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9.1 Modeling the Positioning of Trichomes
on the Leaves of Plants

Abstract. A continuing and future challenge in plant science is the “genetics of geom-
etry” [3]: the recovery of information about the dynamics of the genetic mechanisms
by which plants control the development of various features of their geometry. Some
representative publications dealing with such issues include: (i) the modeling of plant
architecture using L-systems and rewriting [18], (ii) the genetic control of floral devel-
opment [4,10], and (iii) the positioning of the trichomes (hairs) on the leaves of plants
such as Arabidopsis thaliana [23, 25]. It is the positioning of trichomes which is ex-
amined in this chapter. The use of reaction-diffusion models is compared with cellular
signaling and switching models. It is concluded that, in performing simulations to un-
derstand the dynamics of the mechanisms that control pattern formation in plants, it
is necessary to work with a cellular model of the plant organ being studied in order to
improve on current understanding about how the genetics controls the signaling and
switching between cells to produce the observed patterns.
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9.1.1 Introduction

The importance of plants (and insects) in the study of the genetics and biology of
all organisms relates to the fact that information recovered about the developmental
biology of plants can be utilized, through bioinformatics, to improve on current under-
standing about the developmental biology of non-plants. This is a direct consequence
of the revolution in molecular biology that has followed the publication of the double
helix interpretation of heredity [33], and the consequential technological revolution
associated with full genome sequencing of key organisms (e.g., Arabidopsis), with
the discovery and exploitation of gene silencing, and with the fact, being exploited as
an essential aspect of bioinformatics, that genes in different organisms with similar
DNA sequences are often associated with similar phenotypes and roles. In addition,
experimentation with plants is less expensive and ethically more acceptable than with
mammals.
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216 9 The Genetics of “Geometry”

A key example is the genetics of developmental biology. As detailed in the pub-
lished literature, there has been a two-way street between the genetic studies of the
developmental biology of plants and fruit flies [2].

This leads naturally to the study of pattern formation. Biologically, it is important
from both theoretical and practical perspectives. For the breeding of plants, there is a
need to know which genes control the geometry of plants so that new varieties allow
for ease of harvesting and protection against wind damage. Theoretically, any research
which yields an enhanced understanding of pattern formation contributes to improving
the science of genetics.

An early illustration of the fact that complex biological developmental processes
can be simulated using simple algorithms was given by Young [38] in his modeling
of the growth of the pea plant. This is consistent with the Wolpert hypothesis [37] that

“It is clear that the egg contains not a description of the adult, but a pro-
gram for making it, and this program may be simpler than the description.
Relatively simple cellular forces can give rise to complex changes in form;
it seems simpler to specify how to make complex shapes than to describe
them.”

The relevance and importance of this observation, especially from a mathematical
modeling perspective, is reflected in the fact that any system which is robust can
be modeled by the simple model which captures the essence of the phenomenon in-
volved [5]. In addition, the recent research on the crocheting of structures with hyper-
bolic surfaces [30], of which corals are real-world examples, represents independent
validation for the Wolpert hypothesis.

The importance of Young’s contribution is that he argued and showed that an ap-
propriate algorithm for the growth of the pea must not only be simple but also be able
to generate, with small changes in key parameters, the known mutants. In fact, it rep-
resents a generic comment about modeling developmental processes in biology and,
indirectly, about modeling pattern formation.

Consequently, in order to illustrate the role of mathematics in the life sciences, the
motivation for this paper is an examination of how to construct simple models for the
positioning of trichomes on the leaves of plants. Various models have been proposed
including

(a) activator-inhibitor reaction-diffusion (AIRD) PDEs models [13],

(b) cellular signaling and switching models [7, 25],

(c) phenomenological genetic models—logical descriptions of the gene activity in
terms of diagrammatic models, and

(d) systems of ordinary differential equations which model the known genetics and
a biological interpretation of the roles of the genes [6].
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9.1 Modeling the Positioning of Trichomes on the Leaves of Plants 217

It is known that, in the positioning of trichomes, not only are there mutants with no
or sparsely irregularly spaced trichomes but also ones with random clumping of the
trichomes. Consequently, a good test of a model of a developmental process is whether
that model can, with a simple change in parameterization, simulate both the wild type
and known mutants such as the clumping. Here, the clumping mutant test is chosen as
it highlights a clear difference between the various models and gives strong support to
the use of the cellular signaling and switching ones.

Comment. As already mentioned, there is an extensive literature which discusses
trichome positioning on Arabidopsis leaves where theoretical modeling is matched
with experimental details which include the assumed activity of genes known to be
involved. The emphasis ranges from the philosophical and experimental to the highly
technical. The challenge is the identification of a framework within which logical con-
clusions can be made about how the genes orchestrate the resulting pattern. It is more
than simply saying that such a system can generate patterns and is therefore the mech-
anism involved. In fact, the situation is sometimes confused because of the failure to
draw a clear distinction between the simulation of pattern formation by a complex
mathematical model, for which there is no natural biological mechanistic interpre-
tation, and the formation of simple combinatorial algorithms (such as Young’s pea
growth model) that have a biological mechanistic structure. Digiuni et al. [6] acknowl-
edge the importance of modeling the essential biological mechanism. They propose a
coupled theoretical/experimental approach based on an ordinary differential equation
model of the time evolution of key genes.

The chapter has been organized in the following manner. The role and limitations of
AIRD PDEs in modeling the positioning of the trichomes is examined in Section 9.1.2.
Here, their failure in being able, with a small change in parameterization, to gener-
ate clumping mutants is explained. These limitations represent motivation for cellular
signaling and switching models. The hexagonal recursion implementation [25] is in-
troduced and discussed in Section 9.1.3. Using simulations, it is shown how it can
generate, with small changes in the control parameters, the wild type and various mu-
tants including the clumping ones. It is stressed that, for the structure of an algorithm
of a developmental process, a minimum requirement must be that mutants can be gen-
erated by changing the key parameters that control the development of the wild type.
Examples include the turning ON or OFF of a parameter to simulate the ON-OFF
(or OFF-ON) switching of a key gene, or, as in Young’s model of pea development,
the accumulating of a signaling molecule (hormone) which controls change from one
state to another. The chapter concludes in Section 9.1.4 with a discussion about cellular
modeling as a basis for the identification of the dynamics of mechanisms controlling
various aspects of pattern formation in plants.
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218 9 The Genetics of “Geometry”

9.1.2 Activator-inhibitor Reaction-diffusion Modeling
of the Trichome Positioning

For the modeling of the positioning of trichomes (hairs) on the leaves of plants (in par-
ticular Arabidopsis thaliana), activator-inhibitor reaction-diffusion modeling has been
proposed as a framework within which to interpret the known genetics [15, 26, 27].
The motivation was the publication by Gierer and Meinhardt [9] of their activator-
inhibitor mechanism for biological pattern formation, since this mechanism directly
yields a structure in which to interpret the formation of patterns, such as the position-
ing of trichomes, in terms of cellular and molecular processes. Their emphasis was
on explaining how an activator-inhibitor mechanism could be the essential control of
biological development and the associated pattern formation. Meinhardt subsequently
explained how this concept could be applied to the modeling of specific situations [21]
including pattern formation on shells [20] and in plants [19]. The application of the
Gierer and Meinhardt activator-inhibitor interpretation to the positioning of trichomes
from a genetic perspective followed [13, 15, 26, 27] once the developing molecular
biology technology allowed for the easier identification of the genes controlling the
differences between the wild type and mutants.

Motivation for the formulation of activator-inhibitor mechanisms has been the sem-
inal publication of Turing [32] of a mathematical theory of chemical morphogenesis.
Turing’s conceptualization was profound because of its essential simplicity. His ansatz
was that if, in the absence of diffusion, the reaction dynamics was such that its solution
tended to a linearly stable uniform steady equilibrium, then, under appropriate con-
ditions, the full reaction-diffusion system would generate spatially inhomogeneous
patterns if the diffusion was destabilizing. The importance of Turing’s 1952 paper,
published the year before Watson and Crick’s double helix paper [33], is that condi-
tions were derived for which such destabilization would occur. The fact that such a
process could generate patterns with a wide range of complexity which agreed with
observed patterns in the physical and biological sciences became the stimulus for the
subsequent explosion in reaction-diffusion research from both a practical [22] and the-
oretical perspective [12].

Remark. With respect to the above comments, it is appropriate to mention that
reaction-diffusion partial differential equations first arose in the study of biological
invasion and the nature of the dynamics being modeled there is quite different from
that resulting from Turing’s chemical morphogenesis theory. Biological invasion has
an interesting history starting with the paper by Fisher in 1937 [8] and subsequently
followed with different research contributions by Kolmogorov, Weinberger and oth-
ers [1, 16, 17, 29,31,34].

Comment. The extent to which order and localization is an essential feature of the
patterns that can be generated by reaction-diffusion systems has been examined from
a number of independent perspectives. Lacalli [14] compared the patterns of cell wall
growth in unicellular algae with a two morphogen reaction-diffusion model (Tyson’s
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9.1 Modeling the Positioning of Trichomes on the Leaves of Plants 219

Brusselator) and concluded that the simulation of the growth could be viewed as a
reaction-diffusion process. Holloway and Harrison [11] used the Clark and Evans R
parameter and the radial distribution function g.t/ to examine and characterize lo-
calization and order in reaction-diffusion patterns. Their discussion included a com-
parison of reaction-diffusion models with the inhibiting field concept of Wigglesworth
[35]. Important as such publications are, they do not however examine mathematically
the essential framework within which reaction-diffusion systems generate patterns and
the limitations biologically that are thereby imposed.

As explained in Murray [22, Chapter 14], for a general two component system,
which includes the Gierer and Meinhardt [9] activator-inhibitory mechanism as a spe-
cial case, the essence of the associated mathematics involves the following steps:

(i) The Two-Component Reaction-Diffusion System.
On some two dimensional region V , the general non-dimensional form of a two-
component reaction-diffusion system is given by

ut D �f .u; v/C r2u;

vt D �g.u; v/C dr2v;

u D u.x; y; t/;

v D v.x; y; t/;

ut D du=dt;

vt D dv=dt;
(9.1)

with zero flow conditions on the boundary @V and given initial conditions on V

.n:r/
�
u

v

�
D 0; u.x; y; 0/; v.x; y; 0/ given;

where d denotes the ratio of the diffusion coefficients and � can be given various
interpretations including being the ratio of the relative strengths of the reaction
and the diffusion.

(ii) The Reaction Terms.
Depending on the application, the non-dimensional reaction terms f .u; v/ and
g.u; v/ will take different forms. In terms of studied simple two-component sys-
tems, the applications include Schnakenberg’s [28] two-species, chemical plau-
sible, tri-molecular reaction, Thomas’ real empirical substrate-inhibition system
(Murray [22, Chapter 5]) and the activator-inhibitor mechanism of Gierer and
Meinhardt [9]. That for Gierer and Meinhardt takes the form

f .u; v/ D a � buC u2

v
; g.u; v/ D u2 � v; a; b constants:

Its special dynamics is the result of the interplay between the linear and quadratic
terms driven by the autocatalytic term u2=v. The other mentioned applications
have a generically similar structure and thereby can be given an activator-inhibitor
interpretation in terms of an interplay between linear and quadratic terms driven
by an activator.

©
 F

ur
si

ko
v,

 A
nd

re
i V

.; 
K

ol
ok

ol
ts

ov
, V

as
si

li 
N

.; 
K

uk
us

h,
 A

le
xa

nd
er

; A
nd

er
ss

en
, R

ob
er

t; 
A

nt
on

io
uk

, A
le

xa
nd

ra
 V

.; 
A

nt
on

io
uk

, A
le

xa
nd

ra
 V

.; 
B

ou
vi

lle
, A

nd
re

; B
yr

ne
, H

el
en

 M
.; 

C
he

pu
rn

y,
 M

yk
ol

a;
 E

dw
ar

ds
, M

au
re

en
 P

.; 
K

om
ar

ov
a,

 N
at

al
ia

 L
.; 

K
ov

al
ev

sk
y,

 A
le

xa
nd

er
 A

.; 
K

ov
ga

n,
 L

in
a;

 L
ás

zl
ó,

 J
án

os
 F

.; 
L

ik
ht

ar
ov

, I
lly

a;
 M

ar
ci

ni
ak

-C
zo

ch
ra

, A
nn

a;
 M

as
iu

k,
 S

er
gi

i; 
M

el
’n

yk
, T

ar
as

 A
.; 

Pe
re

ve
rz

ye
v 

Jr
., 

Se
rg

iy
; P

op
ov

, A
nd

re
y 

V
.; 

Sh
kl

ya
r,

 S
er

gi
y;

 S
te

pa
ne

nk
o,

 V
ita

ly
 A

.; 
Sw

ig
on

, D
av

id
; T

ar
kh

an
ov

, N
ik

ol
ai

; M
el

ni
k,

 R
od

er
ic

k 
V

. N
.; 

M
el

ni
k,

 R
od

er
ic

k 
V

. N
., 

D
ec

 1
9,

 2
01

2,
 M

at
he

m
at

ic
s 

an
d 

L
if

e 
Sc

ie
nc

es
D

e 
G

ru
yt

er
, B

er
lin

, I
SB

N
: 9

78
31

10
28

85
37



220 9 The Genetics of “Geometry”

(iii) Linear Stability of Steady State.
The pure reaction kinetics takes the following autonomous form (because no ex-
plicit spatial variation is involved in the definition of the reaction terms)

ut D �f .u; v/; vt D �g.u; v/: (9.2)

Linearization of this equation about the steady state solution .u0; v0/ (i.e., the
solution of the steady state equations f .u; v/ D 0 and g.u; v/ D 0) yields

wt D �Aw ; A D
�
fu fv

gu gv

�
.u0;v0/

; A 	 stability matrix: (9.3)

A standard analysis (cf. Murray [22], Section 14.3), which seeks the conditions
for which

w 	 exp .�t/

yields the following conditions on � which guarantee linear stability (i.e., Re�
< 0)

trace.A/ D fu C gv < 0; determinant.A/ D fugv � gufv > 0: (9.4)

(iv) Destabilizing Diffusion.
On returning to the full reaction-diffusion system of equations (9.1), it is now nec-
essary to perform a linear stability analysis of these equations about the steady
state solution of this system. The details, not unexpectedly, are involved. How-
ever, in essence, it is now not only necessary to satisfy the condition (9.4) but
also the conditions that arise in the stability analysis of the full system. Within
the resulting set of constraints, the possibility occurs that instability can occur
for just one of the wave numbers k that defines the full solution of the linearized
reaction-diffusion system. This leads naturally to the conclusion that a discrete
pattern forms with the discreteness controlled by the relevant value of k.

For the reaction-diffusion modeling of pattern formation in plants, the connection to
the associated biology and genetics is orchestrated via the assumption that the molec-
ular dynamics controlling the pattern formation is an activator-inhibitor mechanism.
This then imposes the constraint that the known genes involved must be interpreted
from this perspective. In this mechanism, the activator tries to find a point in the pat-
tern domain where it can locally dominate the inhibitor. At such a point, the pattern
feature (e.g., trichome) will arise. The local nature of the dominance of the activator
does not allow more than one activator to be present near the pattern feature activation
point, and this in turn limits clumping effects.

Though such modeling is able to reproduce some of the data for trichome position-
ing, it has a number of drawbacks:

(i) The pattern arises as an instability in the reaction-diffusion process which is dif-
ficult to explain biologically.
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(ii) The control of its parameterization to produce mutants is problematic and it is
hard to interpret them biologically.

(iii) It is challenged to reproduce the clumping mutant.

(iv) The reaction-diffusion equations model an outward moving wave which is not
consistent with the assumption that the fate of the leaf is decided at the meristem.

An alternative modeling concept, which captures cell communication and allows
clumping effects, is proposed in the next section.

9.1.3 Hexagonal Recursion

The following discussion of hexagonal recursion and its application to modeling the
positioning of trichomes on the leaves of plants is based on the earlier deliberations
of [7].

The basic assumption on which that modeling was based is that the fate of the cells
on the leaf of a plant is determined as it grows out of the meristem as illustrated in Fig-
ure 9.1 (a). The structure of the epidermal surface of a leaf is assumed to take the form
of a hexagonal array. This is in keeping with the results in Table 1 of [15], where the
average number of sides of the cells is approximately six. In general, plant cells are not
hexagonal, however, the cells do tend to have a structure that is topologically similar
to a hexagonal array. For example, a running rectangular brick array is topologically
equivalent to a hexagonal array.

It is assumed that the concentration of the signal controlling whether a cell becomes
a trichome accumulates according to the additive rule of Figure 9.1 (b). In the sequel,
this formula will be referred to as the “hexagonal recursion”. The numerical values
generated by this recursion will be referred to as “hexagonal concentration values”
(HCV).

For this model, a number of important biological constraints are automatically taken
into account:

(i) The model is cellular, and not some macroscopic model that has smoothed out
the cellular details.

(ii) The fate of a cell is determined by its neighbors [24].

(iii) As implied in various papers by Wolpert such as [36], any cellular model must
respect the known positional information behavior in the biological development
of that part of an organism that is being modeled.

(iv) Because of the directional nature of the hexagonal recursion, in defining how the
concentration of the key signal accumulates, the model automatically involves a
polar transport mechanism.

(v) Trichomes do not form in boundary cells of an Arabidopsis leaf [26].
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Meristem

C2

C1 C3

C*

C* = wlC1 + wcC2 + wrC3(a) (b)

Figure 9.1. (a) A hexagonal cell approximation of the epidermal cells on the upper side of
a leaf. The top hexagonal cell corresponds to the tip of the leaf. The red line represents the
meristem out of which the leaf is growing. Further details can be found in [25]. (b) The local-
ized additive relationship that models how the concentration of the signal in the cells above
the meristem determine its concentration in the cells forming at the meristem.

In Section 9.1.3.1, the hexagonal recursion is defined. It must be robust in that small
changes in the value of the defining parameters give only small changes in the patterns
generated. This does not rule out the fact that large changes in the parameter will
give large changes in the patterns. In Section 9.1.3.2, patterns are generated which are
of wild type. In Section 9.1.3.3, by varying a particular parameter in the hexagonal
recursion, an extensive range of synthetic mutants is generated.

9.1.3.1 The Hexagonal Recursion Rule

The hexagonal recursion rule for determining the HCV of a cell and the consequential
positioning of trichomes is given by:

R1. Tiles located on the periphery of the leaf have the “boundary” HCV P0.

R2. The leaf starts growing from the three tip hexagons in the manner indicated in
Figure 9.1 (b). The HCV C � of the cell forming at the meristem is determined by

C � D wlC1 CwcC2 C wrC3; wl � 0;wc � 0;wr � 0; (9.5)

where wl Cwc Cwr � 1, which guarantees that, until reset, the HCV increases
in the cell(s) forming at the meristem.

R3. This process continues progressively for each triple of hexagonal cells above the
meristem as the leaf step-by-step grows out of the meristem.

R4. With respect to a specified threshold T1 � P0, if a cell, forming at the meristem
as indicated in Figure 9.1 (b), has HCV C � � T1, then the fate of that cell is set
to be a trichome.

R5. With respect to a specified threshold T2 � T1, if, in a triple of hexagonal cells
above the one that they are involved in forming at the meristem, at least one of
them has HCV greater than or equal to T2, then the HCV C � is reset to be P0.
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9.1 Modeling the Positioning of Trichomes on the Leaves of Plants 223

Two trivial asymptotic situations can arise from this hexagonal recursion. When
the first threshold value T1 D P0, the boundary value, and the second threshold value
T2 ! 1, the ON threshold is always met and the OFF threshold is never met, and so
trichomes are produced in every cell, including the boundary. The other trivial case
arises when the threshold value T1 is so high that it is never met and so no trichomes
are ever activated.

9.1.3.2 Wild Type Patterns

The recursion rule is used with the OFF threshold value T2 equal to the ON threshold
value T1. This means that as soon as a cell reaches the threshold value to produce a
trichome, any adjacent cells below have their value reset to the initial value P0, and
the possibility of a trichome is “switched off”.

In Figures 9.2 and 9.3, the HCVs have been determined according to the hexagonal
recursion. The colour of the cell represents the corresponding HCV with white corre-

T1 = 20(a) T1 = 100(b) T1 = 500(c)

Figure 9.2. Final distributions generated by the hexagonal recursion with T1 D T2 and (a)
T1 D 20, (b) T1 D 100, (c) T1 D 500, with weights wl D 4, wc D 2, wr D 1 and boundary
value P0 D 1. (Note that the shading changes as the value of T1 changes.)

T1 = 10(a) T1 = 50(b) T1 = 500(c)

Figure 9.3. Final distributions generated by the hexagonal recursion with T1 D T2 and (a)
T1 D 10, (b) T1 D 50, (c) T1 D 500, with weights wl D 4, wc D 1, wr D 0 and boundary
value P0 D 1.
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224 9 The Genetics of “Geometry”

sponding to zero and black to the maximal value one less than the threshold value T1

(i.e. T1 � 1). The cells which become trichomes where the HCV matches or exceeds
the threshold value T1 are marked green.

It can be shown that if symmetric weights (i.e., wl D wr ) are chosen, symmetric
patterns will be produced. These types of patterns are not presented and all cases il-
lustrated have non-symmetric weights wl ¤ wr . Even so, artifactual, symmetric-like
patterns (e.g., Figure 9.3 (a)) can form. It is also possible to generate diagonal patterns
(e.g., Figure 9.2 (b) and 9.3 (b)).

In Figure 9.2, the value of the switching thresholds T1.D T2/ are increased with
all other parameter values fixed. This leads to a delay in the appearance of cells pro-
ducing trichomes. Increasing the value of T1 (and T2) will lead to the first trichome
production located further down the leaf. This pattern is also observed in Figure 9.3.
From Figures 9.2 and 9.3, it can also been seen that as the threshold value T1.D T2/

increases, the number of cells producing trichomes decreases and the pattern becomes
more sparse. Further increases in T1 will result in less trichome production, with the
limiting case of no trichome production occurring as T1 ! 1.

9.1.3.3 Mutant Patterns

As is clear from the discussion in Section 9.1.3.2 there is no possibility of generating
clumps of trichomes when T2 D T1, since as soon as a cell reaches the threshold value
to produce a trichome, any adjacent cells below have their value reset to the initial
value P0, and the possibility of a trichome is “switched off”. Allowing the HCV C �
in a cell to have neighboring cells that have produced a trichome but have not reached
or exceeded the second, higher threshold will allow neighboring cells to become tri-
chomes. This establishes that two distinct thresholds are required to produce clumping
and, consequently, parameter choices with T2 > T1 are required to generate mutants.

Figures 9.4 and 9.5 both have wl ¤ wr and the resulting patterns are generally not
symmetric. It is obvious that clumping of trichomes is possible in the hexagonal re-

T2 = 20(a) T2 = 100(b) T2 = 300(c)

Figure 9.4. Final distributions generated by the hexagonal recursion with T1 D 10 and (a)
T2 D 20, (b) T2 D 100, (c) T2 D 300, with weights wl D 4, wc D 2, wr D 1 and boundary
value P0 D 1.
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T2 = 100(a) T2 = 400(b) T2 = 800(c)

Figure 9.5. Final distributions generated by the hexagonal recursion with T1 D 60 and (a)
T2 D 100, (b) T2 D 400, (c) T2 D 800, with weightswl D 4, wc D 1, wr D 0 and boundary
value P0 D 1.

cursion model when T2 > T1. Holding the threshold value T1 fixed and increasing the
value of T2 leads to a thickening of the groups of cells producing trichomes. Increas-
ing the threshold value T1 will result in the initial production of trichomes occurring
further down the leaf. Setting the right-hand weightwr D 0 leads to a trichome pattern
which is pushed toward the right-hand side of the leaf.

9.1.4 Conclusions

As conjectured in Pereverzyev and Anderssen [25], having a notional model of the
type formulated above, yields a new framework for performing the biocombinatorial
sorting of the known genes to be involved into biomechanistic categories. The tra-
ditional approach, as exemplified in Digiuni et al. [6], is basically biological as the
modus operandi is driven by comparative genetics based on differences in pheno-
type between mutants and wild type. Appealing to a complex mathematics differential
equation model is of little assistance unless that model has or can be related explic-
itly to the genetic/biological processes occurring. In addition, the formulation of a
differential equation model that simulates the observed biological dynamics, though
interesting and informative, is not a proof of or framework for the analysis of the
biomechanistic dynamics occurring.

An alternative strategy, which is being proposed here, is the formulation of simple
models, defined in terms of variables which can be given specific biological mean-
ing (e.g., the concentrations of key hormones), which yield a mechanistic framework
within which the comparative genetics is performed. As already mentioned, the earlier
pea leaf modeling of Young [38] represents an excellent model system of the process
being proposed. A notional protocol for doing this in the context of the positioning
of trichomes on the leaves of plants can be found in Section 5 of Pereverzyev and
Anderssen [25].

©
 F

ur
si

ko
v,

 A
nd

re
i V

.; 
K

ol
ok

ol
ts

ov
, V

as
si

li 
N

.; 
K

uk
us

h,
 A

le
xa

nd
er

; A
nd

er
ss

en
, R

ob
er

t; 
A

nt
on

io
uk

, A
le

xa
nd

ra
 V

.; 
A

nt
on

io
uk

, A
le

xa
nd

ra
 V

.; 
B

ou
vi

lle
, A

nd
re

; B
yr

ne
, H

el
en

 M
.; 

C
he

pu
rn

y,
 M

yk
ol

a;
 E

dw
ar

ds
, M

au
re

en
 P

.; 
K

om
ar

ov
a,

 N
at

al
ia

 L
.; 

K
ov

al
ev

sk
y,

 A
le

xa
nd

er
 A

.; 
K

ov
ga

n,
 L

in
a;

 L
ás

zl
ó,

 J
án

os
 F

.; 
L

ik
ht

ar
ov

, I
lly

a;
 M

ar
ci

ni
ak

-C
zo

ch
ra

, A
nn

a;
 M

as
iu

k,
 S

er
gi

i; 
M

el
’n

yk
, T

ar
as

 A
.; 

Pe
re

ve
rz

ye
v 

Jr
., 

Se
rg

iy
; P

op
ov

, A
nd

re
y 

V
.; 

Sh
kl

ya
r,

 S
er

gi
y;

 S
te

pa
ne

nk
o,

 V
ita

ly
 A

.; 
Sw

ig
on

, D
av

id
; T

ar
kh

an
ov

, N
ik

ol
ai

; M
el

ni
k,

 R
od

er
ic

k 
V

. N
.; 

M
el

ni
k,

 R
od

er
ic

k 
V

. N
., 

D
ec

 1
9,

 2
01

2,
 M

at
he

m
at

ic
s 

an
d 

L
if

e 
Sc

ie
nc

es
D

e 
G

ru
yt

er
, B

er
lin

, I
SB

N
: 9

78
31

10
28

85
37



226 9 The Genetics of “Geometry”

Acknowledgments. The authors are grateful to the referees whose comments have as-
sisted in the improvement of this chapter. Publications by the authors related to earlier
versions of this research have been acknowledged in the text. This chapter represents
an extension of and further development of their ideas in their MODSIM 2011 Con-
ference paper entitled “Modelling pattern formation in plants”.

Bibliography

[1] D. G. Aronson, H. F. Weinberger, Multidimensional non-linear diffusion arising in
population-genetics, Advances in Math. 30 (1978), 33–76.

[2] E. Coen, The Art of Genes, Oxford University Press, Oxford, 1999.

[3] E. Coen, A. G. Rolland-Lagan, M. Matthews, J. A. Bangham, P. Prusinkiewicz, The
genetics of geometry, PNAS, 101 (2004), 4728–4735.

[4] M.-L. Cui, L. Copsey, A. A. Green, J. A. Bangham, E. Coen, Quantitative control of
organ shape by combinatorial gene activity, PLOS Bio. 8 (2010), e1000538.

[5] F. R. de Hoog, Why are simple models often appropriate in industrial mathematics?
in: 18th World IMACS/MODSIM Congress, Cairns, July 13-17, Proceedings (2009),
23–36.

[6] S. Digiuni, S. Schellmann, F. Geier, B. Greese, M. Pesch, K. Wester, B. Dartan,
V. Mach, B. P. Srinivas, J. Timmer, C. Fleck, M. Hulskamp, A competitive complex
formation mechanism underlies trichome patterning on Arabidopsis leaves, Mol. Sys-
tems Bio. 4, Article Number 217 (2008).

[7] M. P. Edwards, S. Pereverzyev Jr., R. S. Anderssen, Modelling pattern formation in
plants, in: MODSIM 2011 Congress, Perth, December12-16, Proceedings (2011), 378–
384.

[8] R. A. Fisher, The wave of advance of advantageous genes, Annals Eugenics 7 (1937),
355–369.

[9] A. Gierer, H. Meinhardt, Theory of biological pattern formation, Kybernetik 12 (1972),
30–39.

[10] A. A. Green, R. Kennaway, A. I. Hanna, J. A. Bangham, E. Coen, Genetic control of
organ shape and tissue polarity, PLOS Biology 8, Article Number el000537 (2010).

[11] D. M. Holloway, L. G. Harrison, Order and localization in reaction-diffusion pattern,
Physica A - Stat. Mech. and Appl. 222 (1995), 210–233.

[12] R. B. Hoyle, Pattern Formation: An Introduction to Methods, Cambridge University
Press, Cambridge, 2006.

[13] M. Hulskamp, Plant trichomes: A model for cell differentiation, Nature Rev. Molecular
Cell Biol. 5 (2004), 471–480.

[14] T. C. Lacalli, Dissipative structures and morphogenetic pattern in unicellular algae,
Phil. Trans. Roy. Soc. London – B. Bio. Sciences 294 (1981), 547–588.

[15] J. C. Larkin, N. Young, M. Prigge, M. D. Marks, The control of trichome spacing and
number in Arabidopsis, Development 122 (1996), 997–1005.

©
 F

ur
si

ko
v,

 A
nd

re
i V

.; 
K

ol
ok

ol
ts

ov
, V

as
si

li 
N

.; 
K

uk
us

h,
 A

le
xa

nd
er

; A
nd

er
ss

en
, R

ob
er

t; 
A

nt
on

io
uk

, A
le

xa
nd

ra
 V

.; 
A

nt
on

io
uk

, A
le

xa
nd

ra
 V

.; 
B

ou
vi

lle
, A

nd
re

; B
yr

ne
, H

el
en

 M
.; 

C
he

pu
rn

y,
 M

yk
ol

a;
 E

dw
ar

ds
, M

au
re

en
 P

.; 
K

om
ar

ov
a,

 N
at

al
ia

 L
.; 

K
ov

al
ev

sk
y,

 A
le

xa
nd

er
 A

.; 
K

ov
ga

n,
 L

in
a;

 L
ás

zl
ó,

 J
án

os
 F

.; 
L

ik
ht

ar
ov

, I
lly

a;
 M

ar
ci

ni
ak

-C
zo

ch
ra

, A
nn

a;
 M

as
iu

k,
 S

er
gi

i; 
M

el
’n

yk
, T

ar
as

 A
.; 

Pe
re

ve
rz

ye
v 

Jr
., 

Se
rg

iy
; P

op
ov

, A
nd

re
y 

V
.; 

Sh
kl

ya
r,

 S
er

gi
y;

 S
te

pa
ne

nk
o,

 V
ita

ly
 A

.; 
Sw

ig
on

, D
av

id
; T

ar
kh

an
ov

, N
ik

ol
ai

; M
el

ni
k,

 R
od

er
ic

k 
V

. N
.; 

M
el

ni
k,

 R
od

er
ic

k 
V

. N
., 

D
ec

 1
9,

 2
01

2,
 M

at
he

m
at

ic
s 

an
d 

L
if

e 
Sc

ie
nc

es
D

e 
G

ru
yt

er
, B

er
lin

, I
SB

N
: 9

78
31

10
28

85
37



9.1 Modeling the Positioning of Trichomes on the Leaves of Plants 227

[16] B. T. Li, M. A. Lewis, H. F. Weinberger, Existence of traveling waves for integral re-
cursions with nonmonotone growth functions, J. Math. Biology 58 (2009), 323–338.

[17] B. T. Li, H. F. Weinberger, M. A. Lewis, Spreading speeds as slowest wave speeds for
cooperative systems, Math. Biosci. 196 (2005), 82–98.

[18] A. Lindenmayer, Developmental algorithms for multicellular organisms—Survey of
L-systems, J. Theor. Biology 54 (1975), 3–22.

[19] H. Meinhardt, Models of pattern formation and their application to plant development,
in: P. W. Barlow and D. J. Carr (eds.), Positional Control in Plant Development Chap-
ter 1, Cambridge University Press, Cambridge, (1984), 1–32.

[20] H. Meinhardt, M. Klingler, A model for pattern-formation on the shells of mollusks, J.
Theor. Bio. 126 (1987), 63–89.

[21] H. Meinhardt, Models of biological pattern formation: From elementary steps to the
organization of embryonic axes, in: S. Schnell, P. K. Maini, S. A. Newman, T. J. New-
man, (eds.), Multiscale Modelling of Developmental Systems, Current Topics in De-
velopmental Biology 81, pp. 1–63, 2008, 9th Biocomplexity Workshop, Bloomington,
IN, MAY, 2006.

[22] J. D. Murray, Mathematical Biology, Springer, Berlin, 1989.

[23] C. M. O’Keefe, S. Pereverzyev Jr., R. S. Anderssen, The algebra of hexagonal numbers,
The Mathematical Scientist 36 (2011), 1–9.

[24] R. I. Pennell, Q. C. B. Cronk, S. Forsberg, C. Stohr, L. Snogerup, P. Kjellbom, P. F.
McCrae, Cell-Ccntex signalling, Phil. Trans Roy. Soc. London, B-Biological Sci. 350
(1995), 87–93.

[25] S. Pereverzyev Jr., R. S. Anderssen, Recursive algebraic modelling of gene signalling,
communication and switching, RICAM Report 24 (2008), 17.

[26] S. Schellmann, A. Schnittger, V. Kirik, T. Wada, K. Okada, A. Beermann, J. Thum-
fahrt, G. Jurgens, M. Hulskamp, TRIPTYCHON and CAPRICE mediate lateral inhi-
bition during trichome and root hair patterning in Arabidopsis, EMBO J. 21 (2002),
5036–5046.

[27] B. Scheres, Plant patterning: TRY to inhibit your neighbors, Current Bio. 12 (2002),
R804–R806.

[28] J. Schnakenberg, Simple chemical-reaction systems with limit-cycle behavior, J.
Theor. Biol. 81 (1979), 389–400.

[29] N. Shigesada, K. Kawasaki, Biological Invasion: Theory and Practice, Oxford Univer-
sity Press, Oxford, 1997.

[30] D. Taimina, Crocheting Adventures with Hyperbolic Planes, A. K. Peters Ltd., Welles-
ley, MA, 2009.

[31] H. R. Thieme, Density-dependent regulation of spatially distributed populations and
their asymptotic speed of spread, J. Math. Biology 8 (1979), 173–187.

[32] A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. London Ser.
B-Biol. Sci. 237 (1952), 37–72.

©
 F

ur
si

ko
v,

 A
nd

re
i V

.; 
K

ol
ok

ol
ts

ov
, V

as
si

li 
N

.; 
K

uk
us

h,
 A

le
xa

nd
er

; A
nd

er
ss

en
, R

ob
er

t; 
A

nt
on

io
uk

, A
le

xa
nd

ra
 V

.; 
A

nt
on

io
uk

, A
le

xa
nd

ra
 V

.; 
B

ou
vi

lle
, A

nd
re

; B
yr

ne
, H

el
en

 M
.; 

C
he

pu
rn

y,
 M

yk
ol

a;
 E

dw
ar

ds
, M

au
re

en
 P

.; 
K

om
ar

ov
a,

 N
at

al
ia

 L
.; 

K
ov

al
ev

sk
y,

 A
le

xa
nd

er
 A

.; 
K

ov
ga

n,
 L

in
a;

 L
ás

zl
ó,

 J
án

os
 F

.; 
L

ik
ht

ar
ov

, I
lly

a;
 M

ar
ci

ni
ak

-C
zo

ch
ra

, A
nn

a;
 M

as
iu

k,
 S

er
gi

i; 
M

el
’n

yk
, T

ar
as

 A
.; 

Pe
re

ve
rz

ye
v 

Jr
., 

Se
rg

iy
; P

op
ov

, A
nd

re
y 

V
.; 

Sh
kl

ya
r,

 S
er

gi
y;

 S
te

pa
ne

nk
o,

 V
ita

ly
 A

.; 
Sw

ig
on

, D
av

id
; T

ar
kh

an
ov

, N
ik

ol
ai

; M
el

ni
k,

 R
od

er
ic

k 
V

. N
.; 

M
el

ni
k,

 R
od

er
ic

k 
V

. N
., 

D
ec

 1
9,

 2
01

2,
 M

at
he

m
at

ic
s 

an
d 

L
if

e 
Sc

ie
nc

es
D

e 
G

ru
yt

er
, B

er
lin

, I
SB

N
: 9

78
31

10
28

85
37



228 9 The Genetics of “Geometry”

[33] J. D. Watson, F. H. C. Crick, Molecular structure of nucleic acids – A structure for de-
oxyribose nucleic acid, NATURE 171 (1953), 737–738.

[34] H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math.
Anal. 13 (1982), 353–396.

[35] V. B. Wigglesworth, Local and general factors in the development of “pattern” in Rhod-
nius prolixus (hemiptera), J. Exp. Bio. 17 (1940), 180–200.

[36] L. Wolpert, Positional information and spatial pattern of cell differentiation, J. Theo-
retical Biol., 25 (1969), 1–47.

[37] L. Wolpert, The Developmentof Pattern and Form in Animals, Carolina Biology Read-
ers, No. 51, Carolina Biological Supplies, Burlington, NC, (1977), 1–16.

[38] J. P. W. Young, Pea leaf morphogenesis – a simple-model, Annals Botany 52 (1983),
311–316.

Author Information

Robert S. Anderssen, CSIRO Mathematics, Informatics and Statistics, Canberra, Aus-
tralia
E-mail: Bob.Anderssen@csiro.au

Maureen P. Edwards, School of Mathematics and Applied Statistics, University of
Wollongong, Wollongong, Australia
E-mail: maureen@uow.edu.au

Sergiy Pereverzyev Jr., Industrial Mathematics Institute, Johannes Kepler University
Linz, Linz, Austria
E-mail: pereverzyev@indmath.uni-linz.ac.at

©
 F

ur
si

ko
v,

 A
nd

re
i V

.; 
K

ol
ok

ol
ts

ov
, V

as
si

li 
N

.; 
K

uk
us

h,
 A

le
xa

nd
er

; A
nd

er
ss

en
, R

ob
er

t; 
A

nt
on

io
uk

, A
le

xa
nd

ra
 V

.; 
A

nt
on

io
uk

, A
le

xa
nd

ra
 V

.; 
B

ou
vi

lle
, A

nd
re

; B
yr

ne
, H

el
en

 M
.; 

C
he

pu
rn

y,
 M

yk
ol

a;
 E

dw
ar

ds
, M

au
re

en
 P

.; 
K

om
ar

ov
a,

 N
at

al
ia

 L
.; 

K
ov

al
ev

sk
y,

 A
le

xa
nd

er
 A

.; 
K

ov
ga

n,
 L

in
a;

 L
ás

zl
ó,

 J
án

os
 F

.; 
L

ik
ht

ar
ov

, I
lly

a;
 M

ar
ci

ni
ak

-C
zo

ch
ra

, A
nn

a;
 M

as
iu

k,
 S

er
gi

i; 
M

el
’n

yk
, T

ar
as

 A
.; 

Pe
re

ve
rz

ye
v 

Jr
., 

Se
rg

iy
; P

op
ov

, A
nd

re
y 

V
.; 

Sh
kl

ya
r,

 S
er

gi
y;

 S
te

pa
ne

nk
o,

 V
ita

ly
 A

.; 
Sw

ig
on

, D
av

id
; T

ar
kh

an
ov

, N
ik

ol
ai

; M
el

ni
k,

 R
od

er
ic

k 
V

. N
.; 

M
el

ni
k,

 R
od

er
ic

k 
V

. N
., 

D
ec

 1
9,

 2
01

2,
 M

at
he

m
at

ic
s 

an
d 

L
if

e 
Sc

ie
nc

es
D

e 
G

ru
yt

er
, B

er
lin

, I
SB

N
: 9

78
31

10
28

85
37


