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Abstract
In this reviewa we discuss the local index formula in noncommutative geome-
try (NCG) from the viewpoint of two new proofs that are given in [16, 17] and
[18] respectively. These proofs are partly inspired by the approach of Higson
[35], especially that in [18], but they differ in several fundamental aspects,
in particular they apply to semifinite spectral triples for a ∗-subalgebra A of
a general semifinite von Neumann algebra. Our proofs are novel even in the
setting of the original theorem, and reduce the hypotheses of the theorem to
those necessary for its statement.

These proofs rely on the introduction of a function valued cocycle which is
‘almost’ a (b, B)-cocycle in the cyclic cohomology of A. They do not need the
‘discrete dimension spectrum’ assumption of the original Connes-Moscovici
proof [25], only a much weaker condition on the analytic continuation of cer-
tain zeta functions, and this only for part of the statement.

In this article we also explain the relationship of the pairing between K-
theory and semifinite spectral triples to KK-theory and the Kasparov prod-
uct. This discussion shows that semifinite spectral triples are a specific kind of
representative of a KK-class, and the analytically defined index is compatible
with the Kasparov product.

⋆⋆ Address for correspondence
a AMS Subject classification: Primary: 19K56, 46L80; secondary: 58B30, 46L87.
Keywords and Phrases: von Neumann algebra, Fredholm module, cyclic coho-
mology, chern character, spectral flow.
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1. Introduction

1.1. The motivation for semifinite NCG. The first indication that semifi-
nite theory is natural for NCG comes from the paper [24]. There Connes and
Cuntz show that cyclic n-cocycles for an appropriate algebra A are in one-
to-one correspondence with traces on a certain ideal Jn in the free product
A ∗ A. Assuming some positivity for this trace yields the same kind of Kas-
parov modules and semifinite Fredholm modules as are described in [37]. In
other words, to realise all the cyclic cocycles for an algebra will, in general, ne-
cessitate considering semifinite Fredholm modules. The usual approach to the
construction of these Fredholm modules is to use semifinite spectral triples.

It is also a natural question to ask how Atiyah’s L2 index theorem fits
into the framework of NCG. While we do not answer this question directly
here the results of [2, 49] make it clear that this result is within the range of
NCG methods as a result of the semifinite version of the local index formula
[16, 17].

We could also ask what NCG has to do with other results such as the index
theorem of Coburn, Douglas, Schaeffer and Singer [22, 31] for Wiener-Hopf
operators with almost periodic symbol or the index theorems of Lesch [39]
and Phillips-Raeburn [48]. An answer was provided by the noncommutative
geometry calculation of the index of Toeplitz operators with noncommutative
symbol in [12] which interprets the index as computing spectral flow along
a certain path of unbounded self-adjoint Breuer-Fredholm operators. (This
uses NCG formulae from [9, 10].)

These results in [12] were a primary inspiration for our new approach to
the local index formula of Connes and Moscovici in the setting of semifinite
von Neumann algebras that we will discuss in this review. A second important
motivation comes from a more general program outlined in [3] for developing
a theory of ‘von Neumann’ or ‘semifinite spectral triples’. The primary source
of examples for [3] is the theory of foliations.

The articles [13, 16, 17, 18] were written with the view to establishing the
main tools of NCG in the wider framework of semifinite theory in such a way
as to encompass the standard situation as described in [23] and [25]. This
review article has been written to provide a summary of semifinite NCG so
that recent new applications of this theory are accessible. Applications in a
number of different areas are emerging (see for example [30]) including to a
kind of index theory for KMS states on C∗-algebras [6, 7, 15, 20].

1.2. Why revisit the proof of the local index formula? Our view is
that the natural setting for the theory of spectral triples is not the bounded
operators on a Hilbert space with its ideal of compact operators, but the
corresponding situation in a general semifinite von Neumann algebra. This
view is supported by [24], and we will amplify on this viewpoint later using
results from [37].
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However, to make spectral triples truly relevant to a semifinite extension of
noncommutative geometry, it is necessary to prove the local index formula in
this context. The two papers, [16, 17] respectively for odd and even semifinite
spectral triples, succeed in achieving this extension of the original Connes-
Moscovici theorem.

The strategy of the proofs presented in [16, 17] are not a semifinite gen-
eralisation of [25]. First, for semifinite NCG, we wanted to avoid the discrete
dimension spectrum hypothesis of [25]. We were of the view that this hypoth-
esis may be quite hard to check in semifinite, or even type I, spectral triples.
This forced us to avoid the starting point of [25], the JLO cocycle [36]. It
was [35] that illustrated a possible different approach introducing a kind of
‘resolvent cocycle’ as an alternative. Unfortunately the cocycle in [35] does
not resolve all of the difficulties presented by starting with the JLO formula
and still retains the discrete dimension spectrum assumption.

These considerations led us in [16, 17] to our first new proof of the local
index formula. The argument is different in the odd and even cases relying
respectively on a formula for spectral flow presented in [10] and on a gener-
alised McKean-Singer formula proved in [17]. Starting from these formulae we
derived a new cyclic cocycle, which we termed the ‘resolvent cocycle’. It is,
in a sense, a cocycle in the (b, B) version of cyclic cohomology. It provides a
substitute for the starting point of [25] (the JLO formula) and it may be used
to express the relevant numerical index pairing between the spectral triple,
regarded as a ‘semifinite K-homology class’ (as we show, actually a KK-class)
for an algebra A, and the K-theory of A.

Another way to relate our resolvent cocycle to index theory which is sug-
gested by [35] is to homotopy the resolvent cocycle to the Chern character
in semifinite NCG. This is the basis of the second new proof of the semifi-
nite local index formula that is contained in [18]. Both of these new proofs
avoid the discrete dimension spectrum assumption of [25] replacing it by the
minimal assumptions on the singularity structure of the zeta functions that
are needed to produce the residue cocycle. It seems highly likely that these
minimal assumptions are much easier to check in examples.

1.3. The K-theoretic setting for the semifinite local index formula.
We remark that semifinite Kasparov modules and semifinite spectral triples
provide information that is different from that of the standard theory [23].
We provide later in this article a summary of [37] where it is shown that a
semifinite spectral triple for A represents an element of KK∗(A,B), where
B is the separable norm closed subalgebra of the compact operators in N
generated by the resolvent of D and the commutators [FD, a] for a ∈ A where
FD = D(1 + D2)−1/2. This Kasparov module picture is the one implied
by [24].

Necessarily, as the local index formula relies on a finite summability hy-
pothesis, we have to consider finitely summable spectral triples (A,H,D) with
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spectral dimension q. That is, for all n > q, (1 +D2)−n/2 is trace class in N
and q is the least positive real number for which this is true.

Acknowledgements. We thank Nigel Higson for discussions on his approach
to the local index formula and in particular on his point of view of the pseu-
dodifferential calculus. Thanks also to our collaborators Jens Kaad, Ryszard
Nest, David Pask and Aidan Sims.

2. Definitions and Background

2.1. Semifinite spectral triples. We begin now with some semifinite ver-
sions of standard definitions and results. Let KN be the τ -compact operators
in N (that is the norm closed ideal generated by the projections E ∈ N with
τ(E) < ∞). Here τ is a fixed faithful, normal, semifinite trace on the von
Neumann algebra N .

Definition 2.1. An odd semifinite spectral triple (A,H,D) is given by a
Hilbert space H, a ∗-algebra A ⊂ N where N is a semifinite von Neumann
algebra acting on H, and a densely defined unbounded self-adjoint operator D
affiliated to N such that

1) [D, a] is densely defined and extends to a bounded operator for all a ∈ A
2) (λ−D)−1 ∈ KN for all λ 6∈ R
An even semifinite spectral triple (A,H,D) has a grading γ ∈ N such that

γ∗ = γ, γ2 = 1, aγ = γa for all a ∈ A and Dγ + γD = 0.

Note that a calligraphic D will always denote an unbounded self-adjoint op-
erator forming part of a semifinite spectral triple (A,H,D).

Definition 2.2. A semifinite spectral triple (A,H,D) is QCk for k ≥ 1 (Q
for quantum) if for all a ∈ A the operators a and [D, a] are in the domain of
δk, where δ(T ) = [|D|, T ] is the partial derivation on N defined by |D|. We
say that (A,H,D) is QC∞ if it is QCk for all k ≥ 1.

2.2. Various preliminary remarks. (i) The notation above is meant to be
analogous to the classical case, but we introduce the Q so that there is no
confusion between the noncommutative case and classical differentiability of
functions.

(ii) In this paper, for simplicity of exposition, we will deal only with unital
algebras A ⊂ N where the identity of A is that of N . Henceforth we omit
the term semifinite as it is implied by the use of a faithful normal semifinite
trace τ on N in all of the subsequent text.

(iii) By partial derivation we mean that δ is defined on some subalgebra
of N which need not be (weakly) dense in N . More precisely, dom(δ) =
{T ∈ N : δ(T ) is bounded}. We also note that if T ∈ N , one can show
that [|D|, T ] is bounded if and only if [(1 + D2)1/2, T ] is bounded, by using
the functional calculus to show that |D| − (1 + D2)1/2 extends to a bounded
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operator in N . In fact, writing |D|1 = (1 + D2)1/2 and δ1(T ) = [|D|1, T ] we
have dom(δn) = dom(δn1 ) for all n.

Proof. Let f(D) = (1 + D2)1/2 − |D|, so, as noted above, f(D) extends to a
bounded operator in N . Since

δ1(T )− δ(T ) = [f(D), T ]

is always bounded, dom(δ) = dom(δ1). Now δδ1 = δ1δ, so

δ21(T )− δ2(T ) = δ1(δ1(T ))− δ1(δ(T )) + δ1(δ(T ))− δ(δ(T ))

= [f(D), δ1(T )] + [f(D), δ(T )].

Both terms on the right hand side are bounded, so dom(δ2) = dom(δ21). The
proof proceeds by induction. �

Thus the condition defining QC∞ can be replaced by

a, [D, a] ∈
⋂

n≥0

dom(δn1 ) ∀a ∈ A.

This is important as we wish to avoid having to assume that |D| is invertible.
(iv) If (A,H,D) is a QC∞ spectral triple, we may endow the algebra A

with the topology determined by the seminorms

a −→ ‖δk(a)‖+ ‖δk([D, a])‖, k = 0, 1, 2, ...

We call this topology the δ-topology and observe that by [50, Lemma 16] we
may, without loss of generality, suppose that A is complete in the δ-topology
by completing if necessary. This completion is Fréchet and stable under the
holomorphic functional calculus, so we have a sensible spectral theory and
K∗(A) ∼= K∗(Ā) via inclusion, where Ā is the C∗-completion of A.

(v) Next we observe that if T ∈ N and [D, T ] is bounded, then [D, T ] ∈ N .

Proof. Observe that D is affiliated with N , and so commutes with all projec-
tions in the commutant of N , and the commutant of N preserves the domain
of D. Thus if [D, T ] is bounded, it too commutes with all projections in the
commutant of N , and these projections preserve the domain of D, and so
[D, T ] ∈ N . �

Similarly [|D|, T ], [(1+D2)1/2, T ] and products of the form [D2, T ](1+D2)−1/2

that we will encounter later all lie in N .

Definition 2.3. Recall from [32] that if S ∈ N , the t-th generalized sin-
gular value of S for each real t > 0 is given by

µt(S) = inf{||SE|| | E is a projection in N with τ(1 − E) ≤ t}.
The ideal L1(N ) consists of those operators T ∈ N such that ‖T ‖1 := τ(|T |) <
∞ where |T | =

√
T ∗T . In the Type I setting this is the usual trace class ideal.

We will simply write L1 for this ideal in order to simplify the notation, and
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denote the norm on L1 by ‖·‖1. An alternative definition in terms of singular
values is that T ∈ L1 if ‖T ‖1 :=

∫∞
0
µt(T )dt <∞.

Note that in the case where N 6= B(H), L1 need not be complete in this
norm but it is complete in the norm ||.||1 + ||.||∞ (where ||.||∞ is the uniform
norm).

2.3. Hypotheses on the zeta functions. If our spectral triple is finitely
summable then this gives us a half-plane where the function

(1) z 7→ τ((1 +D2)−z)

is well-defined and holomorphic. If (A,H,D) is aQC∞ spectral triple and T ∈
N , we write T (n) to denote the iterated commutator [D2, [D2, [· · · , [D2, T ] · · · ]]]
where we have n commutators with D2. It follows from the remarks after Def-
inition 2.2 that operators of the form T

(n1)
1 · · ·T (nk)

k (1+D2)−(n1+···+nk)/2 are
in N when Ti = [D, ai], or = ai for ai ∈ A.

Our replacement for the hypothesis of discrete dimension spectrum is the
following.

Definition 2.4. If (A,H,D) is a QC∞ finitely summable spectral triple, we
call

q = inf{s ∈ R : τ((1 +D2)−s/2) <∞}
the spectral dimension of (A,H,D). We say that (A,H,D) has isolated
spectral dimension if for b of the form

b = a0[D, a1](k1) · · · [D, am](km)(1 +D2)−m/2−|k|

the zeta functions

ζb(z − (1− q)/2) = τ(b(1 +D2)−z+(1−q)/2)

have analytic continuations to a deleted neighbourhood of z = (1 − q)/2.

Observe that we allow the possibility that the analytic continuations of
these zeta functions may have an essential singularity at z = (1 − q)/2. All
that is necessary for us is that the residues at this point exist.

In [29, 25], a stronger condition was imposed in order to prove the local
index formula. This condition not only specifies a half-plane where the func-
tion in (1) is holomorphic, but also that this function analytically continues
to C minus some discrete set. We clarify this in the following definition.

Definition 2.5. Let (A,H,D) be a QC∞ spectral triple. The algebra B(A) ⊆
N is the algebra of polynomials generated by δn(a) and δn([D, a]) for a ∈
A and n ≥ 0. A QC∞ spectral triple (A,H,D) has discrete dimension
spectrum Sd ⊆ C if Sd is a discrete set and for all b ∈ B(A) the function
τ(b(1 + D2)−z) is defined and holomorphic for Re(z) large, and analytically
continues to C \ Sd. We say the dimension spectrum is simple if this zeta
function has poles of order at most one for all b ∈ B(A), finite if there is a
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k ∈ N such that the function has poles of order at most k for all b ∈ B(A)
and infinite, if it is not finite.

This discrete dimension spectrum assumption is essential for the proof of
the version of the local index formula stated in [25]. In this paper we employ
the weaker notion of isolated spectral dimension that is implied by the discrete
dimension spectrum assumption.

3. Spectral Flow

3.1. The definition of analytic spectral flow. We begin with a discussion
of some background from [2, 17, 46, 47]. Let π : N → N/KN be the canonical
mapping. A Breuer-Fredholm operator is one that maps to an invertible
operator under π, [48]. In the Appendix to [48], the theory of Breuer-Fredholm
operators for the case where N is not a factor is developed in analogy with
the factor case of Breuer, [4, 5]. In [17] this theory was developed further to
handle the situations encountered in the proof of the local index formula. We
will review this theory in Section 4.

As usual D is an unbounded densely defined self-adjoint Breuer-Fredholm
operator on H (meaning D(1 +D2)−1/2 is bounded and Breuer-Fredholm in
N ) with (1 + D2)−1/2 ∈ KN . For a unitary u ∈ N such that [D, u] is a
bounded operator, the path

Du
t := (1− t)D + tuDu∗

of unbounded self-adjoint Breuer-Fredholm operators is continuous in the
sense that

Fu
t := Du

t

(
1 + (Du

t )
2
)− 1

2

is a norm continuous path of self-adjoint Breuer-Fredholm operators in N [9].
Recall that the Breuer-Fredholm index of a Breuer-Fredholm operator T is
defined by

Index(T ) = τ(QkerT )− τ(QcokerT )

where QkerT and QcokerT are the projections onto the kernel and cokernel of
T .

Definition 3.1. If {Ft} is a continuous path of self-adjoint Breuer-Fredholm
operators in N , then the definition of the spectral flow of the path, sf({Ft})
is based on the following sequence of observations in [44]:
1. The function t 7→ sign(Ft) is typically discontinuous as is the projection-
valued mapping t 7→ Pt =

1
2 (sign(Ft) + 1). However t 7→ π(Pt) is continuous.

2. If P and Q are projections in N and ‖π(P )−π(Q)‖ < 1 then PQ : QH →
PH is a Breuer-Fredholm operator and so Index(PQ) ∈ R is well-defined (see
Lemma 4.1 of [2]).
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3. If we partition the parameter interval of {Ft} so that the π(Pt) do not vary
much in norm on each subinterval of the partition then

sf({Ft}) :=
n∑

i=1

Index(Pti−1Pti)

is a well-defined and (path-) homotopy-invariant number which agrees with
the usual notion of spectral flow in the type I∞ case.
4. For D and u as above, we define the spectral flow of the path Du

t := (1 −
t)D+tuDu∗ to be the spectral flow of the path Ft where Ft = Du

t

(
1 + (Du

t )
2
)− 1

2 .
We denote this by

sf(D, uDu∗) = sf({Ft}),
and observe that this is an integer in the N = B(H) case and a real number
in the general semifinite case.

Special cases of spectral flow in a semifinite von Neumann algebra were
discussed in [41, 44, 45].

Let P denote the projection onto the nonnegative spectral subspace of
D. The spectral flow along {Du

t } is equal to sf({Ft}) and by [9] this is the
Breuer-Fredholm index of PuPu∗. (Note that signFu

1 = 2uPu∗ − 1 and that
for this special path we have P − uPu∗ is compact so PuPu∗ is certainly
Breuer-Fredholm from uPu∗H → PH.) Now, [48, Appendix B], we have
Index(PuPu∗) = Index(PuP ).

3.2. Spectral Flow Formulae. We now introduce the spectral flow formula
of [9, 10] which is the starting point for our first new proof of the local index
formula in the odd case. We start with a semifinite spectral triple (A,H,D)
and aim to compute the spectral flow from D to uDu∗, where u ∈ A is unitary
with [D, u] bounded, in the situation where (A,H,D) has spectral dimension
q ≥ 1. Thus for any n > q we have by Theorem 9.3 of [10]:

(2) sf(D, uDu∗) = 1

Cn/2

∫ 1

0

τ(u[D, u∗](1 + (D + tu[D, u∗])2)−n/2)dt,

with Cn/2 =
∫∞
−∞(1 + x2)−n/2dx. This real number sf(D, uDu∗) recovers

the pairing of the K-homology class [D] of A with the K1(A) class [u] (see
below).There is a geometric way to view this formula. It is shown in [10]
that for the functional X 7→ τ(X(1 + (D +X)2)−n/2), X ∈ Nsa, determines
an exact one-form on Nsa, the tangent space to the affine Banach manifold
D+Nsa at the point D+Y ∈ D+Nsa. Thus (2) represents the integral of this
one-form along the path {Dt = (1 − t)D + tuDu∗} provided one appreciates

that Ḋt = u[D, u∗] is a tangent vector to this path. Moreover this formula is
scale invariant. By this we mean that if we replace D by ǫD, for ǫ > 0, in
the right hand side of (2), then the left hand side is unchanged, since spectral
flow is invariant with respect to change of scale. This fact is important in the
proof.
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3.3. Relation to Cyclic Cohomology. One can also interpret spectral flow
(in the type I case) as the pairing between an odd K-theory class represented
by a unitary u, and an odd K-homology class represented by (A,H,D), [23,
Chapter III,IV]. This point of view also makes sense in the general semifinite
setting, though one must suitably interpret K-homology; see the discussion in
Section 5. A central feature of [23] is the translation of theK-theory pairing to
cyclic theory in order to obtain index theorems. One associates to a suitable
representative of a K-theory class, respectively a K-homology class, a class in
periodic cyclic homology, respectively a class in periodic cyclic cohomology,
called a Chern character in both cases. The principal result is then

(3) sf(D, uDu∗) = 〈[u], [(A,H,D)]〉 = − 1√
2πi

〈[Ch∗(u)], [Ch∗(A,H,D)]〉,

where [u] ∈ K1(A) is a K-theory class with representative u and [(A,H,D)]
is the K-homology class of the spectral triple (A,H,D) (again we refer to
Section 5 for the meaning of K-homology class in this context).

On the right hand side, Ch∗(u) is the Chern character of u, and [Ch∗(u)]
its periodic cyclic homology class. Similarly [Ch∗(A,H,D)] is the periodic
cyclic cohomology class of the Chern character of (A,H,D). The analogue
of Equation (3), for a suitable cocycle associated to (A,H,D), in the general
semifinite case is part of our main result. A similar result holds for the pairing
of classes of projections in K0(A) and even spectral triples.

We will use the normalised (b, B)-bicomplex (see [23, 40]). We introduce
the following linear spaces. Let Cm = A ⊗ Ā⊗m where Ā is the quotient
A/CI with I being the identity element of A and (assuming with no loss of
generality that A is complete in the δ-topology) we employ the projective
tensor product. Let Cm = Hom(Cm,C) be the linear space of continuous
multilinear functionals on Cm. We may define the (b, B) bicomplex using
these spaces (as opposed to using Cm = A⊗m+1 et cetera) and the resulting
cohomology will be the same. This follows because the bicomplex defined
using A⊗ Ā⊗m is quasi-isomorphic to that defined using A⊗A⊗m.

A normalised (b,B)-cochain, φ is a finite collection of continuous multi-
linear functionals on A,

φ = {φm}m=1,2,...,M with φm ∈ Cm.

It is a (normalised) (b,B)-cocycle if, for all m, bφm + Bφm+2 = 0 where
b : Cm → Cm+1, B : Cm → Cm−1 are the coboundary operators given by

(Bφm)(a0, a1, . . . , am−1) =

m−1∑

j=0

(−1)(m−1)jφm(1, aj , aj+1, . . . , am−1, a0, . . . , aj−1)

(bφm−2)(a0, a1, . . . , am−1) =

m−2∑

j=0

(−1)jφm−2(a0, a1, . . . , ajaj+1, . . . , am−1) + (−1)m−1φm−2(am−1a0, a1, . . . , am−2).
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We write (b + B)φ = 0 for brevity. Thought of as functionals on A⊗m+1 a
normalised cocycle will satisfy φ(a0, a1, . . . , an) = 0 whenever any aj = 1 for
j ≥ 1. An odd (even) cochain has {φm} = 0 for m even (odd).

Similarly, a (bT,BT)-chain, c is a (possibly infinite) collection c =
{cm}m=1,2,... with cm ∈ Cm. The (b, B)-chain {cm} is a (bT,BT)-cycle
if bT cm+2 +BT cm = 0 for all m. More briefly, we write (bT +BT )c = 0. Here
bT , BT are the boundary operators of cyclic homology, and are the transpose
of the coboundary operators b, B in the following sense.

The pairing between a (b, B)-cochain φ = {φm}Mm=1 and a (bT , BT )-chain
c = {cm} is given by

〈φ, c〉 =
M∑

m=1

φm(cm).

This pairing satisfies

〈(b +B)φ, c〉 = 〈φ, (bT +BT )c〉.
We use this fact in Section 8 in the following way. We call c = (cm)m odd

an odd normalised (bT,BT)-boundary if there is some even chain e =
{em}m even with cm = bT em+1 + BT em−1 for all m. If we pair a normalised
(b, B)-cocycle φ with a normalised (bT , BT )-boundary c we find

〈φ, c〉 = 〈φ, (bT +BT )e〉 = 〈(b+B)φ, e〉 = 0.

There is an analogous definition in the case of even chains c = (cm)m even.
All of the cocycles we consider in this paper are in fact defined as functionals
on ⊕mA⊗ Ā⊗m. Henceforth we will drop the superscript on bT , BT and just
write b, B for both boundary and coboundary operators as the meaning will
be clear from the context.

We recall that the Chern character Ch∗(u) of a unitary u ∈ A is the
following (infinite) collection of odd chains Ch2j+1(u) satisfying bCh2j+3(u)+
BCh2j+1(u) = 0,

Ch2j+1(u) = (−1)jj!u∗ ⊗ u⊗ u∗ ⊗ · · · ⊗ u (2j + 2 entries).

In our first proof of the local index formula we find that u and u∗ enter in a
symmetric way into the formulae. This presents no difficulty as

(4) Ch∗(u
∗) + Ch∗(u)

is homologous to zero in the normalised (entire) (b, B) chain complex, see [16]
for a proof.

4. Fredholm Theory in Semifinite von Neumann Algebras

4.1. The reason we need a more general theory. In our approach we
must study Fredholm operators in a “skew-corner” of our semifinite von Neu-
mann algebra N . That is, if P and Q are projections in N (not necessarily
infinite and not necessarily equivalent) we have to extend the notion of τ -
index and τ -Fredholm to operators T ∈ PNQ. If N is a factor, this is much
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easier and is done in Appendix A of [47]. We simply refer to them as (P ·Q)-
Fredholm operators. Most results work in this setting; however the ploy used
in [47] of invoking the existence of a partial isometry from P to Q to reduce
to the case PNP (solved in [48]) is not available. In fact, because of examples
to which our version of the McKean-Singer Theorem applies, P and Q are not
generally equivalent.

One notable result that is different in the nonfactor setting (even if P = Q)
is that the set of (P ·Q)-Fredholm operators with a given index is open but is
not generally connected: information is lost when one fixes a trace to obtain
a real-valued index. That the set of (P ·Q)-Fredholm operators with a given
index is open (and other facts) is very sensitive to the order in which the
expected results are proved. As the Fredholm alternative is not available in
the (P · Q) setting, we take a novel approach and deduce many facts from
the formula for the index of a product. We also study unbounded operators
affiliated to a “skew-corner”. The following discussion is a mild paraphrasing
of the corresponding discussion in [17].

4.2. Preliminaries. If T is an operator in the von Neumann algebra N (or
T is closed, densely defined, affiliated to N and T = PTQ, in which case we
say T is affiliated to PNQ) then we let RT and NT be the projections on
the closure of the range of T and the kernel of T , respectively. If T ∈ PNQ,
(or T is closed and affiliated to PNQ) then we will denote the projection

on kerQ(T ) = ker(T|Q(H)
) = ker(T ) ∩ Q(H) by NQ

T and observe that NQ
T =

QNT = NTQ ≤ Q while RT ≤ P.

Definition 4.1. With the usual assumptions on N let P and Q be projections
(not necessarily infinite, or equivalent) in N , and let T ∈ PNQ. Then T is
called (P ·Q)-Fredholm if and only if

(1) τ(NQ
T ) <∞, and τ(NP

T∗) <∞, and

(2) There exists a τ-finite projection E ≤ P with range(P − E) ⊆ range(T ).

If T is (P ·Q)-Fredholm then the (P ·Q)-Index of T is

Index(T ) = τ(NQ
T )− τ(NP

T∗).

The elementary consequences of this definition we record in the next result.

Lemma 4.2. With the usual assumptions on N , let T ∈ PNQ. Then,

(1) With P1 = RT and Q1 = Q − NQ
T = supp(T ) = RT∗ , we have that T is

(P ·Q)-Fredholm if and only if T is (P1 · Q1)-Fredholm and in this case, the
(P1 ·Q1)-Index of T is 0, while the (P ·Q)-Index of T is τ(Q−Q1)−τ(P −P1).

(2) If T is (P · Q)-Fredholm, then T ∗ is (Q · P )-Fredholm and Index(T ∗) =
− Index(T ). If T = V |T | is the polar decomposition, then V is (P · Q)-
Fredholm with Index(V ) = Index(T ) and |T | is (Q ·Q)-Fredholm of index 0.
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(3) If T = V |T | is (P · Q)-Fredholm, then there exists a spectral projec-
tion Q0 ≤ Q for |T | so that τ(Q − Q0) < ∞, and P0 = V Q0V

∗ satisfies:
τ(P − P0) < ∞, P0(H) = range(TQ0) ⊂ range(T ), Q0(H) ⊂ range(T ∗),
TQ0 = P0TQ0 : Q0(H) → P0(H) and T ∗P0 = Q0T

∗P0 : P0(H) → Q0(H) are
invertible as bounded linear operators.

(4) The set of all (P · Q)-Fredholm operators in PNQ is open in the norm
topology.

We will not discuss the proof of this lemma here referring to [17].

4.3. The parametrix. The material in this subsection is not standard and
so we discuss it in more detail.

Definition 4.3. If T ∈ PNQ, then a parametrix for T is an operator
S ∈ QNP satisfying ST = Q + k1 and TS = P + k2 where k1 ∈ KQNQ and
k2 ∈ KPNP .

Lemma 4.4. With the usual assumptions on N , then T ∈ PNQ is (P ·Q)-
Fredholm if and only if T has a parametrix S ∈ QNP . Moreover, any such
parametrix is (Q · P )-Fredholm.

Proof. Let S be a parametrix for T . Then TS = P + k2 is Fredholm in
PNP by Appendix B of [48]. Hence there exists a projection P1 ≤ P with
τ(P − P1) < ∞ and P1(H) ⊂ range(TS) ⊂ range(T ). So, NP

T∗ = P − RT ≤
P −P1 is τ -finite. On the other hand, T ∗S∗ = (ST )∗ = Q+k∗1 is Fredholm in

QNQ again by Appendix B of [48] and so by the same argument NQ
T is also

τ -finite. That is, T is (P ·Q)-Fredholm and similarly S is (Q · P )-Fredholm.
Now suppose that T is (P ·Q)-Fredholm. By part (3) of Lemma 4.2, there

exist projections Q0 and P0 which are τ -cofinite in Q and P respectively
so that TQ0 = P0TQ0 : Q0(H) → P0(H) is invertible as a bounded linear
operator. Let S be its inverse. Then S ∈ N so that S = Q0SP0 ∈ QNP , and
STQ0 = Q0 and TQ0S = P0. Finally,

ST = STQ0+ST (Q−Q0) = Q0+k = Q+k1 and TS = TQ0S = P0 = P+k2,

where k1 ∈ KQNQ and k2 ∈ KPNP . That is, S is a parametrix for T . �

Lemma 4.5. We retain the usual assumptions on N .

(1) Let T ∈ PNQ be (P · Q)-Fredholm. If k ∈ PKNQ then T + k is also
(P ·Q)-Fredholm.

(2) If T ∈ PNQ is (P ·Q)-Fredholm and S ∈ GNP is (G ·P )-Fredholm, then
ST is (G ·Q)-Fredholm.



The Local Index Formula in Noncommutative Geometry Revisited 15

Proof. One checks that if S is a parametrix for T then S is also a parametrix
for T + k and that if T1 is a parametrix for T and S1 is a parametrix for S,
then T1S1 is a parametrix for ST . �

Proposition 4.6. Let G, P, Q be projections in N (with trace τ) and let
T ∈ PNQ be (P ·Q)-Fredholm and S ∈ GNP be (G·P )-Fredholm, respectively.
Then, ST is (G ·Q)-Fredholm and

Index(ST ) = Index(S) + Index(T ).

The proof of this proposition essentially follows Breuer in [5] although there
are changes forced by the greater generality of our discussion. The proof of
the Proposition rests on the following:

Lemma 4.7. (Cf. Lemma 1 of [5]) With the hypotheses of the Proposition:

NQ
ST −NQ

T ∼ inf(RT , N
P
S ).

Corollary 4.8. (Invariance properties of the (P ·Q)-Index) Let T ∈ PNQ.

(1) If T is (P ·Q)-Fredholm then there exists δ > 0 so that if S ∈ PNQ and
‖T − S‖ < δ then S is (P ·Q)-Fredholm and Index(S) = Index(T ).
(2) If T is (P ·Q)-Fredholm and k ∈ PKNQ then T + k is (P ·Q)-Fredholm
and Index(T + k) = Index(T ).

We omit the details of the proofs referring again to [17].

4.4. Spectral flow. In [47] spectral flow is defined in a semifinite factor
using the index of Breuer-Fredholm operators in a skew-corner PNQ (in par-
ticular the operator PQ) and uses the product theorem for the index and other
standard properties. The non-factor case for Toeplitz operators (P = Q) is
covered in [48] but the more subtle “skew-corner” case did not appear in the
literature until [17]. The discussion below explains what is needed to extend
[47] to the nonfactor setting. This material was required for [10, 12, 16] al-
though we did not discuss it there. For the McKean-Singer formula we need
to generalise some of these results to closed, densely defined operators T affil-
iated to N satisfying T = PTQ (in our terminology, T is affiliated to PNQ)
by studying the map T 7→ T (1 + |T |2)−1/2.

Definition 4.9. A closed, densely defined operator T affiliated to PNQ is
(P ·Q)-Fredholm if

(1) τ(NQ
T ) <∞, and τ(NP

T∗) <∞, and

(2) There exists a τ-finite projection E ≤ P with range(P − E) ⊂ range(T ).

If T is (P ·Q)-Fredholm then the (P ·Q)-Index of T is: Index(T ) = τ(NQ
T )−

τ(NP
T∗).
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Remark. Using the equalities: range(1 + |T |2)−1/2 = dom((1 + |T |2)1/2) =
dom(|T |) = dom(T ) one can show that: range(T ) = range(T (1 + |T |2)−1/2);
ker(T ) = ker(T (1+ |T |2)−1/2) and ker(T ∗) = ker([T (1+ |T |2)−1/2]∗). A little
more thought completes the following:

Proposition 4.10. (Index) If T is a closed, densely defined operator af-
filiated to PNQ, then T is (P · Q)-Fredholm if and only if the operator
T (1 + |T |2)−1/2 is (P ·Q)-Fredholm in PNQ. In this case,

Index(T ) = Index(T (1 + |T |2)−1/2).

The expected properties of these Fredholm operators now follow in a relatively
straightforward way, [17].

Proposition 4.11. (i) (Continuity) If T is a closed, densely defined op-
erator affiliated to PNQ, and A ∈ PNQ then T + A is also closed, densely
defined, and affiliated to PNQ and

‖T (1 + |T |2)−1/2 − (T +A)(1 + |T +A|2)−1/2‖ ≤ ‖A‖.
(ii) (Index continuity) If T is affiliated to PNQ and T is (P ·Q)-Fredholm
then there exists ǫ > 0 so that if A ∈ PNQ and ‖A‖ < ǫ, then T + A is
(P ·Q)-Fredholm and

Index(T +A) = Index(T ).

(iii) (Compact perturbation) Let T be any closed, densely defined operator
affiliated to PNQ.

(1) If k ∈ PKNQ, then the difference T (1+|T |2)−1/2−(T+k)(1+|T+k|2)−1/2

is in PKNQ

(2) If T is (P ·Q)-Fredholm then for all k ∈ PKNQ, T+k is (P ·Q)-Fredholm
and

Index(T + k) = Index(T ).

4.5. The unbounded parametrix. For many geometric examples, the fol-
lowing is a useful notion. If T is a closed, densely defined, unbounded operator
affiliated to PNQ then a parametrix for T is a bounded everywhere defined
operator S ∈ QNP such that:

(1) TS = P + k1 for k1 ∈ PKNP ,

(2) ST = Q+ k2 for k2 ∈ QKNQ.

Note that, as T is closed and S is bounded, TS = TS is everywhere defined
and bounded by (1). For example, if D is an unbounded self-adjoint oper-
ator and (1 + D2)−1 ∈ KN then D(1 + D2)−1 is a parametrix for D since

D(1 +D2)−1D = D2(1 +D2)−1 = 1− (1 +D2)−1.

Lemma 4.12. If T is a closed, densely defined, unbounded operator affiliated
to PNQ then T has a parametrix if and only if T is (P ·Q)-Fredholm.
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Proof. If S is a parametrix for T then by (1) TS is everywhere defined and
Fredholm in PNP . So there exists a projection E ≤ P with τ(E) < ∞ and:
range(P − E) ⊂ range(TS) ⊂ range(T ). In particular, this implies (since TS
is bounded) that NP

(TS)∗ is τ -finite. But S∗T ∗ ⊆ (TS)∗ and so NP
T∗ ≤ NP

(TS)∗ .

That is, τ(NP
T∗) < ∞. Now, ST = Q + k2 is (Q · Q)-Fredholm and so has a

τ -finite Q-kernel. But NQ
T ≤ NQ

ST
. That is, τ(NQ

T ) < ∞ and T is (P · Q)-

Fredholm.
If T = V |T | is (P · Q)-Fredholm then |T |(1 + |T |2)−1/2 is bounded and

(Q·Q)-Fredholm and so has a parametrix S which we can take to be a function
of |T |(1 + |T |2)−1/2. Thus S commutes with (1 + |T |2)−1/2. One then checks
that (1 + |T |2)−1/2SV ∗ is a parametrix for T . �

Remark. In general a parametrix for a genuinely unbounded Fredholm op-
erator is not Fredholm as its range can not contain the range of a cofinite
projection. For instance, the parametrix of −i d

dθ on L2(S1) is a compact
operator, and so certainly not invertible modulo compact operators.

4.6. The generalised McKean-Singer formula. We were somewhat sur-
prised that the following result had not been proved anywhere in the literature.

Theorem 4.13. (McKean-Singer) Let D be an unbounded self-adjoint oper-
ator affiliated to the semifinite von Neumann algebra N (with faithful normal
semifinite trace τ) with (1 + D2)−1 ∈ KN . Let γ be a self-adjoint unitary
in N which anticommutes with D. Finally, let f be a continuous even func-
tion on R with f(0) 6= 0 and f(D) trace-class. Let D+ = P⊥DP where
P = (γ + 1)/2 and P⊥ = 1 − P . Then as an operator affiliated to P⊥NP ,
D+ is (P⊥ · P )-Fredholm and

Index(D+) =
1

f(0)
τ (γf(D)) .

Proof. Let D− = PDP⊥. Since {D, γ} = 0, we see that relative to the
decomposition 1 = P ⊕ P⊥:

γ =

(
1 0
0 −1

)
, D =

(
0 D−

D+ 0

)
,

D2 =

(
D−D+ 0

0 D+D−

)
, |D| =

(
|D+| 0
0 |D−|

)
.

We have already observed that D(1 +D2)−1 is a parametrix for D. But,
then:

D(1 +D2)−1 =

(
0 D−(P⊥ + |D−|2)−1

D+(P + |D+|2)−1 0

)
.

Hence D−(P⊥ + |D−|2)−1 is a parametrix for D+ and so D+ is (P⊥ · P )-
Fredholm. Let D+ = V |D+| be the polar decomposition of D+ so that
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D− = D+∗ = |D+|V ∗. Then V ∈ N is a partial isometry with initial space
P1 = V ∗V = supp(D+) ≤ P and final space Q1 = V V ∗ = range(D+)− =
supp(D−) ≤ P⊥. Then, ker(D+) = P0(H) as an operator on P (H) where
P0 = P −P1. Similarly, coker(D+) = ker(D−) = Q0(H) where Q0 = P⊥−Q1.

Now, |D+|2 = D−D+ = D−D−∗ = V ∗|D−|2V so that |D+| = V ∗|D−|V
and if g is any bounded continuous function then, g(|D+||P1(H)

) =

V ∗g(|D−||Q1(H)
)V. But, as an operators on P (H), and respectively, P⊥(H)

we have:

g(|D+|) = P1g(|D+|)P1 ⊕ g(0)P0 = g(|D+||P1(H)
)⊕ g(0)P0 and

g(|D−|) = Q1g(|D−|)Q1 ⊕ g(0)Q0 = g(|D−||Q1(H)
)⊕ g(0)Q0.

Finally, since f is even, we have f(D) = f(|D|) and so:

γf(D) =

(
f(|D+|) 0

0 −f(|D−|)

)

=

(
f(|D+||P1(H)

)⊕ f(0)P0) 0

0 −f(|D−||Q1(H)
)⊕−f(0)Q0

)

=

(
V ∗f(|D−||Q1(H)

)V ⊕ f(0)P0) 0

0 −f(|D−||Q1(H)
)⊕−f(0)Q0

)
.

Hence, τ(γf(D)) = f(0)τ(P0)−f(0)τ(Q0) = f(0) Index(D+).
�

Corollary 4.14. Let (A,H,D) be an even spectral triple with grading γ,
(1 + D2)−1/2 ∈ Ln(N ) and p ∈ A, a projection. Then, relative to the decom-
position afforded by γ as above, we have:

p =

(
p+ 0
0 p−

)
, where p+ = PpP = Pp and p− = P⊥pP⊥ = pP⊥.

So, pD+p = pP⊥DPp = p−Dp+ is an operator affiliated to p−Np+ we have
that p−D+p+ is (p−·p+)-Fredholm and for any fixed a ≥ 0 its (p− · p+)-index
is given by:

Index(pD+p) = Index(p−D+p+) = (1 + a)n/2τ
(
γp

(
p+ a+ (pDp)2

)−n/2
)
.

Proof. In the above version of the McKean-Singer theorem, we replace A with
pAp which is a unital subalgebra of the semifinite von Neumann algebra pNp.
Moreover, the operator pDp is self-adjoint and affiliated to pNp, and pγ is a
grading in pNp. One easily checks that

(pDp)+ = p−D+p+.

Let f(x) = (1+ a+ x2)−n/2. We may apply the McKean-Singer formula once
we show that (p+ a+(pDp)2)−1/2 ∈ Ln(pNp). It suffices to do this for a = 0



The Local Index Formula in Noncommutative Geometry Revisited 19

since

(p+ a+ (pDp)2)−1/2 ≤ (p+ (pDp)2)−1/2.

Here is the calculation:

p(1 +D2)−1p− (p+ (pDp)2)−1

= p[(1 +D2)−1 − {(p+ (pDp)2) + (1− p)}−1]p

= p(1+D2)−1
(
(p+(pDp)2)+(1−p)−(1+D2)

)
{(p+(pDp)2)+(1−p)}−1p

= p(1+D2)−1
(
(pDp)2−D2

)
p(p+(pDp)2)−1p

= p(1 +D2)−1 ([p,D]pDp+Dp[D, p] +D[p,D]) p(p+ (pDp)2)−1p

= p(1 +D2)−1[p,D]pDp(p+ (pDp)2)−1p

+p(1 +D2)−1Dp[D, p]p(p+ (pDp)2)−1p

+p(1 +D2)−1D[p,D]p(p+ (pDp)2)−1p.

Now, since |D(1 + D2)−1| ≤ (1 + D2)−1/2, it follows that the three terms in
the last equality are in Ln/2, Ln, and Ln, respectively, and so their sum is in
Ln. Since, p(1 + D2)−1p ∈ Ln/2, we see from the first line in the displayed
equations that (p+ (pDp)2)−1 is in Ln.

Now, given this new information, we reconsider the three terms in the last
line again, and see that they are in Ln/2, Ln · Ln, and Ln · Ln, respectively,
and so their sum is in Ln/2. Thus, (p+(pDp)2)−1 is, in fact, in Ln/2: in other
words, (p+ (pDp)2)−1/2 is in Ln as claimed. �

From now on, we follow convention and denote the above index by
Index(pD+p); effectively disguising the fact that pD+p is, in fact, Fredholm
relative to the “skew-corner,” p−Np+.

Remark: The ideal Ln(N ) can be replaced by any symmetric ideal I ⊂ KN

provided we use an even function f satisfying f(|T |) ∈ L1 for all T ∈ I. The
formula then becomes:

Index(pD+p) = (1/f(0))τ
(
γpf

(
(
(
p+ (pDp)2

)−1/2
))

.

In particular, if (A,H,D) is θ-summable (i.e. e−tD2

is trace class for all t > 0),

and f(x) = e−tx2

, t > 0, the formula becomes:

Index(pD+p) = τ
(
γpe−t(pDp)2

)
.

5. Semifinite spectral triples and KK-theory

Spectral triples in the usual B(H) case define elements of K-homology
[23]. The consequence of [24] is that cyclic cohomology of a pre-C∗-algebra A
entails studying semifinite Fredholm modules, in the sense of Section 8. Thus
we study in this Section semifinite Kasparov modules.

In [42] semifinite spectral triples were constructed for a wide class of graph
C∗-algebras. The construction of these spectral triples depended heavily on
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first constructing a Kasparov module. In [43] this relationship between Kas-
parov modules and semifinite spectral triples was seen again for k-graph al-
gebras. In both [42] and [43] a natural compatibility was observed between
the K-theory-valued index coming from the Kasparov module and the nu-
merical index coming from the semifinite spectral triple. This suggests the
study of the relationship between semifinite spectral triples and KK-theory.
The results of this study are in [37] where one sees that there is a more gen-
eral framework which emerges naturally. This framework is captured in the
following definition.

Definition 5.1. A von Neumann spectral triple (A,H,D) relative to to a
pair (N ,J ) consists of a representation of the ∗-algebra A in a von Neumann
algebra N acting on the Hilbert space H, together with a norm closed ideal J
and a self-adjoint operator D affiliated to N such that

(1) [D, a] is defined on Dom(D) and extends to a bounded operator on H
for all a ∈ A.

(2) a(λ−D)−1 ∈ J for all λ /∈ R and a ∈ A.

The spectral triple is said to be unital if the unit of N is in A.

We will only consider the unital case of this definition. Recall that we
write FD = D(1+D2)−1/2 and we let A denote the C∗-closure of A which we
assume to be separable.

The instance of this definition of greatest relevance for us is when J is
given by K(N , τ), the norm closed ideal of N generated by the finite trace
projections.

The first major result of [37] can be summarised as: from any ungraded
von Neumann spectral triple (A,H,D) relative to (N ,J ), we can construct
a Kasparov module (MA, FD) representing an element in KK1(A,J ) where
the homomorphism MA : A→ EndJ (J ) is left multiplication by elements in
A, and EndJ (J ) is the bounded adjointable endomorphisms of the right J
C∗-module J . Similarly, graded spectral triples give even KK-classes.

The second major result rests on interpreting spectral flow in terms of the
Kasparov product. First, for any unitary u ∈ A, the unbounded spectral flow
from D to u∗Du along {Dt = (1 − t)D + tuDu∗} is defined to be the ‘von
Neumann spectral flow’ along the bounded path {FDt = Dt((1 + D2

t )
−1/2}.

This von Neumann spectral flow is defined in [37] to be an element of K0(J )
using ideas underlying the definition of numerical spectral flow, Definition 3.1,
but now regarding the index of the Fredholm pairs (Pi−1, Pi) as an element
of K0(J ). Then it is shown in [37], assuming that J is σ-unital, that the
unbounded spectral flow along {Dt} is given by the Kasparov product [u]⊗A

[(MA, FD)] of the K-theory class of u with the KK-class of (MA, FD).
As J is typically not σ-unital, and to connect with the numerical spectral

flow of previous sections, we require the following result.
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Proposition 5.2. Let (A,H,D) be a von Neumann spectral triple relative to
(N ,J ) with A separable in norm. Let B be the smallest C∗-algebra in B(H)
containing the elements

FD[FD, a] b[FD, a]
FDb[FD, a] aϕ(D)

for all a, b ∈ A and ϕ ∈ C0(R). Then B is separable, contained in J and the
pair (MA, FD) is a Kasparov A-B-module. In particular B is σ-unital.

Specialising to the semifinite case we have the compatibility of the Kas-
parov product and the numerical index given by τ . The proof of this result
can be found in [37].

Proposition 5.3. Let (A,H,D,N , τ) be a semifinite spectral triple such that
(1 + D2)−1/2 ∈ Lp+1(N , τ) and [(1 + D2)1/2, a] is bounded for all a ∈ A.
Suppose also that A is norm separable. Let [(MA, FD)] ∈ KKj(A,B) be the
Kasparov module associated to (A,H,D,N , τ) (j = 0 if the spectral triple is
Z2-graded and j = 1 otherwise). Then for x ∈ Kj(A) we have

(τ∗ ◦ i∗)(x ⊗A [(MA, FD)]) = 〈x, (A,H,D,N , τ)〉
where i∗ : K∗(B) → K∗(KN ) is the map induced by inclusion, τ∗ : K0(KN ) →
R is the map induced by the trace and the pairing on the right hand side is
the analytic index pairing.

Thus we now have a clear picture of the K-theoretic interpretation of
semifinite spectral triples and their index pairing with K-theory: semifinite
spectral triples are specific types of representatives of KK classes. This of
course specialises to the original B(H) setting.

6. The odd semifinite index formula and an outline of the proof

6.1. Statement of the Main Result. The statement of the theorem re-
quires a few preliminaries. First, we require multi-indices (k1, ..., km), ki ∈
{0, 1, 2, ...}, whose length m will always be clear from the context. We write
|k| = k1 + · · ·+ km, and define α(k) by

α(k)−1 = k1!k2! · · · km!(k1 + 1)(k1 + k2 + 2) · · · (|k|+m).

The numbers σn,j are defined by the equality

n−1∏

j=0

(z + j + 1/2) =

n∑

j=0

zjσn,j .

These are just the elementary symmetric functions of 1/2, 3/2, ..., n− 1/2.
Now we define, for (A,H,D) having isolated spectral dimension and

b = a0[D, a1](k1) · · · [D, am](km)(1 +D2)−m/2−|k|

τj(b) = resz=(1−p)/2(z − (1− p)/2)jζb(z − (1− q)/2).
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The hypothesis of isolated spectral dimension is clearly necessary here in order
to define the residues.

With these preliminaries we can state the main result.

Theorem 6.1 (Semifinite Odd Local Index formula). Let (A,H,D) be an
odd finitely summable QC∞ spectral triple with spectral dimension q ≥ 1. Let
N = [q/2] + 1 where [·] denotes the integer part, and let u ∈ A be unitary.
Then

1) sf(D, u∗Du) = 1√
2πi
resr=(1−q)/2

(∑2N−1
m=1,odd φ

r
m(Chm(u))

)

where for a0, ..., am ∈ A, l = {a + iv : v ∈ R}, 0 < a < 1/2, Rs(λ) =
(λ− (1 + s2 +D2))−1 and r > 0 we define φrm(a0, a1, ..., am) to be

−2
√
2πi

Γ((m+ 1)/2)

∫ ∞

0

smτ

(
1

2πi

∫

l

λ−q/2−ra0Rs(λ)[D, a1]Rs(λ) · · · [D, am]Rs(λ)dλ

)
ds.

In particular the sum on the right hand side of 1) analytically continues to
a deleted neighbourhood of r = (1 − q)/2 with at worst a simple pole at r =

(1 − q)/2. Moreover, the complex function-valued cochain (φrm)2N−1
m=1,odd is a

(b, B) cocycle for A modulo functions holomorphic in a half-plane containing
r = (1 − q)/2.

2) The spectral flow sf(D, u∗Du) is also the residue of a sum of zeta func-
tions:

1√
2πi

resr=(1−q)/2




2N−1∑

m=1,odd

2N−1−m∑

|k|=0

|k|+(m−1)/2∑

j=0

(−1)|k|+mα(k)Γ((m + 1)/2)σ|k|+(m−1)/2,j

(r − (1 − p)/2)
j
τ
(
u
∗
[D, u]

(k1)
[D, u

∗
]
(k2) · · · [D, u]

(km)
(1 + D2

)
−m/2−|k|−r+(1−q)/2

))
.

In particular the sum of zeta functions on the right hand side analytically
continues to a deleted neighbourhood of r = (1 − q)/2 and has at worst a
simple pole at r = (1− q)/2.

3) If (A,H,D) also has isolated spectral dimension then

sf(D, u∗Du) = 1√
2πi

∑

m

φm(Chm(u))

where for a0, ..., am ∈ A

φm(a0, ..., am) = resr=(1−p)/2φ
r
m(a0, ..., am) =

√
2πi

2N−1−m∑

|k|=0

(−1)|k|α(k)

×
|k|+(m−1)/2∑

j=0

σ(|k|+(m−1)/2),jτj
(
a0[D, a1]

(k1) · · · [D, am]
(km)

(1 + D2
)
−|k|−m/2

)
,

and (φm)2N−1
m=1,odd is a (b, B) cocycle for A. When [q] = 2n is even, the term

with m = 2N − 1 is zero, and for m = 1, 3, ..., 2N − 3, all the top terms with
|k| = 2N − 1−m are zero.
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Remark. Since φm is a multilinear functional, it is well-defined on elements
of A⊗m+1 such as Chm(u).

Corollary 6.2. For 1 ≤ q < 2, the statements in 3) of Theorem 6.1 are true
without the assumption of isolated dimension spectrum.

6.2. Outline of the proof of the odd semifinite local index formula.
The proof may be divided initially into two parts.

(i) First we manipulate the integrand of the spectral flow formula into a
form that allows us to use the resolvent expansion to obtain a perturbative
formula. The individual terms in this resulting formula suggest the definition
of a substitute, for finitely summable spectral triples, of the JLO cocycle of
entire cyclic cohomology. Our substitute we term the ‘resolvent cocycle’. It
is a function-valued (b, B)-cocycle, modulo functions holomorphic in a certain
half-plane.

(ii) The pseudodifferential calculus of [25] then enables us to write the
spectral flow as a sum of zeta functions, modulo functions holomorphic in a
certain half-plane. If we impose the isolated spectral dimension assumption
we can analytically continue these zeta functions and take residues at a prede-
termined critical point. We then see that spectral flow is obtained by pairing
Ch∗(u) with a variant of the Connes-Moscovici residue cocycle.

We now expand on these two basic parts. To successfully apply a pertur-
bation technique to the spectral flow formula, Equation (2), we require ‘more
room to manoeuvre’. Three basic steps are involved in this part. First, using
an idea of [33], we ‘double-up’ the data (H,D) from our spectral triple and
unitary u by tensoring on two copies of C2 to H. This may be viewed as
employing a formal (Clifford) Bott periodicity and replaces the trace τ by a
supertrace Sτ .

Definition 6.3. From the Hilbert space H̃ = C2 ⊗ C2 ⊗ H acted on by the
von Neumann algebra, Ñ = M2 ⊗M2 ⊗ N . Introduce the two dimensional
Clifford algebra in the form

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Define the grading on H̃ by Γ = σ2 ⊗ σ3 ⊗ 1 ∈ Ñ .

Let u ∈ A be unitary and introduce the following even operators (i.e., they
commute with Γ):

D̃ = σ2 ⊗ 12 ⊗D, v = σ3 ⊗
(

0 −iu−1

iu 0

)
, Dr = (1− r)D̃ − rvD̃v.

The second step is to use another idea of [33] and introduce the two parameter
family of operators:

Dr,s = Dr + sv
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for r ∈ [0, 1], s ∈ [0,∞). Clearly, the unbounded operators above are affiliated

with Ñ . Notice that

(5) Dr ≡ Dr,0 = σ2 ⊗
(
D + ru−1[D, u] 0

0 D + ru[D, u−1]

)
.

It is the appearance of both u and u−1 in this expression that requires our
observation that Ch∗(u−1)+Ch∗(u) is a coboundary in the (b, B) bicomplex,
Equation (4).

The third step is to observe that, as the spectral flow is computed by
integrating an exact one-form on an affine space of perturbations of D̃, we
may compute spectral flow from D to u∗Du along different paths joining the
endpoints; initially it is given by integrating with respect to r when s = 0 that
is along {Dr} and then along {D0,s}. The key issue here is that the spectral
flow formula gives an an integral over the s variable with r = 0 in which the
perturbation in (2), instead of being of first order in D̃, is now zeroth order.
Thus we obtain a new formula for spectral flow

sf(D, u∗Du) = 1

Cq/2+r

∫ ∞

0

Sτ
(
v(1 + D̃2 + s{D̃, v}+ s2)−q/2−r

)
ds

where {·, ·} denotes the anticommutator. Crucially, the anticommutator {D̃, v}
is bounded, and we are now in a position to employ perturbation theory in
the form of the resolvent expansion.

Amplifying now on the second part, the pseudodifferential calculus of [25],
and the ‘Taylor expansion’ in the form introduced by Higson, [35] are needed
in order to simplify the last displayed formula. First we write

(1+D̃2+s2+s{D̃, v})−q/2−r =
1

2πi

∫

l

λ−q/2−r(λ−(1+D̃2+s2+s{D̃, v}))−1dλ,

where the vertical line l lies between 0 and spec(1 + D̃2 + s2 + s{D̃, v}) for
all s ∈ [0,∞). We then apply the resolvent expansion (writing Rs(λ) =

(λ− (1 + D̃2 + s2))−1)
(6)

(λ− (1+ D̃2+s2+s{D̃, v}))−1 =

2N−1∑

m=0

(
Rs(λ)s{D̃, v}

)m

Rs(λ)+Remainder.

Then modulo functions of r holomorphic in a half-plane containing r = (1 −
q)/2
(7)

sf(D, u∗Du)Cq/2+r =
1

2πi

2N−1∑

m=1,odd

∫ ∞

0
smSτ

(
p

∫

l
λ−q/2−r(Rs(λ){D̃, v})mRs(λ)dλ

)
ds.

The even terms in the expansion (6) are seen to vanish by elementary Clifford-
type manipulations. The ‘constant’

Cq/2+r =
Γ(r − (1 − q)/2)Γ(1/2)

Γ(q/2 + r)
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has simple poles at r = (1 − q)/2 − k, k = 0, 1, 2, ..., with residue equal to
1 at r = (1 − q)/2. Therefore, since the error terms in Equation (7) are
holomorphic at r = (1 − q)/2, we may take residues at r = (1 − q)/2 of the
analytic continuations of both sides of (7) even though the individual terms
in this expansion need not analytically continue.

One may perform the ‘super’ part of the trace to obtain a formula for
the spectral flow in terms of the original spectral triple (A,H,D) and the
unitary u. The general structure of this formula suggests the definition of a
function-valued (b, B)-cochain on the algebra A, the resolvent cocycle. Using
techniques inspired by Higson, [35], we show that this is a cocycle modulo
functions of r holomorphic in a half-plane containing (1− q)/2. This ‘almost
cocycle’ property proves 1) of our theorem above.

Returning to our spectral flow computations we apply the pseudodiffer-
ential calculus to each term of the resolvent expansion. This moves all the
resolvents to the right, allowing us to use Cauchy’s formula to perform the
complex line integral. We then perform the remaining integral over s ∈ [0,∞),
and so obtain our penultimate formula:

sf(D, u∗Du)Cq/2+r

=

2N−1∑

m=1,odd

2N−1−m∑

|k|=0

Ck,m,rSτ
(
v{D̃, v}(k1) · · · {D̃, v}(km)(1 + D̃2)−(q−1)/2−|k|−m/2−r

)
,

(8)

where equality is again modulo functions of r holomorphic in a half-plane
containing (1 − q)/2. That such a formula exists is surprising (and for q < 2
quite useful) as we have not invoked the isolated spectral dimension hypoth-
esis. The sum of zeta functions in Equation (8) clearly has a simple pole at
r = (1 − q)/2, with residue equal to the spectral flow. This proves part 2) of
our theorem.

Finally assume that the individual zeta functions possess analytic contin-
uations to a deleted neighbourhod of r = (1− q)/2 so we can take residues of
the zeta functions to obtain our version of the residue cocycle. We can then
prove part 3) of the theorem. The cocycle property for the residue cocycle
follows from the ‘almost’ cocycle property of the resolvent cocycle upon taking
residues.

6.3. Some novel aspects of our approach. We emphasise that there are
important differences in our approach from that of [25] and [35].

• Only the final step of both of our proofs requires an analytic continuation
property of the generalised zeta functions that are derived from the resolvent
cocycle. Indeed, we express spectral flow and the index in both the odd and
even (see Section 7) cases as the residue of a sum of zeta functions without
invoking any analytic continuation hypothesis. Naturally our results specialise
to the standard B(H) case.
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•We make no assumptions on the decay of our zeta functions along vertical
lines in the complex plane thus reducing the side conditions that need to be
checked when applying the local index formula of [25].

• Our proof that the residue cocycle [25] is indeed a (b, B)-cocycle is quite
simple even in the general semifinite case by virtue of using the algebraic
properties of the resolvent cocycle.

• The strategy of both proofs is straightforward and rests on algebraic
calculations. Of course the algebra has to be justified at various points using
some sharp estimates (but these all have elementary proofs).

• We remark that there is an unrenormalised version of the residue cocycle
in [25] containing an infinite number of terms in the case that one of the terms
in the expansion has an essential singularity, whereas the renormalised version
in [25] always has a bounded number of terms. The unrenormalised version
presents an issue of convergence which is difficult to address. Since we do not
pass through an intermediate step where the cocycle contains a potentially
infinite number of terms, we are free to allow essential singularities from the
outset.

7. The even case of the local index formula

We write P = (1 + γ)/2 and D+ = (1 − P )DP = P⊥DP . The operator
D+ : H+ = P (H) → H− = P⊥(H) is, as we shall see, an unbounded Breuer-
Fredholm operator.

As we remarked previously the articles [23, 40, 16] contain the details of the
definition of the (b, B) bicomplex. The (b, B) Chern character of a projection
in an algebra A is an even (b, B) cycle with 2m-th term,m ≥ 1, given by

Ch2m(p) = (−1)m
(2m)!

2(m!)
(2p− 1)⊗ p⊗2m.

For m = 0 the definition is Ch0(p) = p.
For our main result in the even case we use the same notation as in the

odd case, with the exception that σn,j shall denote the elementary symmetric
functions of {1, ..., n}, i.e.

n−1∏

j=0

(z + j) =

n∑

j=1

zjσn,j .

We recall the notation q = inf{k ∈ R : τ((1 + D2)−k/2) < ∞} for the
spectral dimension of (A,H,D) and we assume it is isolated so that τj(b) =
resz=(1−q)/2(z − (1− q)/2)jζb(z − (1− q)/2) is defined.

Theorem 7.1 (Semifinite Even Local Index formula). Let (A,H,D) be an

even QC∞ spectral triple with spectral dimension q ≥ 1. Let N = [ q+1
2 ], where

[·] denotes the integer part, and let p ∈ A be a self-adjoint projection. Then
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1) Index(pD+p) = resr=(1−q)/2

(∑2N
m=0,even φ

r
m(Chm(p))

)

where for a0, ..., am ∈ A, l = {a + iv : v ∈ R}, 0 < a < 1/2, Rs(λ) =
(λ− (1 + s2 +D2))−1 and r > 1/2 we define φrm(a0, a1, ..., am) to be

(m/2)!

m!

∫ ∞

0
2m+1smτ

(
γ

1

2πi

∫

l
λ−q/2−ra0Rs(λ)[D, a1]Rs(λ) · · · [D, am]Rs(λ)dλ

)
ds.

In particular the sum on the right hand side of 1) analytically continues to
a deleted neighbourhood of r = (1 − q)/2 with at worst a simple pole at r =
(1 − q)/2. Moreover, the complex function-valued cochain (φrm)2Nm=0,even is a
(b, B) cocycle for A modulo functions holomorphic in a half-plane containing
r = (1 − q)/2.

2) The index, Index(pD+p) is also the residue of a sum of zeta functions:

resr=(1−q)/2

(
2N∑

m=0,even

2N−m∑

|k|=0

|k|+m/2∑

j=1

(−1)|k|+m/2α(k)
(m/2)!

2m!
σ|k|+m/2,j

×(r − (1 − q)/2)jτ
(
γ(2p− 1)[D, p](k1)[D, p](k2) · · · [D, p](km)(1 + D2)−m/2−|k|−r+(1−q)/2

))
,

(for m = 0 we replace (2p− 1) by 2p). In particular the sum of zeta functions
on the right hand side analytically continues to a deleted neighbourhood of
r = (1 − q)/2 and has at worst a simple pole at r = (1 − q)/2.

3) If (A,H,D) also has isolated spectral dimension then

Index(pD+p) =
2N∑

m=0,even

φm(Chm(p))

where for a0, ..., am ∈ A we have φ0(a0) = resr=(1−q)/2φ
r
0(a0) = τ−1(γa0) and

for m ≥ 2

φm(a0, ..., am) = resr=(1−q)/2φ
r
m(a0, ..., am) =

2N−m∑

|k|=0

(−1)|k|α(k)

×
|k|+m/2∑

j=1

σ(|k|+m/2),jτj−1

(
γa0[D, a1]

(k1) · · · [D, am](km)(1 +D2)−|k|−m/2
)
,

and (φm)2Nm=0,even is a (b, B) cocycle for A. When [q] = 2n + 1 is odd, the
term with m = 2N is zero, and for m = 0, 2, ..., 2N− 2, all the top terms with
|k| = 2N −m are zero.

Corollary 7.2. For 1 ≤ q < 2, the statements in 3) of our theorem are true
without the assumption of isolated dimension spectrum.

The proof of this result is very similar to the odd case if one starts from
the generalised McKean-Singer formula instead of the spectral flow formula.
We will not repeat the overview here, see [17].
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8. The homotopy to the Chern character in semifinite NCG.

As we explained in the introduction, there is another way to prove the
local index formula in the semifinite situation. The idea is to show that the
resolvent cocycle is an index cocycle by a direct argument using a homotopy
to the semifinite Chern character. To define the Chern character of a finitely
summable Fredholm module in this generality we start with a definition.

Definition 8.1. A pre-Fredholm module for a unital topological ∗-algebra
A is a pair (H, F ) where A is (continuously) represented in N (a semifinite
von Neumann algebra acting on H) and F is a self-adjoint Breuer-Fredholm
operator in N satisfying:

1. 1− F 2 ∈ KN , and
2. [F, a] ∈ KN for a ∈ A.

If 1−F 2 = 0 we drop the prefix “pre-”. If [F, a] ∈ Ln+1(N ) for all a ∈ A, we
say that (H, F ) is n+ 1-summable.
If there is a self adjoint involution Γ with ΓF + FΓ = 0 and Γa− aΓ = 0 for
all a ∈ A, then we say the pre-Fredholm module is even, otherwise it is odd.

Semifinite spectral triples give rise to pre-Fredholm modules via

(A,H,D) −→ (H, F = D(1 +D2)−1/2).

One views spectral triples as geometric representatives of K-homology classes,
in much the same way that one views differential forms.

If the semifinite spectral triple (A,H,D) is QC∞ and finitely summable
with (1 +D2)−s/2 trace class for all s > q, and has D invertible, then

(H, F = D|D|−1)

is a [q] + 1-summable Fredholm module where [·] denotes the integer part.
Given a Fredholm module (H, F ) define the ‘conditional trace’ τ ′ by

τ ′(T ) =
1

2
τ(F (FT + TF )),

provided FT + TF ∈ L1(N ) (as it will be in our case, see [23, p293]). Note
that if T ∈ L1(N ) we have (using the trace property and F 2 = 1)

(9) τ ′(T ) = τ(T ).

The Chern character [ChF ] of an n+1-summable Fredholm module (H, F )
is the class in periodic cyclic cohomology of the cyclic cocycles (setting Γ = 1
for an odd Fredholm module)

λmτ
′(Γa0[F, a1] · · · [F, am]), a0, ..., an ∈ A, m ≥ n, m even if (H, F ) even,

and odd otherwise.
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Here λn are constants ensuring that this collection of cocycles yields a
well-defined periodic class, and they are given by

λn =

{
(−1)n(n−1)/2Γ(n2 + 1) n even√
2i(−1)n(n−1)/2Γ(n2 + 1) n odd

.

The class of the Chern character of an n + 1-summable Fredholm module is
represented by the cyclic cocycle ChF ∈ Cn

λ (A)

ChF (a0, ..., an) = λnτ
′(Γa0[F, a1] · · · [F, an]), a0, ..., an ∈ A.

We will always take the cyclic cochain ChF (or its (b, B) analogue; see below)
as representative of [ChF ], and will often refer to ChF as the Chern character.

Since the Chern character is a cyclic cochain, it lies in the image of the
operator B, [23, Corollary 20, III.1.β], and so BChF = 0 since B2 = 0. As
bChF = 0, we may regard the Chern character as a one term element of the
(b, B) bicomplex. However, the correct normalisation is (taking the Chern
character to be in degree n)

Cn
λ ∋ ChF −→ (−1)[n/2]

n!
ChF ∈ Cn.

Thus instead of λn defined above, we use µn

µn =
(−1)[n/2]

n!
λn =





Γ(n
2 +1)

n! n even

√
2i

Γ(n
2 +1)

n! n odd

.

The difference in normalisation between periodic and (b, B) is due solely to
the way the index pairing is defined in the two cases, [23].

Our next task is to show that if our spectral triple (A,H,D) is such that
D is not invertible, we can replace it by a new spectral triple in the same
KK-class in which the unbounded operator is invertible.

Definition 8.2. Let (A,H,D) be a spectral triple. For any µ ∈ R\{0}, define
the ‘double’ of (A,H,D) to be the spectral triple (A,H2,Dµ) with H2 = H⊕H,
and the action of A and Dµ given by

Dµ =

(
D µ
µ −D

)
, a→

(
a 0
0 0

)
, ∀a ∈ A.

Whether D is invertible or not, Dµ always is invertible, and Fµ := Dµ|Dµ|−1

has square 1. This is the chief reason for introducing this construction.
The original statement in the general semifinite case, [13], was stated in

terms of ‘semifnite K-homology classes’. There we said that two (semifinite)
spectral triples were in the same K-homology class, if the associated pre-
Fredholm modules were operator homotopic up to the addition of degenerate
Fredholm modules. With the observations in Section 5 from [37], and the
proof presented in [13] we may conclude that
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Lemma 8.3. The KK-classes of (A,H,D) and (A,H2,Dµ) are the same. A
representative of this class is (B⊕B, Fµ) with Fµ = Dµ|Dµ|−1, where B ⊂ KN
is as in Proposition 5.2.

The most basic consequence of Lemma 8.3 comes from the following (see
[28, pp65-68] for the proof, which is the same in this setting).

Proposition 8.4. The periodic cyclic cohomology class of the Chern charac-
ter of a finitely summable Fredholm module depends only on its K-homology
class.

In particular, therefore, the Chern characters of (A,H,D) and (A,H2,Dµ)
have the same class in periodic cyclic cohomology, and this can be computed
(indeed is defined!) using the Fredholm module (H2, Fµ), and this class is
independent of µ.

8.1. The resolvent cocycle in the general case. The following definition
establishes some notation needed to treat the even and odd cases on the same
footing.

Definition 8.5. Let (A,H,D) be a spectral triple with spectral dimension
q ≥ 1. Let P denote the parity of the triple, so P = 0 for even triples and
P = 1 for odd triples. Let A denote (P − 1) mod 2, so A = 1 for even triples
and A = 0 for odd triples. We adopt the convention that |D| and elements of
A have ‘grading degree’ zero, while D has grading degree one. In the even case
this is of course the actual grading degree of the spectral triple. We denote
the grading degree of T in the algebra generated by D and A by deg(T ) (see
[16, 25] for more detail on the allowed T ’s). Finally, let N = [(q + 1 + P )/2]
where [·] denotes the integer part.

The grading degree is used to define the graded commutator

[T,R]± := TR− (−1)deg(T )deg(R)RT.

The following definition generalises the expectations introduced in [16, 17] to
deal with both the even and odd cases in a uniform fashion.

It is also useful to let the order of T in the algebra generated by D and A
be the number of powers of D in T . This loose definition is made precise by
the pseudodifferential calculus for spectral triples described in [16, 25].

Definition 8.6. Let 0 < a < 1/2 and let l be the vertical line l = {a+ iv : v ∈
R}. For m ≥ 0, s ∈ [0,∞) and operators A0, ..., Am in the algebra generated
by D and A with the order of Aj equal to kj, and k0+ · · ·+km−2m < 2Re(r),
define

〈A0, ..., Am〉m,s,r = τ

(
1

2πi
Γ

∫

l

λ−q/2−rA0Rs(λ)A1 · · ·AmRs(λ)dλ

)
.
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Here Γ is the Z2-grading in the even case and the identity operator in the odd
case, and Rs(λ) = (λ− (1 + s2 +D2))−1.

We now state the definition of the resolvent cocycle in terms of the expecta-
tions 〈· · ·〉m,s,r.

Definition 8.7. Let ηm denote the following constant

ηm =
(
−
√
2i
)P

2m+1Γ(m/2 + 1)

Γ(m+ 1)

and write da for the commutator [D, a]. Then for Re(r) > 1
2 (1−m) we define

the m-th component of the resolvent cocycle φrm : A⊗m+1 → C by

φrm(a0, ..., am) = ηm

∫ ∞

0

sm〈a0, da1, .., dam〉m,s,rds.

8.2. The residue cocycle. We use the notation above to write down the
residue cocycle.

Definition 8.8. Let (A,H,D) be a QC∞ finitely summable spectral triple with
isolated spectral dimension q ≥ 1. LetM = 2N−P . For m = P, P+2, . . . ,M ,
define functionals φm by

φm(a0, ..., am)

=
√
2πi

M−m∑

|k|=0

(−1)|k|α(k)
h∑

j=A

σh,jτj−A

(
Γa0[D, a1]

(k1) · · · [D, am](km)(1 +D2)−|k|−m/2
)
,

where h = |k| + (m − P )/2. Here Γ denotes the Z2-grading in the even case
and the identity operator in the odd case.

It follows from [16, 17] that φ = (φm)Mm=P is a (b, B)-cocycle, called the
residue cocycle.

The relationship between the resolvent cocycle and the residue cocycle is
captured by the following result [16, 17].

Theorem 8.9. Let (A,H,D) be a QC∞ finitely summable spectral triple with
isolated spectral dimension q ≥ 1. When evaluated on any a0, ..., am ∈ A, the
components φrm of the resolvent cocycle (φr) analytically continue to a deleted
neighbourhood of r = (1 − q)/2. Moreover, if we denote this continuation by
ϕr
m(a0, ..., am) then

resr=(1−q)/2ϕ
r
m(a0, ..., am) = φm(a0, ..., am).
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8.3. The Residue Cocycle Represents the Chern Character. The main
fact about this situation which is proved in [18] is as follows.

Theorem 8.10. Let (A,H,D) be a QC∞ spectral triple (even or odd) with
spectral dimension q ≥ 1 and isolated spectral dimension. Then the residue
cocycle represents the Chern character of the K-homology class of (A,H,D).

This theorem completes the circle of ideas suggested by the approach in
[16, 17] to the local index formula. Its proof, via the use of the resolvent
cocycle, shows that the resolvent cocycle is indeed playing the same role as
the JLO cocycle does for the original proof of the local index formula.

The proof of the theorem rests on two results. The first is:

Theorem 8.11. Let (A,H,D) be a QC∞ finitely summable spectral triple
with dimension q ≥ 1 and D invertible. Let M = 2N − P where N = [(q +
1 + P )/2]. Then in the (b, B) bicomplex for A with coefficients in functions
holomorphic for Re(r) > 1/2, the resolvent cocycle (φrm)Mm=P is cohomologous
to

1

(r − (1− q)/2)
ChMF

modulo cochains with values in the functions holomorphic in a half-plane con-
taining r = (1−q)/2. Here F = D|D|−1, and ChMF denotes the representative
of the Chern character in dimension M .

The second fact that is needed is:

Theorem 8.12. If (A,H,D) is a QC∞ spectral triple with isolated spectral
dimension q ≥ 1 and D invertible, then the cyclic cohomology class of the
residue cocycle coincides with the class of the Chern character of (H, F =
D|D|−1).

There are two main steps involved in proving these statements. First we
need to define a ‘transgression’ cochain which provides an exact cohomology
between the resolvent cocycle and a single term cyclic cochain which is ‘almost’
a cocycle. Then we must deform the resulting single term cyclic cochain
to the Chern character. In this process we introduce error terms that are
holomorphic at r = (1− q)/2. The second theorem follows on taking residues,
which requires the isolated spectral dimension hypothesis.

Both these steps require invertibility of D. However, once we have proved
the result for invertible D, we can replace (A,H,D) by its double to remove
this hypothesis.
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9. Connection With Higson’s Cocycle

Higson has a cocycle which is evidently similar to our resolvent cocycle.
An essential difference is that from Higson’s cocycle, one derives the unrenor-
malised local index theorem. We show here that our resolvent cocycle natu-
rally gives rise to a ‘renormalised’ version of Higson’s cocycle.

We take our resolvent cocycle, perform the pseudodifferential expansion,
the Cauchy integral and the s-integral. This gives (modulo functions holomor-
phic at r = (1− q)/2)

φr
m(a0, ..., am) =

2N−m−P∑

|k|=0

C(k)(−1)m+|k|√π(−1)P
√
2i

P Γ(|k|+ (m− 1)/2 + q/2 + r)

Γ(1 + |k|+m)Γ(q/2 + r)

× τ(γa0[D, a1]
(k1) · · · [D, am](km)(1 +D2)−q/2−r−|k|−(m−1)/2)

We then put back the Cauchy integral using

τ(γa0[D, a1]
(k1) · · · [D, am](km)(1 +D2)−q/2−r−|k|−(m−1)/2)

(−1)|k|+m Γ(1 + |k|+m)Γ(q/2 + r − (m+ 1)/2)

Γ(q/2 + r + |k|+ (m − 1)/2)

× τ

(
1

2πi

∫

l
λ−q/2−r+(m+1)/2a0[D, a1]

(k1) · · · [D, am](km)(λ− (1 +D2))−|k|−m−1dλ

)

and undo the pseudodifferential expansion. Our estimates show that these
operations affect our function-valued cocycle only by functions holomorphic
at the critical point r = (1 − q)/2. We obtain the following equality modulo
functions holomorphic at r = (1− q)/2:

φrm(a0, ..., am) = (−1)P
√
2i

P
√
πΓ(q/2 + r − (m+ 1)/2)

Γ(q/2 + r)

×τ
(

1

2πi

∫

l

λ−q/2−r+(m+1)/2a0R0(λ)[D, a1]R0(λ) · · · [D, am]R0(λ)dλ

)
.

We call this new cocycle the reduced resolvent cocycle, and denote its com-
ponents by ψr

m so that the above equality becomes

φrm(a0, ..., am) = ψr
m(a0, ..., am)

modulo functions holomorphic at r = (1 − q)/2. The integral defining ψr
m

exists for Re(r) > (1−m)/2 by our previous estimates. The argument of the
coefficent

Γ(q/2 + r − (m+ 1)/2)

has positive real part when Re(r) > m/2 + (1 − q)/2, and can be meromor-
phically continued.

To compare the reduced resolvent cocycle with Higson’s improper cocycle,
we write z = r − (1− q)/2. Then, writing ηzm for the components of Higson’s
improper cocycle we have

ψr
m =

√
π

Γ(z + 1/2)
ηzm.
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This gives a ‘renormalised’ version of Higson’s cocycle in the sense that start-
ing with the reduced resolvent cocycle, one arrives at the renormalised local
index theorem, whereas Higson’s original cocycle leads to the unrenormalised
theorem.

10. Applications

In an earlier review of analytic spectral flow in von Neumann algebras [2]
we explained how a number of older results such as those in [22, 31, 39, 48, 51]
could be seen to be examples of semifinite NCG index theorems. For foliations
that give rise to type II von Neumann algebras [3] explains the relevance of
the semifinite theory.

Graph C∗-algebras that admit traces are shown to lead naturally to semifi-
nite spectral triples in [42] and the local index formula may be used to obtain
an index formula for generalised Toeplitz type operators. Analogous results
are proved for the C∗-algebras of k-graphs in [43] where the spectral dimen-
sion is found to be k. These results are explained in a more general setting of
compact group actions on C∗-algebras in [52]. Semifinite spectral triples were
found to arise in an application of spectral triples to loop quantum gravity in
[1].

Having established a general framework for semifinite NCG it is tempting
to move on to see how this might be exploited to produce index theorems
in type III von Neumann algebras. A start on such a program is given in
[7, 15, 20].
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