make the likelihood p(ok|hk) invariant to the number of visible parts,

p({T ∗i }|hk = 1) is used to compensate p({Ci(Fi(ok))}|hk = 1) in (18) when occlusion occurs. For instance,

with the part model M used in [33] (i.e. a human body is decomposed into N = 4 parts including top,

bottom, left, and right) and assuming that only the bottom part is occluded, p({Ci(Fi(ok))}|hk = 1), i ∈
{top, left, right} would decrease while p(T ∗top, T

∗
left, T

∗
right|hk = 1) > p(T ∗top, T

∗
bottom, T

∗
left, T

∗
right|hk = 1).

In implementation, the prior of the configurations p({T ∗i }|hk = 1) can be pre-computed and accessed

from a look-up table; thus there is no computational overhead associated with its usage.

Note that when other human detectors not using template matching, e.g. [7] are employed, the term

p({T ∗i }|hk = 1) simply reflects the probability of the presence of the parts and hence can be computed

as p({T ∗i }|hk = 1) = 1∑N
i=1 vi

. The likelihood p(ok|hk) then becomes
∑N

i viCi(Fi(ok))∑N
i=1 vi

, i.e. the average of

the part detection scores of visible parts as used in [24].

To compute (15), we assume that p(hk = 0) = 1 − p(hk = 1) = ρ and p(hj |hk) = % for all hk, hj ∈
{0, 1}. In addition, if hk does not occlude any other hypotheses (e.g. h1 in Figure 6), ψ(c) will be

simplified to p(ok|hk) as the presence of hk does not affect any other hypotheses. This means that

EQ{log p(H,O)|hk} depends only on the likelihood of hk to the observation ok. We initialised Qk(hk =

1) = 1 − Qk(hk = 0) = ν. Finally, if Qk(hk = 1) ≥ Qk(hk = 0), hk is set to 1, (i.e. true detection)

and p(ok|hk) is re-evaluated using (18) with current setting of hk. When the optimal Q∗ is found, the

corresponding subset of hypotheses hk = 1 is determined. This subset provides the final detection results.

The proposed reasoning algorithm is summarised in Algorithm 1.

Unlike greedy-based occlusion reasoning (e.g. [4, 28, 5, 29]), our method tests each hypothesis and its

occlusion status is verified (by adding/removing) more than once. The presence (state) of each hypothesis

is determined by its likelihood and the likelihoods of its neighbours to maximise the objective function.

Such a reasoning method avoids rejecting hypotheses too early as in the greedy approach where each

hypothesis has no chance to be reconsidered once it has been rejected. In addition, compared with some
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Algorithm 1 Reasoning Algorithm

stop = FALSE
J(Q∗) = 0
while stop == FALSE do
J(Q)← 0
stop← TRUE
for k = 1 to X do
H(Q)← H(Q)−H(Qk)
Update Qk(hk) and EQ{·|hk}
H(Q)← H(Q) +H(Qk)
J(Q)← H(Q) +

∫
hk
Qk(hk)EQ{·|hk}

if J(Q) > J(Q∗) then
stop← FALSE
J(Q∗)← J(Q)
if Qk(hk = 0) > Qk(hk = 1) then
hk ← 0

else
hk ← 1

end if
end if

end for
end while

window-based occlusion reasoning methods, e.g. [23, 24], our proposed method offers a general framework

where full and part detectors can be implemented using different types of features, object representations,

and classifiers. In contrast, the method in [23] depends on a grid-based object representation and a linear

SVM and in [24] motion and depth information (stereo images) are required for reasoning.

6. Experimental Results

6.1. Experimental Setup

There are a number of parameters used in the human detector and occlusion reasoning algorithm.

Values of the parameters of the part-based human descriptor were set similarly to [33]. In particular,

for a 96-pixel tall human, the window size L of local image regions centered at contour points was set

to 7. The number of neighbouring pixels S and the radius R in (2) were 8 and 1 respectively. Details

of parameter setting of the human detector was presented in [33]. For parameters related to occlusion

reasoning, without any prior knowledge about occlusion, we set δ defined in (21) to 0.5, ρ = p(hk = 0) =

1− p(hk = 1) = 0.5, % = p(hj |hk) = 0.5, and ν = Qk(hk = 1) = 1−Qk(hk = 0) = 0.5. In addition, φ is

varied to represent the trade-off between true detections and false alarms. We have tried the parameters

with different values but the performance was slightly different while the above setting gave the best

performance.

The part-based and part detectors were trained independently. The training of each detector involves

two steps: initial training and bootstrapping. For the initial training, the training set is from the INRIA

dataset [37] and consisted of 2416 positive samples and 12180 negative samples (created by selecting

randomly 10 samples per negative image). In the bootstrapping, the negative images were exhaustedly

searched to find the 2300 hard-to-detect negative samples whose positive probability is higher than a

predefined threshold (set to 0.2 in our experiments). The hard negative samples together with the

original positive and negative samples were used to train each detector once again.

12



6.2. Performance Evaluation

The proposed algorithm was evaluated on three datasets A, B, and the test set of the INRIA dataset.

The set A was created by selecting 200 images (800th-1000th frame) of 384 × 288-pixels with 1614

annotated humans from the OneStopMoveEnter1cor sequence of the CAVIAR dataset [38]. The set B

contains 301 images of 720× 576-pixels extracted from the Hard sequence of the iLIDS dataset [39]. On

this set, we labelled 3314 humans. Compared with the set A, set B is more challenging due to the high

level and the variation of occlusion. The robustness of the proposed method was also verified in detecting

non-occluded humans. The test set of the INRIA dataset [37] was used for this case.

On the datasets A and B, the evaluation was conducted at various levels of occlusion and the whole

dataset (i.e. all levels of occlusion). For occluded humans, we evaluated the reasoning method based on

different levels of occlusion including: 20%-50%, 50%-70%, and more than 70%. The occlusion level of a

human object was computed as the ratio of the occluded area and the area of the tightly enclosing ellipse

of the human object. The detection error trade-off (DET) measure computed based on false positive

per image (FPPI) versus miss rate was used as the evaluation measure [2]. In general, precision-recall

is often used for object detection. However, for evaluating the detection performance on only occluded

humans given the annotation of non-occluded and occluded humans, the DET is more appropriate than

the precision-recall measure. This is because the precision is computed relatively to the number of false

alarms and, on the detection of occluded humans, only occluded humans are considered and the number of

positives may be much smaller than the number of false alarms. Figure 7 shows the detection performance

on the whole set and occluded humans of both test sets A and B. It can be seen that on both of the test

sets, the reasoning method obtains poor performance when the occlusion reaches 50%-70%. However, on

the set B, the reasoning method achieves the best detection performance at more than 70% of occlusion,

i.e. the detection performance is even better than that estimated on the whole set. An illustration of

the reasoning process with interim results on the dataset A is presented in Figure 8. As can be seen

from Figure 8, at each step of the reasoning, false alarms are removed and true detections are recovered.

Figure 9 shows some detection results.

On the INRIA dataset, 288 full images were used instead of cropped positive and negative samples.

This is because the purpose of the experiment is to evaluate the robustness of the occlusion reasoning

algorithm in improving the detection accuracy. In addition, occlusion inference is performed based on

the spatial layout of detection hypotheses in the scene. Figure 10 shows the detection performance on

the INRIA dataset with and without using the reasoning algorithm. Some detection results are presented

in Figure 12. Interestingly, through experiments we have found that although most of humans in this set

are not occluded, the reasoning algorithm did not introduce any adverse effect and it somehow improved

the detection performance. This is probably because, as shown in Figure 12, in cases where a false alarm

overlaps with a true detection the reasoning process could infer possible occluded parts to invoke proper

part detectors to verify the false alarms. In addition, the reasoning method makes the justification of

a hypothesis as false alarm or true detection based on not only the hypothesis itself but also on its

contribution to a global configuration of spatially related hypotheses.

As the reasoning algorithm is an iterative process, the efficiency of the proposed method needs to

be evaluated. Recall that the occlusion inference is performed iteratively to maximise the objective

function J(Q) and at each iteration all hypotheses are verified and the corresponding update equations

are invoked. Therefore, to evaluate the efficiency of the proposed method, we count the total number

of iterations performed to maximise J(Q) as well as the real processing time required per frame. Those
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(a)

(b)

Figure 7: Detection performance on the dataset A (a) and B (b).
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Figure 8: An illustration of occlusion reasoning in which green rectangles represent false alarms.

Figure 9: Some results of human detection in occlusion.
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Figure 10: Detection performance of the full detector, part detectors, and reasoning method on the INRIA dataset.

numbers depend on the number of hypotheses and the frequency of occlusions. On the average, through

experiments, we have found that the number of iterations, e.g. on over 200 images of the set A, is about

2.1 and each 384×288 frame can be processed in approximately 0.25 seconds for the occlusion reasoning.

6.3. Comparison

To verify the robustness of the reasoning algorithm, we compared the human detector with and

without using the reasoning method. The comparison is shown in Figure 11. The log-average miss rate

(LAMR) proposed in [40] was used as the evaluation measure. The LAMR of a method is computed

by averaging the miss rates at different FPPI rates in the range from 10−1 to 100. A low value of the

LAMR indicates better performing detection method. Through experiments, we have found that, the

reasoning method could improve the detection performance. For example, the LAMR of the detector

without reasoning was about 0.46 while it was 0.32 by using the reasoning method (i.e. a reduction by

approximately 14%).

The proposed reasoning algorithm was also compared with other algorithms. In particular, the rea-

soning methods proposed by Wu and Nevatia in [4, 28], by Lin et al. in [5, 29] (and then used by

Beleznai and Bischof in [30]) and by Huang and Nevatia [31] were selected for comparison. In [4, 28], all

detection responses were hypothesized initially, and the inferencing process was conducted by removing

false candidates. On the other hand, Lin et al. [5, 29] started with an empty set of hypotheses and

extended this set by adding true candidates. Essentially, in this method, deciding whether a hypothesis

is true positive or false alarm is based only on the image likelihood of the hypothesis itself. In [31],

each hypothesis can be added and removed more than one time and the search process, called ”dynamic

16



Figure 11: Comparison with full detector and Lin’s method [29].

search” to compare with ”static search” in [4, 28], is terminated when there is no any improvement gained

by adding/removing hypotheses. To obtain a fair comparison, we used the same human detectors for all

competitive methods. In addition, for those methods, the joint likelihood of hypotheses and experimental

parameters were computed similarly to [5]. Readers are referred to [5] for more details1.

Figure 11 shows the comparison of all methods. As can be seen from this figure, in general, there

was a slight difference in the detection performance between the works in [4, 28] and in [5, 29] in the

range of [10−1, 100] of FPPI. The same situation can also be found for the method of Huang and Nevatia

[31] though it was claimed in their work that ”dynamic search” outperformed ”static search” in [4,

28]. However, experimental results have shown that our method obtained better detection performance

compared with all of those methods. In particular, the LAMR of our method was 0.32 while it was 0.35

for Wu’s method, 0.39 for Lin’s method, and 0.36 for Huang’s method.

7. Discussion and Conclusion

An issue of the proposed reasoning algorithm is the accuracy of the approximate solution. Theoret-

ically, the accuracy of variational approximation can be considered as the difference log p(O) − J(Q) or

the tightness of the variational marginals {Qk(hk)} on the true posterior marginals p(hk|O). However, as

shown in [35], these two criteria do not always agree with each other and this depends on the structure of

1For the method in [4, 28], since parts of a human hypothesis were detected simultaneously, matching detection responses
to hypotheses was not computed and thus ”false negatives” were not used in calculating the joint likelihood.
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Figure 12: Illustration of occlusion reasoning on the INRIA dataset. For each pair of images, the left image shows the initial
detection and the right image shows the final detection result after reasoning.
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the graphical model. In general, graphical models with weak dependencies between nodes are expected

to have good approximate solution compared with models with strong dependencies between nodes. In

the problem of inter-object occlusion reasoning, we have found that, the existence of a hypothesis affects

only its nearby hypotheses. Furthermore, we also have observed that, in practice, a human object, to be

identified, is often occluded by few (e.g. no more than three) other human objects. Thus, we could ex-

pect that a good approximation can be obtained by the variational mean field method. This explains the

success of the proposed method in inter-object occlusion reasoning. There also exit some other inference

algorithms for graphical models, e.g. loopy belief propagation (LBP) used in Conditional Random Field.

Those methods will be investigated in our future work.

Recently, a number of part-based human detectors, in which locations of parts are also indicated, have

been developed, e.g. [41]. The graphical model and variational mean field method could be applied to

model not only the interaction between human objects but also the spatial relationship between parts of a

human object. The advantage of this approach is its extension in solving self-occlusion through inferring

the human poses.

In all, this paper proposes an inter-object occlusion reasoning algorithm based on variational mean

field for detecting multiple partially occluded humans. The proposed algorithm can accommodate various

human detectors using different features, object representations and classifiers. The inter-object occlusion

is modelled as a graph and the occlusion reasoning is formulated as estimation of a marginal probability

of the observed data in a Bayesian network. The reasoning algorithm was evaluated on the different

datasets and experimental results show the robustness and efficiency of the proposed method not only in

detecting humans under severe occlusion but also in the cases where there is no occlusion.
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