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Abstract. The two-dimensional nonlinear physical models and coupled nonlinear systems such
as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied
in many branches of physics. So, finding exact travelling wave solutions of such equations are very
helpful in the theories and numerical studies. In this paper, the Kudryashov method is used to seek
exact travelling wave solutions of such physical models. Further, three-dimensional plots of some
of the solutions are also given to visualize the dynamics of the equations. The results reveal that
the method is a very effective and powerful tool for solving nonlinear partial differential equations
arising in mathematical physics.

Keywords. Exact travelling wave solutions; nonlinear physical models; Kudryashov method.

PACS Nos 02.30.Jr; 02.70.Wz; 04.20.Jb

1. Introduction

The study of nonlinear partial differential equations is an active area of research in applied
mathematics, theoretical physics and engineering fields. In particular, there has been
considerable interest in seeking exact travelling wave solutions of nonlinear evolution
equations that describe some important physical and dynamic processes. In the past sev-
eral decades, many powerful methods such as variational iteration method [1], homotopy
analysis method [2], homotopy perturbation technique [3], modified tanh–coth method
[4], the Jacobi elliptic function method [5], (G ′/G)-expansion method [6–8], the exp-
function method [9–12], trial equation method [13], spectral collocation method [14] and
many other techniques were used to obtain exact travelling wave solutions of nonlinear
problems. More precisely, there is no unified method that can be used to handle all types
of nonlinear problems. A powerful and effective method for finding exact solutions of
nonlinear differential equations was proposed in [15]. In particular, this method allows
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us to obtain all solitary wave solutions and all one-periodic solutions when we get the
expansion of the general solution of nonlinear differential equation in the Laurent series.
Moreover, the main advantage of this method is that we can construct exact solutions
of high order nonlinear evolution equations more effectively in comparison with other
methods. In [16–18], the author applied this method to construct the exact solutions of
some nonlinear non-integrable equations. Ryabov [19] obtained exact solutions of the
Kudryashov–Sinelshchikov equation by using the Kudryashov method. Kabir [20] used
the modified Kudryashov method to construct the solitary travelling wave solutions of the
Kuramoto–Sivashinsky and seventh-order Sawada–Kotera equations.

Explicit solutions to nonlinear problems are of fundamental importance. The travel-
ling wave solutions may be useful in the theoretical and numerical studies of the model
systems. Therefore, finding travelling wave solutions of nonlinear equations is of funda-
mental interest to understand the equations fully. In this paper, we shall find the exact
travelling wave solutions for some nonlinear physical models and coupled equations such
as Higgs equation, Maccari system and Schrödinger–KdV equation [6,7] by using the
Kudryashov method. The computer symbolic systems such as Maple and Mathematica
allow us to perform complicated and tedious calculations.

2. Algorithm of Kudryashov method

Let us present the algorithm of the Kudryashov method for finding exact solutions of
nonlinear partial differential equations (PDE) [15]. We consider the nonlinear PDE in the
following form:

E(u, ut , ux , utt , uxx , . . .) = 0. (1)

Using the travelling wave solutions

u(x, t) = y(η), η = kx − wt,

eq. (1) can be converted to nonlinear ordinary differential equations (ODE)

E1(y, wyη, kyη, w
2 yηη, k2 yηη, . . .) = 0. (2)

To find the dominant terms we substitute

y(η) = η−p, p > 0 (3)

into all terms of eq. (2). Then we compare degrees of all terms in eq. (2) and choose two
or more terms with the smallest degree. The maximum value of p is the pole of eq. (2)
and we denote it as N . It should be mentioned that the method can be applied when N
is an integer. If the value N is noninteger, we have to use the transformation of solution
y(η).

We look for exact solution of (2) in the following form:

y(η) = a0 + a1 Q(η) + a2 Q(η)2 + · · · + aN Q(η)N , (4)

where ai , i = 1, 2, . . . , N are unknown constants and Q(η) is the following function:

Q(η) = 1

1 + eη
. (5)
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Travelling wave solutions

This function satisfies to the first-order ordinary differential equation

Qη = Q2 − Q. (6)

Equation (6) is necessary to calculate the derivative of function y(η). We can calculate
the necessary number of derivatives of function y. For instance, we consider the general
case when N is arbitrary. Differentiating (4) with respect to η and taking into account (6),
we have

yη =
N∑

i=1

ai i(Q − 1)Qi ,

yηη =
N∑

i=1

ai i((i + 1)Q2 − (2i + 1)Q + i)Qi . (7)

The highest order derivative of y(η) can be found in [16,17]. Next, substitute expres-
sions (4), (5) and (6) in (1). Then we collect all terms with the same powers of function
Q(z) and equate the resulting expression to zero. Finally, we obtain algebraic systems of
equations. Solving this system, we get values for the unknown parameters.

3. Applications to physical models

Example 3.1. Two-dimensional sine-Gordon:

Let us demonstrate the application of Kudryashov method for finding the exact travelling
wave solutions of the two-dimensional sine-Gordon equation

utt − uxx − uyy + m2 sin u = 0, (8)

and Dodd–Bullough–Mikhailov equation

uxt + peu + qe−2u = 0. (9)

The two-dimensional sine-Gordon equation (8) and Dodd–Bullough–Mikhailov equation
(9) have been widely applied in many fields such as solid-state physics, nonlinear optics,
fluid dynamics, fluid flow, quantum field theory, electromagnetic waves and so on [7].

To look for the travelling wave solutions of eq. (8), we make transformation v = eiu ,
v(x, y, t) = V (η), η = μ(x + αy + βt), and generate the reduced nonlinear ODE in the
form

2μ2(β2 − α2 − 1)(V V ′′ − (V ′)2) + m2(V 3 − V ) = 0, (10)

where the prime denotes the differential with respect to η. The pole of eq. (10) is equal to
N = 2, then we look for the exact travelling wave solutions in the following form:

V (η) = a0 + a1 Q + a2 Q2, (11)

where a0, a1 and a2 are unknown constants. Substituting (11) into (10) and taking into
account relations (7), we can obtain a system of algebraic equations. Solving the resulting
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system by using Maple, we find that solution of (10) exists only in the following two
cases: ⎧

⎨

⎩a0 = 1, a1 = −4, a2 = 4, μ = μ, α = ±
√

β2 + m2

μ2
− 1, β = β

⎫
⎬

⎭ , (12)

⎧
⎨

⎩a0 = −1, a1 = 4, a2 = −4, μ = μ, α = ±
√

β2 − m2

μ2
− 1, β = β

⎫
⎬

⎭ . (13)

Thus, solution of eq. (8) which corresponds to (12) is given by

u1(x, y, t) = arccos

(
1 + v2

1(x, y, t)

2v1(x, y, t)

)

= arccos

⎡

⎣1 + 2csch2

⎧
⎨

⎩μ

⎛

⎝x ±
√

β2 + m2

μ2
− 1y + βt

⎞

⎠

⎫
⎬

⎭

⎤

⎦ ,

(14)

where

v1(x, y, t) = 1 − 4

1 + exp
{
μ

(
x ± √

β2 + (m2/μ2) − 1y + βt
)}

+ 4
[
1 + exp

{
μ

(
x ± √

β2 + (m2/μ2) − 1y + βt
)}]2

= tanh2

⎧
⎨

⎩
μ

2

⎛

⎝x ±
√

β2 + m2

μ2
− 1y + βt

⎞

⎠

⎫
⎬

⎭ .

Next, solution of eq. (8) which corresponds to (13) is given by

u2(x, y, t) = arccos

(
1 + v2

2(x, y, t)

2v2(x, y, t)

)

= arccos

⎡

⎣−1 − 2csch2

⎧
⎨

⎩μ

⎛

⎝x ±
√

β2 − m2

μ2
− 1y + βt

⎞

⎠

⎫
⎬

⎭

⎤

⎦ ,

(15)

where

v2(x, y, t) = −1 + 4

1 + exp
{
μ

(
x ± √

β2 − (m2/μ2) − 1y + βt
)}

− 4
[
1 + exp

{
μ

(
x ± √

β2 − (m2/μ2) − 1y + βt
)}]2

= tanh2

⎧
⎨

⎩
μ

2

⎛

⎝x ±
√

β2 − m2

μ2
− 1y + βt

⎞

⎠

⎫
⎬

⎭ .

760 Pramana – J. Phys., Vol. 80, No. 5, May 2013



Travelling wave solutions

More precisely, if we take μ = 2k and β = λ then our solutions of (14) and (15) turn out
to the solutions as expressed in [21].

Next, to find a travelling wave solution of eq. (9), we use

v = eu, v(x, t) = V (η), η = μ(x + ct). (16)

Substituting (16) into eq. (9), we get

μ2cV V ′′ − μ2c(V ′)2 + pV 3 + q = 0. (17)

The pole of eq. (17) is equal to N = 2. Therefore, we have

V (η) = a0 + a1 Q + a2 Q2. (18)

Substituting (18) into (17), we can obtain a system of algebraic equations. Solving the
resulting system by using Maple, the following set of solutions is obtained:

{
a0 =

(
− q

p

)1/3

, a1 = −6

(
− q

p

)1/3

, a2 = 6

(
− q

p

)1/3

,

μ = μ, c = −3p

μ2

(
− q

p

)1/3
}

. (19)

This in turn gives the following exact travelling wave solution of eq. (9):

u(x, t)= ln

[(
− q

p

)1/3
{

1− 3

1+cosh
{
μ
(
x−(3p/μ2) (−(q/p))1/3 t

)}
}]

. (20)

Example 3.2. Coupled Schrödinger–KdV equation:

A second instructive example is the coupled Schrödinger–KdV equation

iut = uxx + uv,

vt + 6vvx + vxxx = (|u|2)x , (21)

which describes various processes in dusty plasma, such as Langmuir, dust-acoustic wave
and electromagnetic waves [7]. We suppose that eq. (21) has the travelling wave solution
of the form

u(x, t) = eiθU (η), v(x, t) = V (η), θ = αx + βt, η = x + ct, (22)

where α, β and c are constants. Substituting eq. (22) into eq. (21), we find that c = 2α

and U, V satisfy the following coupled nonlinear ordinary differential system:

U ′′ + (β − α2)U + U V = 0,

2αV ′ + 6V V ′ + V ′′′ − (U 2)′ = 0. (23)

The pole of the coupled equations (23) are N = 2, M = 2. As a result, Kudryashov
method admits the solution of (23) in the following form:

U = a0 + a1 Q + a2 Q,

V = b0 + b1 Q + b2 Q, (24)
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where a0, a1, a2, b0, b1 and b2 are unknown constants to be determined. Substituting (24)
in the reduced ODE (23) and collecting the coefficients of Q yields a system of algebraic
equations. Solving the resulting system by using Maple, the following sets of solution are
obtained: {

a0 = a0, a1 = −2a0, a2 = 0, b0 = b0, b1 = 2, b2 = −2,

α = −a2
0 − 3b0 − 1

2
, β = a4

0 + a2
0 + 9b2

0 + 2b0 + 6b0a2
0 + 1

4
, c = 2α

}
,

(25){
a0 = 0, a1 = ∓6

√
2, a2 = ±6

√
2, b0 = b0, b1 = 6, b2 = −6,

α = −3b0 − 1

2
, β = 9b2

0 + 2b0 − 3

4
, c = 2α

}
, (26)

{
a0 = ±√

2, a1 = ∓6
√

2, a2 = ±6
√

2, b0 = b0, b1 = 6, b2 = −6,

α = −3b0 − 5

2
, β = 9b2

0 + 14b0 + 25

4
, c = 2α

}
. (27)

The first two sets (25) and (26) give the exact wave solutions of eq. (21) in the following
form:

u1(x, t) = a0 exp

[
i

{(
−a2

0 − 3b0 − 1

2

)
x + D1t

}](
1 − 2

1 + ex+2αt

)
,

v1(x, t) = b0 + 2

1 + ex+2αt
− 2

(
1 + ex+2αt

)2 , (28)

where

D1 = a4
0 + a2

0 + 9b2
0 + 2b0 + 6b0a2

0 + 1

4
,

and

u2(x, t) = ±6
√

2 exp

[
i

{(
−3b0 − 1

2

)
x +

(
9b2

0 + 2b0 − 3

4

)
t

}]

×
[
− 1

1 + ex+2αt
+ 1

(
1 + ex+2αt

)2

]
,

v2(x, t) = b0 + 6

1 + ex+2αt
− 6

(
1 + ex+2αt

)2 . (29)

Finally, the third set (27) gives the exact wave solutions as

u3(x, t) = ±6
√

2 exp

[
i

{(
−3b0 − 5

2

)
x +

(
9b2

0 + 14b0 + 25

4

)
t

}]

×
[

1

6
− 1

1 + ex+2αt
+ 1

(
1 + ex+2αt

)2

]
,

v3(x, t) = b0 + 6

1 + ex+2αt
− 6

(
1 + ex+2αt

)2 . (30)
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Travelling wave solutions

Moreover, if we take a0 = 1, b0 = −(8 + √
19)/18 and α = 1

2 then eq. (28) provides a
new travelling wave solution of the coupled Schrödinger–KdV equation (21)

u(x, t) = exp

[
i

(
−1 + √

19

6
x + t

)](
1 − 2

1 + ex+t

)
, (31)

v(x, t) = −8 + √
19

18
+ 2

1 + ex+t
− 2

(1 + ex+t )2 . (32)

The 3D plot of solutions (31) and (32) are shown in figures 1–4. The solution (32)
represents a bell-type wave solution which is shown graphically in figure 4.

Example 3.3. Coupled nonlinear physical models:

Consider the following coupled Higgs equation [22]:

utt − uxx + |u|2u − 2uv = 0,

vt t + vxx − (|u|2)xx = 0, (33)

and coupled integrable (2+1)-dimensional nonlinear system in the following form [12]:

iut + uxx + uv = 0,

vt + vy + (|u|2)x = 0. (34)

First, we consider the coupled Higgs equation (33). To obtain the travelling wave solution
of (33), we consider the transformation

u = eiθU (η), v = V (η), θ = px + r t, η = x + ct. (35)

Substituting (35) into (33), we have

(c2 − 1)U ′′ + (p2 − r2)U − 2U V + U 3 = 0,

(c2 + 1)V ′′ − 2(U ′)2 − 2UU ′′ = 0. (36)

Re u

− 10
− 5

0

5

10

x

0

5

10

t

− 1.0
− 0.5

0.0

0.5

1.0

Figure 1. 3D plot of eq. (31): Real part periodic solution.
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Im u

− 10

− 5

0

5

10

x

0

5

10

t

− 1.0
− 0.5

0.0

0.5

1.0

Figure 2. 3D plot of eq. (31): Imaginary part periodic solution.

Abs u

− 20
− 10

0
10x

0

5

10

t

0.0

0.5

1.0

Figure 3. Kink-type wave solution of eq. (31).

Integrating the second equation in (36) and neglecting the constant of integration we find

(c2 + 1)V = U 2. (37)

Substituting (37) into the first equation of the system and integrating we find

(c4 − 1)U ′′ + (c2 + 1)(p2 − r2)U + (c2 − 1)U 3 = 0, (38)

where prime denotes differentiation with respect to η. The pole of eq. (38) is equal to
N = 1. Therefore, Kudryashov method admits solution in the following form:

U (η) = a0 + a1 Q. (39)

Substituting (39) into (38), we can obtain a system of algebraic equations. Solving the
resulting system with the aid of Maple, we can obtain four sets of solutions:

{a0 = a0, a1 = a1, p = ±r, r = r, c = 1} , (40)
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v

−20
− 10

0

10
x

0

5

10

t

− 0.6

− 0.4

− 0.2

Figure 4. Bell-type wave solution of eq. (32).

{a0 = a0, a1 = a1, p = ±r, r = r, c = −1} , (41)

{
a0 =

√
−c2 + 1

2
, a1 =−2

√
−c2 + 1

2
, p=±

√
c2 − 1 + 2r2

2
, r =r, c=c

}
,

(42)

{
a0 =−

√
−c2 + 1

2
, a1 =2

√
−c2 + 1

2
, p=±

√
c2 − 1 + 2r2

2
, r =r, c=c

}
.

(43)

According to eqs (40) and (41), we obtain the exact travelling wave solutions in the
following form:

u1(x, t)=e±ri(x±t)

(
a0+ a1

1 + ex+t

)
, v1(x, t)= 1

c2 + 1

(
a0+ a1

1 + ex+t

)2

(44)

and

u2(x, t)=e±ri(x±t)

(
a0+ a1

1 + ex−t

)
, v2(x, t)= 1

c2 + 1

(
a0+ a1

1 + ex−t

)2

.

(45)

Due to eq. (42), we get the following travelling wave solution:

u3(x, t)=
√

−c2 + 1

2
exp

[
i

(
±
√

c2 − 1 + 2r2

2
x + r t

)](
1 − 2

1 + ex+ct

)
,

v3(x, t) = −1

2

(
1 − 2

1 + ex+ct

)2

. (46)
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Finally, eq. (43) leads to the exact travelling wave solution in the form

u4(x, t) =
√

−c2 + 1

2
exp

[
i

(
±
√

c2 − 1 + 2r2

2
x + r t

)](
−1+ 2

1 + ex+ct

)
,

v4(x, t) = −1

2

(
−1 + 2

1 + ex+ct

)2

. (47)

In particular, if we take c = 1 and r = 1 then eq. (47) provides a new travelling wave
solution of the coupled Higgs equation (33) in the following form:

u(x, t) = i exp[i (−x + t)]

(
−1 + 2

1 + ex+t

)
, (48)

v(x, t) = −1

2

(
−1 + 2

1 + ex+t

)2

. (49)

Further, the behaviour of the obtained solutions (48) and (49) are shown graphically (see
figures 5–8).

Next, we consider the Maccari system (34). Let us assume that the travelling wave
solution of (34) has the form

u = eiθU (η), v = V (η), θ = px + qy + r t, η = x + y + ct. (50)

Substituting (50) into (34), we have

U ′′ − (r + p2)U + U V = 0,

(c + 1)V ′ − 2UU ′′ = 0. (51)

Integrating the second equation in the system and neglecting the constant of integration
we find

− (c + 1)V = U 2. (52)

Re u

− 10
− 5

0
5

10
x

0

5

10

t

− 1.0
− 0.5

0.0

0.5

1.0

Figure 5. Real part periodic solution of eq. (48).
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Im u

− 10
− 5

0
5

10
x

0

5

10

t

− 1.0
− 0.5

0.0

0.5

1.0

Figure 6. Imaginary part periodic solution of eq. (48).

Abs u

− 10
− 5

0
5

10
x

0

5

10

t

0.0

0.5

1.0

Figure 7. Kink-type wave solution of eq. (48).

Substituting (52) into the first equation of the system and integrating we find

(c + 1)U ′′ − (c + 1)(r − p2)U − U 3 = 0, (53)

where prime denotes differentiation with respect to η. The pole of eq. (53) is equal to
N = 1. Therefore, we have

U (η) = a0 + a1 Q. (54)

Substituting (54) into (53), we can obtain a system of algebraic equations and proceeding
as before we find the following set of solution:

{
a0 = −a1

2
, a1 = a1, p = p, q = q, r = p2 − 1

2
, c = a2

1

2
− 1

}
. (55)
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v

−10

0

10
x

5

10

t

− 0.4

− 0.2

0
0.0

Figure 8. Bell-type wave solution of eq. (49).

The travelling wave solutions for the coupled eq. (34) according to (55) is given by

u(x, y, t) = a1 exp

[
i

{
px + qy +

(
p2 − 1

2

)
t

}]

×
(

−1

2
+ 1

1 + exp
[
x + y + (

(a2
1/2) − 1

)
t
]
)

,

v(x, y, t) = − a2
1

c + 1

(
−1

2
+ 1

1 + exp
[
x + y + (

(a2
1/2) − 1

)
t
]
)2

. (56)

Remark 3.4. When q = 0 and p = 1, the Dodd–Bullough–Mikhailov equation (9)
reduces to the Liouville equation

uxt + eu = 0. (57)

By repeating the solution procedure as above, we can obtain travelling wave solution of
eq. (57) in the following form:

u(x, t) = ln

[
μ2c

1 + cosh{μ(x + ct)}
]

. (58)

Note 2.3. It is noted that Kudryashov method can be suitable to the nonlinear partial
differential equations with higher order nonlinearity. It should be mentioned that all the
obtained solutions are verified by putting them back into the original equations with the
aid of Mathematica.
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4. Conclusion

In this paper, we have successfully implemented the Kudryashov method to establish
exact solutions of the two-dimensional sine-Gordon equation and Dodd–Bullough–
Mikhailov equation. Further, we apply the method to solve the coupled nonlinear
models such as Maccari equations, Higgs equations and Schrödinger–KdV equations. The
result reveals that nonlinear evolution equations can be easily handled by Kudryashov
method and that the performance of this method is reliable and effective. The method is
straightforward and concise, and it can also be applied to other nonlinear problems.
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