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An evaluation of thermal Earth observation for characterizing urban
heatwave event dynamics using the urban heat island intensity metric

Abstract
Urban areas have a high sensitivity to extreme temperature events such as heatwaves due to increased
absorption and re-radiation of thermal energy from man-made materials as well as anthropogenic heat
outputs. Variations in urban form, land use, and surface cover result in spatial variability in temperatures across
urban areas, meaning that exposure to extreme events is variable at the sub-city scale. Such variability must be
quantified in order to better understand urban temperature interactions and identify areas with the greatest
potential exposure to extreme heatwave events. Earth observed data offer a spatially complete and
homogenous data source to supplement observations from sparse weather station networks in order to
quantify the spatial temperature variability across cities. This article presents an evaluation of the thermal data
acquired by the Advanced Very High Resolution Radiometer (AVHRR) instrument to quantify the spatial
temperature dynamics of London. A total of 81 cloud-free AVHRR scenes from summers between 1996 and
2006 were analysed in association with air temperature measurements from four London weather stations in
order to characterize the year-on-year temperature dynamics of London. The data were employed to
investigate the viability of using AVHRR scenes to distinguish a heatwave year from background years using
the commonly employed urban heat island intensity (UHII) metric. Results show that AVHRR thermal data
are highly sensitive to local meteorological and diurnal effects, requiring temporal averaging to the monthly
and seasonal scales to provide robust data for a comparison between different years. Resulting UHII scenes
highlight the spatial variability of intensity across London. However, comparison of UHII scenes between
summers indicates that the UHII metric is a relatively poor means by which to distinguish between a
heatwave summer in London and the 75th percentile, median, and 25th percentile summer temperatures of
the time series investigated.
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Urban areas have a high sensitivity to extreme temperature events such as 

heatwaves due to increased absorption and re-radiation of thermal energy from 

man-made materials as well as anthropogenic heat outputs. Variations in urban 

form, land use and surface cover result in spatial variability in temperatures 

across urban areas, meaning that exposure to extreme events is variable at the 

sub-city scale. Such variability must be quantified in order to better understand 

urban temperature interactions and identify areas with the greatest potential 

exposure to extreme heatwave events. Earth observed data offer a spatially 

complete and homogenous data source to supplement observations from sparse 

weather station networks in order to quantify the spatial temperature variability 

across cities. 

 

This paper presents an evaluation of the thermal data acquired by the Advanced 

Very High Resolution Radiometer (AVHRR) instrument to quantify the spatial 

temperature dynamics of London. 81 cloud-free AVHRR scenes from summers 

between 1996 and 2006 are analysed in association with air temperature 

measurements from four London weather stations in order to characterise the 

year-on-year temperature dynamics of London. The data were employed to 

investigate the viability of using AVHRR scenes to distinguish a heatwave year 

from background years using the commonly employed Urban Heat Island 

Intensity (UHII) metric. Results show that AVHRR thermal data are highly 

sensitive to local-meteorological and diurnal effects, requiring temporal 

averaging to the monthly and seasonal scales to provide robust data for a 

comparison between different years. Resulting UHII scenes highlight the 

spatial variability of intensity across London. However, comparison of UHII 

scenes between summers indicate that the UHII metric is a relatively poor 

means by which to distinguish between a heatwave summer in London and the 

75
th

, median and 25
th

 percentile summer temperatures of the time series 

investigated. 

 

 

 

1 Introduction 

 

Future climate scenarios predict a rise in average summer temperatures, as well as an increase 

in the frequency and duration of related heatwave events (IPCC 2007). Major urban 

conurbations will be particularly sensitive to more extreme and longer heatwaves due to 

higher population densities and urban induced climatic modifications such as the Urban Heat 

Island (UHI) effect (Kovats et al. 2006, Di Sabatino et al. 2009), where cities on average 
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experience increased temperatures compared to surrounding rural hinterlands. A consequence 

of effects such as the UHI is that cities will experience a greater socio-economic impact from 

extreme temperature events such as heatwaves, with increased levels of mortality and human 

discomfort (Kovats et al. 2006, Di Sabatino et al. 2009), such as that seen in the 2003 

heatwave in London, where deaths of Londoners over the age of 75 increased by 59% 

(Johnson et al. 2005). In order to mitigate and adapt to temperature rises and heatwave events 

that may result from future climate change it is necessary to quantify urban temperature 

dynamics in order to understand how different components of the urban system, such as 

energy demand for cooling, respond to thermal stress (Knight et al. 2010). Critically, this 

needs to be performed in a spatially explicit manner as urban population vulnerability to heat 

is not just a function of overall population demographics (such as age), but also a function of 

how they are distributed spatially across the city (Eliasson and Svensson 2003). 

Traditionally, urban temperatures have been measured in terms of near surface air 

temperature (screen-level) using terrestrial weather station networks and quantified using the 

Urban Heat Island Intensity (UHII) metric (Oke 1987, Kim and Baik 2002, Di Sabatino et al. 

2009); the maximum difference between urban and background rural temperatures for a given 

point in time during one diurnal cycle (Oke 1987, Kim and Baik, 2002, Kolokotroni and 

Giridharan 2008). In developed nations, weather station networks allow long time-series high 

temporal frequency data-sets to be generated and analysed. However, in many cities, weather 

station networks lack a sufficient spatial distribution to characterise intra-urban temperature 

dynamics (Eliasson and Svensson 2003, Knight et al. 2010). This is a major limiting factor to 

improving our understanding of intra-urban heat hazard, and ultimately therefore the spatial 

vulnerability and exposure to heat risks of the population living and working within cities 

(Eliasson and Svensson 2003, Hung et al. 2006, Knight et al. 2010).  

A number of studies in the 1980’s introduced the use of thermal remote sensing to 

study the UHI effect (e.g., Balling and Brazel 1988, Roth et al. 1989), the success of which 

have led to thermal images acquired by Earth observation satellites sensors being routinely 

employed to investigate the UHI effect for cities around the world (e.g., Alabama, Beijing, 

Birmingham, Indianapolis, Kano, London, Los Angeles, Nagoua, Pyongyang, Seattle, Seoul, 

Shanghai, Singapore, Tokyo, and Vancouver (Roth et al. 1989, Lo et al. 1997, Kim and Baik 

2002, Nichol 2003, Kato and Yamaguchi 2005, Hung et al. 2006, Lu and Weng 2006, 

Kolokotroni and Giridharan 2008, Tomlinson et al. 2010). Thermal Earth observation 

techniques are often chosen to replace or supplement in-situ data with estimated 

measurements of surface temperature due to their spatially complete nature (Tomlinson et al. 

2010). They have been employed where it is difficult to monitor certain urban thermal 

characteristics such as anthropogenic heat distribution using in-situ observations (Dousset and 

Gourmelon 2003), and when terrestrial observations are unavailable, as is often the case in 

developing nations (Nichol 2003). 

Studies that have investigated the spatial pattern of urban heat islands have employed 

data from a range of satellite sensors, including the Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) (Golden 2004, Kato and Yamaguchi 2005, Lu and 

Weng 2006, Kato and Yamaguchi 2007, Cai et al. 2011), the Landsat programme (Nichol 

1996,  Lo and Quattrochi 2003, Nichol 2003, Weng et al. 2004, Hung et al. 2006, Liang and 

Weng 2008, Cai et al. 2011), the Advanced Very High Resolution Radiometer (AVHRR) 

(Roth et al. 1989, Gallo et al. 1993, Lee 1993, Streutker 2002, Streutker 2003, Voogt and Oke 

2003, Stathopoulou and Cartalis 2009.), and the Moderate-resolution Imaging 

Spectroradiometer (MODIS) (Jin et al. 2005, Hung et al. 2006, Pongracz et al. 2006, Cheval 

and Dumitrescu 2009, Cheval et al. 2009, Tomlinson et al. 2010.). Medium spatial resolution 

thermal images provided by the Landsat Thematic Mapper and ASTER instruments allow a 

detailed analysis of the relationship between urban environments and surface temperatures 
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(Voogt and Oke 2003, Lu and Weng 2006). For example, ASTER images have been 

employed to correlate spatial temperature variations with biophysical descriptors and 

impervious surface cover (Lu and Weng 2006), to understand the spatial pattern of night-time 

temperatures (Kato and Yamaguchi 2005), quantify the seasonal variability in UHII over the 

City of Beijing (Cai et al. 2011) and estimate the storage heat flux in urban areas (Kato and 

Yamaguchi 2007). Landsat TM data have been used to understand the spatial variation of 

daytime surface temperatures of African cities (Nichol 2003), as well as undertake analysis of 

the relationships between land cover change and increased urban surface temperatures (Lo 

and Quattrochi 2003), and in particular the correlation between vegetation cover and the 

urban heat island (Weng 2003, Weng et al. 2004). 

However, while such medium spatial resolution thermal images allow a spatially 

detailed characterisation of surface temperatures (Nichol 1994, Streutker 2002, Streutker 

2003, Weng 2003, Weng et al. 2004), it is limited in terms of its utility to monitor 

temperature dynamics either diurnally, seasonally and at an intra-annual level (Hung et al. 

2006, Voogt and Oke 2003, Cheval and Dumitrescu 2009, Cheval et al. 2009). In order to 

capture, and hence study, the temporal dynamics of urban surface temperatures thermal 

images acquired by spatially coarser sensors such as AVHRR and MODIS are preferred due 

to their greater spatial coverage, multiple daily acquisition frequency and long baseline record 

of acquired scenes (Hung et al. 2006, Stathopoulou and Cartalis 2009, Neteler 2010, Dousset 

et al. 2011). Such data have been employed to study the UHI effect at a range of temporal 

sampling intervals including detailed studies of the UHI diurnal cycle within a single year 

(Roth et al. 1989, Gallo et al. 1993, Dousset et al. 2011) or over multiple years (Lee 1993, 

Tomlinson et al. 2010). Other studies have investigated the UHI effect at a more aggregated 

level, performing monthly comparisons between multiple years of data (Gallo et al. 1993, 

Gallo et al. 1995, Cheval and Dumitrescu 2009, Cheval et al. 2009). Equally, a number of 

studies have employed a single point-in-time characterisation of the UHI for a number of 

cities within a specific geographical/climatic region (Hung et al. 2006, Pongracz et al. 2006, 

Stathopoulou and Cartalis 2009). 

Such studies highlight the utility of Earth observation to study urban temperature 

dynamics and the UHI effect. However, significant issues need to be addressed in order to 

ensure that Earth observation data are employed in a consistent and objective manner within 

studies of urban temperature dynamics (Voogt and Oke 2003). For example, a major 

unresolved issue is how one should combine and utilise both air temperature measurements 

acquired by weather stations and surface temperature estimates derived from thermal Earth 

observed images (Voogt and Oke 2003, Tomlinson et al. 2010). At present there is no 

accepted de-facto means by which such data can be combined outside of empirical 

relationships (Voogt and Oke 2003). Moreover, while a number of studies have shown some 

success in characterising and quantifying the spatial relationship between Earth observed 

surface temperatures of cities and their underlying land cover fabric, land use activities and 

urban form (Nichol 2003, Kato and Yamaguchi 2005, Tomlinson et al. 2010), considerable 

work remains to be undertaken before strong and reliable empirical relationships between 

surface temperatures and urban form and function can be used in heat hazard impact and 

adaption studies (Weng et al. 2004, Hung et al. 2006, Cai et al, 2011.). 

Indeed, even if the interest lies in just employing Earth observation data to 

characterise the spatial pattern of surface temperatures, careful consideration needs to be 

taken with regards to choosing a suitable time series of imagery acquired over an appropriate 

time-period in order to be able to realistically characterise the urban temperature property of 

interest (Nichol 2003, Kato and Yamaguchi 2005). For example, studies employing MODIS 

data and Landsat TM data to analyse the temporal variations of UHI between eight ‘mega’ 

cities in Asia (Hung et al. 2006) highlighted the importance of having a sufficient time-series 
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of data to be able to not only derive metrics that are insensitive to local diurnal fluctuations, 

such as metrological conditions, but also able capture the long term spatial and temporal 

temperature dynamics required for monitoring (Hung et al. 2006). In this regard, it is worth 

noting that spatial/temporal sampling and time series length has also been recognised as a 

critical consideration in UHI studies using in-situ weather station screen-level temperature 

data (Jones and Lister 2009). 

With respect to the last issue above, this study investigates the utility of AVHRR 

thermal images to capture, characterise and quantify the magnitude of a summer heatwave 

event compared to non-heatwave years. We evaluate the commonly employed UHII metric in 

this respect using daytime AVHRR scenes. A comparison between AVHRR daytime UHII 

and UHII derived for in-situ weather stations is performed, along with an analysis of how well 

both UHII metrics (satellite and weather station) capture a heatwave event. The study is 

conducted for the city of London UK focusing on a 10-year period between 1996 and 2006. In 

order to evaluate the ability of AVHRR data to characterise the temperature dynamics of 

London during the 10-year time period under consideration a detailed analysis is performed of 

how temporal averaging of the available scenes influences the data’s ability to characterise the 

underlying temperature regime of London, and how this impacts upon the generation of the 

UHII metric for different summer periods. 

 

2 Data acquisition and pre-processing 

 

2.1 London weather station data 

 

This project utilized two separate data-sets for analysis. The first was the hourly and daily 

(diurnal cycle) screen-level (1.25m above surface height) air and surface level temperature 

observations collected at United Kingdom Meteorological Office weather stations in the 

British Isles. The data are freely available to researchers within the United Kingdom from the 

British Atmospheric Data Centre (BADC) and has been widely utilised in a number of urban 

temperature studies (Jones and Lister 2009, Tomlinson et al. 2010). The data comprise of a 

series of comma separated value (CSV) files detailing the selected observations and their 

station of observation. For this study the key measurements of interest were screen-level air 

temperature and where available grass and concrete surface temperature observations, 

measured in degrees Celsius (°C). 

 The raw weather station data were uploaded to a purpose built PostGIS spatial 

database, which linked temperature observations with geo-referenced weather station 

locations using UK Ordnance Survey British National Grid coordinates. Analysis of the 

BADC data showed that only 4 weather stations in London had continuous high quality data 

for the time period under investigation (1996-2006), namely; London Weather Centre (LWC, 

elevation: 43 metres), St James's Park (SJP, elevation: 5 metres), Heathrow airport (LHR, 

elevation: 25 metres) and Northolt (NTH, elevation: 40 metres). Additionally, for the 

purposes of generating the UHII metric the rural weather station at High Wycombe (22 

kilometres from the Greater London Authority (GLA) boundary) was also selected (Figure 1). 
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Figure 1. Advanced Very High Resolution Radiometer (AVHRR) scene of 

estimated surface temperature (EST) of Greater London 8
th

 August 2003 14:04 

(GMT) showing the location of London weather stations employed in the study 

and the rural reference site relative to London. 
 

 For the 10-year time period under consideration average monthly summer 

temperatures (1st June to 31st August) were generated for each London weather station from 

their corresponding daily averages in the PostGIS database. Each summer was then ranked 

according to its average summer daily temperature and AVHRR scenes from the hottest, 75
th

, 

median and 25
th

 percentile summers were selected for further analysis. Selected summers and 

their corresponding average screen-level air temperatures for all London weather stations 

were: hottest 2003 (19.36°C), 75
th

-percentile 1997 (18.24°C), median 2001 (17.93°C) and 

25
th

-percentle 2002 (17.45°C). The four summers were chosen in this manner to keep the 

number of AVHRR scenes to process viable, while ensuring that the general temperature 

record of London for the period under consideration was captured. 

 

2.2 AVHRR image selection and pre-processing 

AVHRR scenes corresponding to the four summers under investigation were selected from an 

existing archive of 2400 scenes covering May-September, 1985-2008. This archive was 

provided by the UK Natural Environment Research Council (NERC) Dundee Satellite 

Receiving Station. Scenes within the archive are cloud free for the centre of the Greater 

London Area, georectified in GeoTiff format to the British National Grid and calibrated to top 

of atmosphere albedo (%) or top of atmosphere (TOA) brightness temperature (°K) for the 

optical and thermal bands respectively. 

In this study the interest lay in accessing the utility of AVHRR data to characterise 

daytime temperature dynamics of London. The choice of daytime scenes was taken for a 
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number of reasons. Firstly, recent work on the UHII of London had revealed that maximum 

air temperature UHII in London occurs in the daytime (Kolokotroni and Giridharan 2008). 

Thus, in this study we evaluate the utility of AVHRR data to express this feature. Secondly, 

significantly more scenes were available for daytime hours compared to night-time. In 

relation to this point, the check for cloud contamination employed is more reliable when 

employing daytime images than night-time data. Finally, the use of daytime images allowed 

us to employ a surface emissivity correction procedure based on the use of the Normalised 

Difference Vegetation Index (NDVI) using AVHRR bands 1 and 2 (Van de Griend and Owe, 

1993). Clearly, night-time image acquisitions would not allow such a correction procedure to 

be employed. 

A search of the full image archive of daytime (09:00 to 17:00) acquisitions for the four 

summers under consideration resulted in a total of 162 scenes being extracted. Although all 

2400 scenes of the full archive were tagged as cloud free at the centre of London, the 162 

selected were further tested for possible cloud contamination at the edge of London. This was 

achieved by comparing the minimum TOA brightness temperature of each scene to its 

corresponding daily minimum grass surface temperature recorded by the London Heathrow 

weather station. If the AVHRR scene temperature was more than 3°C lower than the daily 

minimum grass surface temperature recorded then it was tagged as cloud contaminated. The 

3°C threshold was selected on the basis that a ±3°C uncertainty may be expected to exist 

between uncorrected AVHRR TOA temperature and corresponding surface temperature 

(Cooper and Asrar 1989). This procedure resulted in a number of further scenes being rejected 

primarily due to cloud contamination over the rural station. In total 81 scenes were accepted; 

43, 5, 14 and 19 scenes for 2003, 1997, 2001 and 2002 respectively. This procedure was then 

repeated over the 81 selected scenes to check for cloud contamination at the rural station, 

resulting in a further 6 scenes being identified as cloudy. In order to maintain as many scenes 

in each summer as possible the full suite of 81 scenes (cloud free over the GLA area) were 

used to characterise the surface temperatures of the Greater London Area (GLA). However, 

when conducting analysis using the rural station location to derive the UHII metric, the 75 

scenes that were cloud free over the GLA extent and the rural weather station location were 

used. 

In order to derive estimated surface temperatures from the AVHRR scenes it was 

necessary to correct for atmospheric attenuation and surface emissivity of the thermal bands. 

Atmospheric correction can be achieved using either single channel or split-window 

techniques (Erbersteder et al. 1999, Yu et al. 2008). Single channel techniques using 

temperature and humidity profiles from observations or atmospheric models can be time 

consuming to implement operationally (Erbersteder et al. 1999), and there is not a clear 

consensus within the literature of the approach which gives the best results (Cooper and Asrar 

1989). However, split-window techniques which make use of sensors that have two or more 

thermal bands provide an effective atmospheric correction to brightness temperature 

measurement and are widely used due to their robustness and simplicity (Yu et al. 2008). 

Thus, this study limited itself to using multi-channel AVHRR scenes in order to employ a 

split-window approach. 

To correct for surface emissivity a range of methods exist, as reviewed by Dash et al. 

(2002), many of which require a-priori knowledge of the surface emissivity or provide only 

relative emissivity values (Sobrino et al. 2008). However the German Aerospace Centre 

provide an operational approach which derives estimated surface temperatures using a 

combined split-window technique for correcting atmospheric attenuation (Becker and Li, 

1990) and a surface emissivity correction based on the use of the Normalised Difference 

Vegetation Index (NDVI) using AVHRR bands 1 and 2 (Van de Griend and Owe 1993); an 

approach which has been found to be computationally efficient when processing large 
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volumes of scenes in an automated manner (Tungalagsaikhan and Guenther 2007). In this 

approach, estimated surface temperature (EST) is derived on the basis of bands 4 and 5 of the 

AVHRR instrument: 
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where T is estimated surface temperature (°C), T4 and T5 are the black-body 

temperature of bands 4 and 5 of the AVHRR instrument (top of atmosphere (TOA) brightness 

temperature) and e and de represent the emissivity correction factors given by: 
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                       (3)         

                      

where e4 and e5 represent the emissivity in bands 4 and 5 of the AVHRR instrument 

and are estimated on the basis of: 

 

                             (4) 

                 (5) 

 

In Equation 4 the NDVI (Normalised Difference Vegetation Index) is scaled linearly 

between 0–255 (Van de Griend and Owe 1993): 

 

       
     

     
               (6) 

 

 A potential limitation of this approach is the requirement for two thermal bands which 

were only available on AVHRR versions 2 and 3 from 1994 onwards with the launch of 

NOAA-14. However, as the period of interest of this study was between 1996 and 2006 dual 

channel thermal data were available for all years, although as NOAA-15 was not launched 

until May 1998 the number of dual channel scenes available was limited in the period up to 

this date compared to post 1998. In the emissivity correction procedure (Equation 1), no 

atmospheric correction for bands 1 and 2 was undertaken in relation to the calculation of 

NDVI (Equation 6). Given the number of scenes under investigation (81) and the fact that 

there is a lack of consensus in the literature as to a standard operational approach to 

atmospheric correction of historical data in the absence of in-situ atmospheric profile data 

(Teillet, 1992, Erbersteder et al. 1999) the decision not to perform atmospheric correction 

could be justified. 

Nonetheless, the lack of atmospheric correction potentially introduces an uncertainty 

in the NDVI calculations ranging from ±0.09 during clear conditions (Aerosol Optical 

Thickness (AOT) < 0.05) to ±0.13 during average conditions (AOT = 0.05 ≥ 0.25) (Nagol et 

al. 2009). This may result in error propagating into the emissivity correction. In order to asses 

this, one can invert Equation 4 to obtain the expected NDVI for a typical emissivity of an 

urban surface ( ≤ 0.92; Nichol 1994) and vegetation ( ≥ 0.98; Dash et al. 2005). By adding 

the expected NDVI error of ±0.13 for average sky conditions to these and applying Equation 

4 one obtains an emissivity error of ±0.022 or greater for urban surfaces, and ±0.007 for 

vegetation. In turn, this emissivity error will propagate into the subsequent estimation of 

surface temperature. On the basis of work by Sobrino et al. (1991) that found that emissivity 

accuracy needs to be within ±0.005 to get a surface temperature error below ±0.4K, and the 
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work of Schadlich et al. (2001) and Dash et al. (2002) who found for mid-latitude areas an 

emissivity error of ±0.025 gave an error of ±2K in estimated surface temperature, then an 

initial NDVI error of ±0.13 may be expected to result in ~±2K error over urban pixels and 

~±0.4K over vegetated areas. These errors may be compounded when calculating metrics 

such as UHII that are based on the difference between urban and rural temperatures, giving a 

total maximum error in the order of ~±2.4K. 
 

3 Generation and analysis of AVHRR derived UHII 

 

3.1 Temporal sensitivity of AVHRR estimated surface temperatures 

 

One of the key strengths of AVHRR data is the high revisit time between scenes, due to the 

large number of satellites carrying the AVHRR sensor, resulting in up to a maximum of 4 

scenes per day being acquired (Cracknell 1997). This offers the potential to characterise 

temperature dynamics at a daily, weekly, monthly and seasonal time scale. While a positive 

aspect of the sensor, it is important to recognise that understanding temperature dynamics, 

particularly in relation to heatwave years compared to non-heatwave years, means that data 

from different years needs to be compared. This raises the question of what is the ideal 

temporal frequency of AVHRR data to employ in order to capture consistently and 

objectively changes in temperature that are a result of a heatwave event rather than other 

erroneous factors such as local meteorological weather conditions. Temporal averaging has 

been intensively investigated in marine sea surface temperature studies using AVHRR data 

(e.g., Gentemann et al. 2003). In such studies, scenes of sea surface temperature are averaged 

over one week and a weighting applied to night-time scenes in order to minimize diurnal 

signals (Gentemann et al. 2003) 

In order to investigate the sensitivity of urban temperature analysis and measurement 

of the UHII metric to temporal averaging, statistical comparisons were performed for several 

levels of aggregation between 2003, the heatwave year, and the three other years under 

investigation. At the level of individual scenes comparisons were made between scenes 

acquired on the same Julian day of the year within 65 minutes of each other. At the next level, 

individual scenes were aggregated to daily averages, and then the 4 summers were aggregated 

to the monthly averages (June, July and August). The final level of aggregation involved 

aggregating scenes to summer averages resulting in just a single scene of estimated summer 

surface temperature per-year. For each level of temporal aggregation/averaging the non-

parametric pair-wise Mann-Witney U statistical test of distributions was employed to test if 

statistically significant differences existed between 2003 scenes and corresponding dates or 

aggregations (monthly and yearly) of the other 3-years under investigation. This was applied 

such that spatially coincident pixels from a scene in 2003 was paired with its corresponding 

location (pixel) in either a monthly or summer scene from one of the other 3-years under 

investigation. In the statistical tests, a one-tail test was employed such that the expectation 

was that the temperatures from 2003 were expected to be greater than the other years 

analysed. In all tests a 95% significance level was employed in order to reject the null 

hypothesis in favour of an alternative hypothesis that the distributions were drawn from 

different populations. 
 

3.2 AVHRR estimated surface temperature UHII calculation 

 

For the purposes of this study the Urban Heat Island Intensity metric is formally defined as 

the maximum difference between urban and background rural temperatures for a given point 

in time during one diurnal cycle (Oke 1987, Kim and Baik, 2002, Kolokotroni and Giridharan 

2008). The weather station air temperature observations from the four urban weather stations 
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and single rural station were used to generate the UHII metric in this manner via an SQL 

script that automated this process and populated a new table in the PostGIS BADC database 

containing one UHII value per day for the Greater London Authority. Given the noted 

importance of night-time temperatures on the UHII (Oke 1987, Kim and Baik, 2002, 

Kolokotroni and Giridharan 2008) and the aim of this study to evaluate how well daytime 

AVHRR scenes can capture and distinguish heatwave years from non-heatwave years 

compared to established methods employing the full diurnal cycle, air temperature based 

UHII values were generated from hourly values from the full diurnal cycle at each weather 

station. 

To calculate daytime UHII using AVHRR estimated surface temperatures a slightly 

different approach had to be taken due to the reduced observation frequency of the AVHRR 

data compared to the terrestrial weather station data. At best, a maximum of two scenes were 

available per diurnal cycle. Therefore, the UHII metric was calculated for each individual 

AVHRR estimated surface temperature scene by subtracting the estimated surface 

temperature of the pixel containing the rural weather station location (High Wycombe) from 

the estimated surface temperature values of the pixels that fell within the Greater London 

Authority boundary in a manner similar to that used by Tomlinson et al. (2010) to derive 

UHII measurements from MODIS estimated surface temperature scenes. As in the case of the 

estimated surface temperatures, individual scenes from 2003, 1997, 2001 and 2002 were 

aggregated to the daily, monthly and yearly averages. Again, the non-parametric pair-wise 

Mann-Whitney test was applied to test whether the UHII scenes for 2003 were statistically 

greater than those of other years investigated. As in the statistical testing of the estimated 

surface temperatures a one-tail 95% significance level was employed for this analysis. 
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4 Results and Discussion 

 

Figure 2 shows estimated surface temperature for four AVHRR scenes from the 14
th

 August 

2002 and 2003 captured within a 65 minute window of each other. For both years there is a 

notable increase in estimated surface temperature during the time period of observation 

(24.46°C at 10:56am to 26.90°C at 12:56pm for 2003; 21.22°C at 10:59am to 21.77°C at 

12:08pm), although the magnitude of the rise is greater for 2003 (1.2°C/hr) as compared to 

2002 (0.48°C/hr). This more dramatic temperature increase for the heatwave year is 

supported to some extent by the corresponding BADC weather station data which revealed an 

average increase in air temperature for London weather stations of 1.68°C for 2003 compared 

to 0.35°C for 2002 over the same time period. It may be tempting, therefore, to consider that 

the AVHRR data captures the diurnal progression of surface temperature dynamics and 

differentiates between summers with significantly varying temperatures. 

 

 
 

Figure 2. AVHRR estimated surface temperatures for London scenes acquired on 14
th

 August 

2003 and 2002. 
 

 However, Table 1 reveals a more complex relationship exists between individual 

scenes (within a 65-minutes of a 2003 scene) and daily averages of estimated surface 
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temperatures for the 75
th

, median and 25
th

-percentile years compared to the 2003 heatwave 

year. Both individual scenes and daily mean differences show little correlation with the 

percentile ordering of the summers in terms of their overall BADC average summer 

temperatures. For example, mean scene differences between 2003 and the 75
th

-percentile year 

of 1997 range from 1.04°C to 9.64°C which is greater than that of the 25
th

-percentile year of 

2002 (-0.04°C to 5.11°C). At a daily level both 1997 (75
th

-percentile year) and 2001 (50
th

-

percentile year) have noticeably larger absolute mean differences (5.66°C and 5.19°C 

respectively) than 2002 (25
th

-percentile year: 2.04°C). Equally, in the case of daily maximum 

differences, the 25
th

-percentile year is closer to the heatwave year (9.12°C daily mean 

maximum difference) relative to the 75
th

-percentile year (1997: 13.79°C daily mean 

maximum difference) and 50
th

-percentile year (2001: 10.55°C daily mean maximum 

difference). One would expect the greatest difference for individual scenes and daily averages 

to be for the 25
th

-percentile year (2002) and smallest for the 75
th

-percentile year (1997). 

Moreover, in terms of maximum individual difference, 3 of the 4 largest overall differences 

(11.80°C, 15.18°C and 14.39°C) are for the 75
th

-percentile year (1997). This suggests that 

comparison of AVHRR estimated surface temperatures at a single-scene and daily diurnal 

level is an unreliable means by which to compare summer temperature dynamics of different 

years. A probable explanation of these results is that they are strongly influenced by 

meteorological signals (Hung et al. 2006), and in the case of daily averages the limited 

number of scenes available (Nichol 2003). In combination this implies that daily averaging is 

too fine a temporal quantisation for the analysis of estimated summer surface temperatures on 

a year-by-year basis. 

 
2003 

Scene 

2003 

scene 

time 

Comparison 

Scene 

Time 

difference 

(minutes) 

Mean 

difference 

(°C) 

Maximum 

difference 

(°C) 

Daily 

absolute 

mean 

difference 

(°C) 

Daily 

absolute 

mean 

maximum 

difference 

(°C) 

2003/08/09 12:12 1997/08/09   64 1.04 11.80  

5.66 

 

13.79 2003/08/09 13:52 1997/08/09  -36 6.31 15.18 

2003/08/09 13:52 1997/08/09  65 9.64 14.39 

2003/06/24  11:48 2001/06/24  65 -6.06 8.32  

5.19 

 

10.55 2003/08/14  12:56 2001/08/14  -34 4.32 12.78 

2003/08/14  10:56 2002/08/14  4 3.40 15.06  

 

2.38 

 

 

9.12 
2003/08/14  12:56 2002/08/14  -48 5.11 10.22 

2003/08/14  12:56 2002/08/14  53 0.97 6.85 

2003/08/14  14:37 2002/08/14  48 -0.04 4.35 

 

Table 1. Individual and daily scene differences between estimated surface 

temperature for 2003 (heatwave) and 1997, 2001 and 2002. 

In general the monthly data seems to exhibit a slightly better expected pattern of 

temperature distribution (Table 2). Firstly, apart from June, the monthly mean estimated 

surface temperatures follow the expected pattern of the percentile years derived from an 

analysis of the BADC weather station air temperature data of London. Only June 2001 falls 

outside this ordering with a mean estimated surface temperature of 26.79°C. The stability of 

the percentile year ordering is not, however, as evident in the mean minimum and maximum 

monthly temperatures (Table 2), showing a greater variability with months for cooler years 

such as 2001 and 2002 exhibiting quite high mean minimum and maximum monthly 

estimated surface temperatures (e.g., June 2001 mean minimum of 17.98°C (3.00°C>2003) 
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and mean maximum of 32.15°C (4.87°C>2003)). When further averaging is performed to the 

full summer season level (1
st
 June to 31

st
 August; Figure 3) the pattern of mean temperatures 

being consistent with the weather station percentile ordering persists (Table 2). Again, the 

mean minimum and maximum yearly estimated surface temperatures show a less consistent 

relationship, and in the case of the mean maximum estimated temperatures the similarity of 

the values perhaps suggests that at the summer level distinguishing extreme temperature 

differences may be problematic. However, Mann-Whitney U tests revealed that all 2003 

months were statistically hotter than their corresponding month in 1997, 2001 and 2002 at a 

95% significance level (Table 3). This implies that it is possible spatially on the basis of the 

overall distribution of estimated surface temperatures at a monthly level to distinguish the 

heatwave year as the statistical test applied is pair-wise based on corresponding pixel 

locations. In a similar manner, at the level of averaging over an entire summer year, all but 

2001 (the median year) were found to be statistically cooler than 2003 at a 95% significance 

level (Table 3). 

Month/Year Mean EST (°C) Mean minimum EST (°C) Mean maximum EST (°C) 

June 2003 22.17 14.98 27.28 

June 1997 20.52 13.92 24.61 

June 2001 26.79 17.98 32.15 

June 2002 21.78 15.98 26.12 

July 2003 27.55 21.54 31.94 

July 1997 Too few scenes to generate monthly statistics 

July 2001 22.90 17.14 27.05 

July 2002 17.17 10.98 24.18 

August 2003 26.35 21.52 29.62 

August 1997 Too few scenes to generate monthly statistics 

August 2001 24.50 18.90 28.25 

August 2002 21.56 15.12 26.96 

Summer 2003 25.94 20.75 29.46 

Summer 1997 25.31 19.32 29.62 

Summer 2001 25.83 19.84 30.32 

Summer 2002 21.07 16.16 24.93 

 

Table 2. Monthly and summer spatial averages of estimated surface temperatures 

(EST) for the Greater London Authority for 2003, 1997, 2001 and 2002 summers 

derived from AVHRR data. 

 
Year Umin Calculated 1-

tail X>Y 

Reject Null @ 95% 

June 2003-1997 713661 Yes 

June 2003-2001 239243 Yes 

June 2003-2002 1039891 Yes 

July 2003-2001 119851 Yes 

July 2003-2002 1835 Yes 

August 2003-2001 498324 Yes 

August 2003-2002 108144 Yes 

Summer 2003-1997 988104 Yes 

Summer 2003-2001 1113169 No 

Summer 2003-2002 98090 Yes 

Reject Null if Umin Calculated < Umin Critical (1110722 for 1-tail test X>Y @ 

95%; X=2003 summer heatwave year). 

 



13 
 

Table 3. Mann-Whitney statistical results comparing monthly and yearly AVHRR 

estimated surface temperatures. 
 

 
Figure 3 AVHRR Summer estimated surface temperatures for the Greater London Authority 

with temporal averaging at the seasonal level. 

The importance of choosing the correct temporal and spatial aggregation level is 

further highlighted in Table 4 where the summer season average estimated surface 

temperatures of individual pixels containing the urban and rural weather stations are 

presented. This shows that at the summer season level there is relatively little agreement 

between the ordered magnitude of overall mean, mean minimum and mean maximum 

estimated surface temperatures compared to the order of the screen-level temperatures (hottest 

(2003), 75
th

-percentile 1997, 50
th

-percentile 2001 and 25
th

-percentile 2002). For most weather 

stations the 50
th

-percentile (2001) has the highest overall mean and mean minimum 

temperatures (i.e., St James Park, Northolt and London Weather Centre). More encouraging 

in this case, is the fact that the hottest mean maximum temperature is recorded for the 

heatwave year of 2003 for all weather station locations, although again for the other years 

there is an inconsistent ordering. Thus, while Table 3 shows that all years apart from 2001 

were statistically cooler than 2003 at the summer season level of aggregation, the results of 

Table 4 raise doubts as to whether averaging over an entire summer allows intra-annual 

temperature dynamics to be captured reliably. 

While the results above demonstrate the utility of monthly estimated surface 

temperatures to capture urban temperature dynamics, it is common to employ the UHII metric 

in order to express the Urban Heat Island phenomena (Jones and Lister 2009, Tomlinson et al. 

2010). Again, at the individual scene level (Figure 4) AVHRR derived UHII seems to capture 

the spatial variability in temperature seen in Figure 3. In particular analysis of Figure 4 

showed that urban green areas across the city have lower UHII values (~-1.5–0.5 °C) 
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compared to high density built up areas (~6.0–8.7 °C), highlighting the importance of 

characterising UHII in a spatially explicit manner so as to capture the spatial variability seen 

in the estimated surface temperature values (Figure 3). However, at the location of the 

weather stations AVHRR estimated surface temperature UHII values were found to be 

greatest annually in 2002 (the lower quartile summer) at 8.38 °C (LWC – HWC) compared to 

7.41 °C (LHR – HWC) for the heatwave year of 2003. Nonetheless, spatially maximum 

AVHRR estimated surface temperature UHII values were found to be consistently higher at 

the London Weather Centre (LWC) in the centre of London for all years except for 2003 

where it is found at London Heathrow (LHR) on the urban-rural fringe of London. This 

suggests that at the intra-annual scale the AVHRR estimated surface temperature UHII is 

capturing a change in the spatial dependence of maximum UHII. In the case of air 

temperature UHII similar results were found; with maximum UHII being captured at LWC 

over all four years but with a marked increase in UHII at LHR during the heatwave summer 

of 2003, resulting in a marginal difference between LWC and LHR of 0.1 °C. However, Table 

5 shows for the location of the London Weather Centre that 2003 (the hottest and heatwave 

year) does not exhibit either the highest maximum or highest mean UHII for either weather 

station air temperature (highest maximum and mean occurs for 2002, the 25
th

-percentile year) 

or estimated surface temperature UHII (highest maximum occurs for 2001 (median year) and 

highest mean occurs for 2002). Figure 5, shows the AVHRR derived seasonal average UHII 

values for each of the four summers, and exemplifies this fact. Moreover, Figure 5 also shows 

that spatially much higher UHIIs are pervasive in 2002 compared to 2003. 

 

 
Figure 4. Urban Heat Island Intensity (UHII) for London using estimated surface temperature 

from AVHRR data acquired on the 8
th

 August 2003 14:04 (GMT). 
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Station SJP LHR NTH LWC HWC 

Year 

Number 

of 

scenes 
                          Min Max                                

2003 43 10.60 34.91 25.81 4.57 11.31 39.91 28.98 5.30 7.11 37.31 25.52 5.21 11.84 38.64 27.34 5.00 7.38 32.31 21.02 6.32 

1997 3 16.31 25.26 21.10 3.68 17.73 29.41 23.32 4.78 16.59 25.82 20.81 3.81 16.89 26.67 22.65 4.18 13.35 19.49 16.19 2.53 

2001 12 19.87 31.56 26.43 3.55 18.81 34.72 27.74 5.05 20.89 32.66 26.53 3.90 21.63 32.96 28.23 3.50 10.13 25.08 19.81 4.07 

2002 17 14.67 28.37 22.25 3.70 5.66 27.87 21.93 5.42 6.00 25.07 19.42 4.82 12.66 30.88 23.99 4.45 7.55 20.87 15.01 4.15 

[SJP – St James’s Park, LHR – London Heathrow, NTH – Northolt, LWC – London Weather Centre, HWC – High Wycombe (rural)]. 

Table 4. Summer seasonal AVHRR estimated surface temperature values from pixel locations containing urban and rural weather stations. 
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Year Mean  

Air UHII 

(°C) 

Minimum 

Air UHII 

(°C) 

Maximum 

Air UHII 

(°C) 

Mean 

EST UHII 

(°C) 

Minimum 

EST UHII 

(°C) 

Maximum 

EST UHII 

(°C) 

2003 4.74 3.10 8.30 6.31 1.20 19.77 

1997 3.73 3.60 4.00 6.46 3.54 8.66 

2001 4.35 2.50 5.90 8.80 1.66 22.83 

2002 4.97 3.90 9.00 8.98 3.05 18.21 

 

Table 5. Summer season UHII values derived using BADC air temperatures from 

London Weather Centre and AVHRR estimated surface temperatures (EST) from 

the pixel location containing London Weather Centre. 

As in the case of the AVHRR estimated surface temperatures, Mann-Whitney U tests 

were performed between the 2003 UHII values and the other years investigated for monthly 

and yearly aggregations. Again a one-tail test based on 2003 UHII being greater than other 

years was employed at a 95% significance level (Table 6). This revealed that at a monthly 

level only 4 of 7 pair-wise combinations showed 2003 to have statistically greater UHII 

values with 3 of these being for the month of June alone. For the other months (July and 

August) 3 out of the 4 tests showed no statistically significant difference (Table 6). It should 

be noted that during the exceptionally warm summer of 2003, the greatest temperatures were 

recorded in August (Johnson et al. 2005); in this case highlighting the potential inability of 

the UHII metric to capture significant temperature changes at the monthly level. At the yearly 

level of aggregation the inability to distinguish between the heatwave year and the other years 

on the basis of the UHII metric is even more striking with all 3 pair-wise combinations being 

found to have no statistical difference at a 95% significance level (Table 6). 

The above analysis of the UHII values using the AVHHR estimated surface 

temperature values reveal that it is possible to capture at a single point in time the spatial 

representation of the UHI. However, the results also pose serious questions about the utility of 

the UHII metric when derived using thermal Earth observed data. The data show there is no 

significant change in the difference between urban and rural temperatures during a heatwave 

summer, resulting in the metric’s inability to quantify the changes between heatwave and non-

heatwave summers. In the case of the AVHRR UHII results such differences maybe the result 

of vegetation loss at the rural station during the heatwave summer due to drought, which will 

change the cover-surface temperature interaction (Lu and Weng 2006) and cause the metric to 

improperly quantify the ‘true’ urban heat island. However, this does not explain the similar 

observations from corresponding weather station screen-level air temperature derived UHII 

results. Taken together, Table 5 suggests that the UHII derived either from AVHRR scenes or 

from weather station records is questionable in capturing intra-annual temperature dynamics 

and in particular heatwave events. Interestingly, similar questions have been raised when 

using solely air-temperature derived UHII (Jones and Lister 2009). While the AVHRR data 

represent daytime scenes, the comparative air temperature based UHII values in Table 5 are 

generated from hourly values over the full diurnal cycle at each weather station, suggesting 

that the above described differences in UHII between summers are manifested in both 

daytime surface and diurnal air temperature based UHII observations, further supporting the 

evidence that UHII is not a suitable metric for analysis of urban temperature dynamics within 

the remit of urban climate and extreme temperature event analysis.  

 

 

 

 

 



17 
 

Year Umin Calculated 1-

tail X>Y 

Reject Null @ 95% 

June 2003-1997 313792 Yes 

June 2003-2001 1034638 Yes 

June 2003-2002 777175 Yes 

July 2003-2001 2139493 No 

July 2003-2002 991436 Yes 

August 2003-2001 1169920 No 

August 2003-2002 1654360 No 

Summer 2003-1997 1425958 No 

Summer 2003-2001 1307869 No 

Summer 2003-2001 1641385 No 

Reject Null if Umin Calculated < Umin Critical (1110722 for 1-tail test X>Y @ 

95%; X=2003 summer heatwave year). 

 

Table 6. Mann-Whitney statistical results comparing monthly and yearly UHII 

values for London derived from AVHRR estimated surface temperatures. 

 
Figure 5. AVHRR Summer Urban Heat Island Intensity values for the Greater London 

Authority with temporal averaging at the seasonal level 

 

5 Conclusions 
 

This study has demonstrated how a long-temporal baseline of daytime AVHRR data can be 

employed to capture the summer temperature regime of the city of London, UK, including the 

response to a known heatwave event. By processing a large number of daytime scenes for a 

sample of years that characterise the temperature distribution of London over a decade period 

we have managed to evaluate the intra-annual temperature dynamics of London. The results 

presented show, as in other studies (e.g., Tomlinson et al. 2010), that both temporally and 
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spatially significant surface temperature variations can be captured using Earth observation 

data. In this work, by evaluating temporal averaging at the daily, monthly and summer season 

level we have shown that there is in the case of London, a high level of sensitivity in the 

AVHRR data to diurnal and localised meteorological effects (Nichol 2003, Hung et al. 2006). 

Equally at the other end of the level of aggregation we found that summer season averages 

fail to capture the ordered magnitude of intra-annual temperature dynamics recorded by 

established weather station screen-level air temperatures. Our analysis reveals that 

characterising estimated surface temperatures at the monthly level gives the best statistical 

discrimination of the intra-annual temperature of London and allows a heatwave summer year 

to be distinguished. The results presented highlight the importance of generating robust 

temporal averages from multiple scenes to remove noise and quantify the underlying urban 

temperature regime. 

With regards to the UHII metric the research has demonstrated the utility of AVHRR 

scenes to generate Urban Heat Island Intensity surface maps, which can be seen to represent 

spatial variability of intensity over the urban surface. However, the utility of the metric is 

questioned due to the lack of response seen in UHII data derived from both AVHRR and air 

temperature measurements between different summer temperature regimes. Testing of these 

data in a statistically robust manner showed that the 2003 heatwave UHII data-sets for both 

image surface and ground air temperatures did not exhibit significantly greater intensities 

than the other three years under consideration. However, several other studies have reported 

distinctive UHII values during heatwaves for several cities (Cheval and Dumitrescu 2009, 

Cheval et al. 2009, Tomlinson et al. 2010). As such, further research is required before a 

definitive evaluation of the utility of the UHII metric can be made. Nonetheless, on the basis 

of the results presented here for both AVHRR estimated surface temperatures and weather 

station screen-level air temperatures, along with the corresponding findings of other studies 

(e.g., Jones and Lister 2009), a more suitable metric for daytime AVHRR scenes to 

characterise over time urban temperature dynamics and perform intra-annual comparisons 

may be one based on summer season monthly average or monthly average maximum 

temperatures. 

Finally, while the focus of this work has been to investigate how one may capture and 

characterise the intra-annual temperature dynamics of cities using Earth observation data, it is 

important to realise that characterisation is only part of providing an understanding of the 

drivers of urban surface and air temperatures. In this regard, while we have presented a 

repeatable approach for other cities where a long time series of AVHRR data exists, the work 

needs to be extended to address a number of important issues. First, we need to improve our 

understanding spatially of the relationship between Earth observed estimated surface 

temperatures and screen-level air temperatures; an issue that has been recognised as being 

important if thermal Earth observation is to be used in temperature hazard and risk assessment 

studies of cities (Voogt and Oke 2003, Tomlinson et al. 2010). Second, and related, we need 

to understand spatially at the city-scale how surface and air temperatures are affected by land 

cover, anthropogenic drivers and urban form differences. While significant bodies of work 

have been established in this area (Oke 1987, Eliasson and Svensson 2003, Lu and Weng 

2006, Tomlinson et al. 2010), again much remains to be done before a full understanding is 

obtained. In both cases, the 30-year daytime cloud free AVHRR archive used to provide the 

selected scenes for this study offers the potential to not only assess these issues spatially but 

also to assess their temporal consistency not just for London, but also for other UK cities.   

 

 

 

 



19 
 

7 Acknowledgements 
 

This work is funded by a UK Engineering and Physical Sciences Research Council (EPSRC) 

PhD studentship, awarded to Tomas Holderness. Additionally, Dundee Satellite receiving 

station (A UK Natural Environment Research Council facility (NERC)) is acknowledged for 

generating and providing the original AVHRR data-sets. The Remote Sensing and 

Photogrammetry Society is acknowledged for the award of their travel bursary for travel to 

the First International Conference on Sustainable Urbanisation, 2010, Hong Kong China, 

where this work was initially presented. 

 

8 References 

BALLING, R.C. AND BRAZEL, S.W., 1987, Time and space characteristics of the Phoenix 

urban heat island. Journal of the Arizona-Nevada Academy of Science, 21(2), pp. 75-81. 

BECKER, F. AND LI, L.Z., 1990, Towards a local split window method over land surfaces. 

International Journal of Remote Sensing, 11(3), pp. 369–393. 

CAI, G., DU, M. AND XUE, Y., 2011, Monitoring of urban heat island effect in Beijing 

combining ASTER and TM data. International Journal of Remote Sensing, 32(5), pp. 

1213-1232. 

CHEVAL, S. AND DUMITRESCU, A., 2009, The July urban heat island of Bucharest as 

derived from MODIS images. Theoretical and Applied Climatology, 96, pp 145-153. 

CHEVAL, S., DUMITRESCU, A. AND BELL, A., 2009, The urban heat island of Bucharest 

during the extreme high temperatures of July 2007. Theoretical and Applied Climatology, 

97, pp. 391-401. 

COOPER, I. D. AND ASRAR, G., 1989, Evaluating atmospheric correction models for 

retrieving surface temperatures from the AVHRR over a tall grass prairie. Remote Sensing 

of Environment, 27(1), pp. 93–102. 

CRACKNELL, P.A., 1997, The Advanced Very High Resolution Radiometer, (London: 

Taylor & Francis).  

DASH, P., GÖTTSCHE, F.M., OLSEN, F.S., FISHER, H., 2002, Land surface temperature 

and emissivity estimation from passive sensor data: theory and practice-current trends. 

International Journal of Remote Sensing, 23(13), pp. 1452-2594. 

DASH, P., GÖTTSCHE, F-.M., OLESEN, F-.S., FISCHER, H. 2005, Separating surface 

emissivity and temperature using two-channel spectral indices and emissivity composites 

and comparison with a vegetation fraction method. Remote Sensing of Environment, 96, 

pp. 1-17. 

DI SABATINO, S., HEDQUIST, B.C., CARTER, W., LEO, L.S., FERNANDO, H.J.S., 

2009, Phoenix urban heat island experiment: effects of built elements. In Eighth 

Symposium on the Urban Environment, the 89
th

 American Meteorology Society Meeting, 

10-16 January, 2009, Phoenix, AZ. 

DOUSSET, B. AND GOURMELON, F., 2003, Satellite multi-sensor data analysis of urban 

surface temperatures and landcover. ISPRS Journal of Photogrammetry and Remote 

Sensing, 58, pp. 43-54. 

DOUSSET, B., GOURMELON, F., LAAIDI, K., ZEGHNOUN, A., GIRAUDET, E., 

BRETIN, P., MAURI, E., VANDENTORREN, S., 2011, Satellite monitoring of summer 

heat waves in the Paris metropolitan area. International Journal of Climatology, 31, pp. 

313-323. 

ELIASSON, I. AND SVENSSON, M.K., 2003, Spatial air temperature variations and urban 

land use - a statistical approach. Meteorological Applications, 10, pp.135–149. 

ERBERTSEDER, T., TUNGALAGSAIKHAN, P., BITTNER, M., MEISNER, R., 

SCHROEDTER, M., DECH, S., 1999, Towards an operational atmospheric correction for 

http://www.tandfonline.com/doi/abs/10.1080/01431160903469079
http://www.tandfonline.com/doi/abs/10.1080/01431160903469079


20 
 

AVHRR land surface products. Geoscience and Remote Sensing Symposium, 1999. 

IGARSS '99 Proceedings. IEEE 1999 International, 4, pp. 2227-2229. 

GALLO, K.P., MCNAB, L.A., KARL, R.T., BROWN, F.J., HOOD, J.J., TARPLEY, J.D., 

1993, The use of NOAA AVHRR data for assessment of the urban heat island effect. 

Journal of Applied Meteorology, 32, pp. 899-908. 

GALLO, K.P., TARPLEY, J.D, MCNAB, A.L., KARL, T.R., 1995, Assessment of urban heat 

islands: a satellite perspective. Atmospheric Research, 37, pp. 37-43. 

GENTEMANN, C.L., DONLON, C.J., STUART-MENTETH, A., WENTZ, F.J., 2003, 

Digital signals in satellite sea surface temperature measurements. Geophysical Research 

Letters, 30 pp. 1140-1144 

GOLDEN, J.S., 2004, The built environment induced urban heat island effect in rapidly 

urbanizing arid regions – a sustainable urban engineering complexity. Environmental 

Sciences, 1 pp. 321-349. 

HUNG, T., UCHIHAMA, D., OCHI, S., YASUOKA, Y., 2006, Assessment with satellite 

data of the urban heat island effects in Asian mega cities. International Journal of Applied 

Earth Observation and Geoinformation, 8, pp. 34-48. 

IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II 

and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate 

Change [Core Writing Team, Pachauri, R.K and Reisinger, A.(eds.)]. IPCC, Geneva, 

Switzerland, 104 pp. 

JIN, M., DICKSON, R.E. AND ZHANG, D., 2005, The Footprint of Urban Areas on Global 

Climate as Characterized by MODIS. Journal of Climate, 18, pp. 1551-1565. 

JOHNSON, H., KOVATS, R.S., MCGREGOR, G., STEDMAN, J., GIBBS, M., WALTON, 

H., 2005, The impact of the 2003 heatwave on daily mortality in England and Wales and 

the use of rapid weekly mortality estimates. Eurosurveillance, 10(7-9), pp. 168-171. 

JONES, P.D. AND LISTER, H.D., 2009, The urban heat island in central London and urban-

related warming trends in central London since 1900. Weather, 64, pp. 323-327. 

KALLURI, S.N.V. AND DUBAYAH, R.O., 1995, Comparison of atmospheric correction 

models for thermal bands of the advanced very high resolution radiometer over fife. 

Journal of Geophysical Research, 100, pp. 25411–25418. 

KATO, S. AND YAMAGUCHI, Y., 2005, Analysis of urban heat-island effect using ASTER 

and ETM+ data: separation of anthropogenic heat discharge and natural heat radiation 

from sensible heat flux. Remote Sensing of Environment, 99, pp. 44-54. 

KATO, S. AND YAMAGUCHI, Y., 2007, Estimation of storage heat flux in an urban area 

using ASTER data. Remote Sensing of Environment, 110, pp. 1-17. 

KIM, Y.H. AND BAIK, J.J., 2002 Maximum urban heat island intensity in Seoul. Journal of 

Applied Meteorology, 41, pp. 651-659.   

KNIGHT, S., SMITH, C., ROBERTS, M., 2010, Mapping Manchester’s urban heat island. 

Weather, 65, pp. 188-193. 

KOLOKOTRONI, M. AND GIRIDHARAN, R., 2008, Urban heat island intensity in London: 

An investigation of the impact of physical characteristics on changes in outdoor air 

temperature during summer. Solar Energy, 82, pp. 986-998. 

KOVATS, R.S., JOHNSON, H. AND GRIFFITHS, C., 2006, Mortality in Southern England 

during the 2003 heat wave by place of deaths. Health Statistics Quarterly, 29, pp. 6–8. 

LEE, H.-Y., 1993, An application of NOAA AVHRR thermal data to the study of urban heat 

islands. Atmospheric Environment, 27B, pp. 1-13. 

LIANG B. AND WENG, Q., 2008, Multiscale analysis of census-based land surface 

temperature variations and determinants in Indianapolis, United States. Journal of Urban 

Planning and Development, 134, pp. 129-139. 



21 
 

LO, C.P., QUATTROCHI, D.A. AND LUVALL, J.C., 1997, Application of high-resolution 

thermal infrared remote sensing and GIS to address the urban heat island effect. 

International Journal of Remote Sensing, 18, pp. 287-304.  

LO, C.P. AND QUATTROCHI, D.A., 2003, Land-use and land-cover change, urban heat 

island phenomenon, and health implications: a remote sensing approach. 

Photogrammetric Engineering and Remote Sensing, 69, pp. 1053-1063. 

LU, D. AND WENG, Q., 2006, Spectral mixture analysis of ASTER images for examining 

the relationship between urban thermal features and biophysical descriptors in 

Indianapolis, Indianan, USA. Remote Sensing of Environment, 104, pp 157-167. 

NAGOL, J.R., VERMOTE, E.F. AND PRINCE, S.D., 2009, Effects of atmospheric variation 

on AVHRR NDVI data. Remote Sensing of Environment, 113(2), pp. 392–397. 

NETELER, M., 2010, Estimating daily Land Surface Temperatures in mountainous 

environments by reconstructed MODIS LST data. Remote Sensing, 2, pp. 333-351. 

NICHOL, J., 1994, A GIS-based approach to microclimate monitoring in Singapore’s high-

rise housing estates. Photogrammetric Engineering and Remote Sensing, 60, pp. 1225-

1232. 

NICHOL, J., 1996, Analysis of the urban thermal environment with LANDSAT data. 

Environment and Planning B: Planning and Design, 23, pp. 733-747.   

NICHOL, J., 2003, GIS and remote sensing in urban heat islands in the Third World. In 

Remotely Sensed Cities, V. Mesev (Ed.), pp. 301-333 (London: Taylor & Francis). 

OKE, T.R., 1987, Boundary Layer Climates, (London: Methuen). 

PONGRAZ, R., BARTHOLY, J. AND DEZSO, Z., 2006, Remotely sensed thermal 

information applied to urban climate analysis. Advances in Space Research, 37, pp. 2191-

2196. 

ROTH, M., OKE, T.R., AND EMERY, W.J., 1989, Satellite-derived urban heat islands from 

three coastal cities and the utilization of such data in urban climatology. International 

Journal of Remote Sensing, 10, pp. 1699-1720. 

SCHÄDLICH, S., GÖTTSCHE F.M. AND OLESEN, F.-S., 2001, Influence of land surface 

parameters and atmosphere on METEOSAT brightness temperatures and generation of 

land surface temperature maps by temporally and spatially interpolating atmospheric 

correction. Remote Sensing of Environment, 75, pp. 39-46. 

SOBRINO, J.A., COLL, C. AND CASSELLES, V., 1991, Atmospheric correction for land 

surface temperature using NOAA-11 AVHRR channels 4 and 5. Remote Sensing of 

Environment, 38, pp. 19-34. 

SOBRINO, J.A., JIMENEZ-MUOZ, J.C., SORIA, G., ROMAGUERA, M. GUANTER, L., 

MORENO, J., PLAZA, A., MARTINEZ, P., 2008, Land surface emissivity retrieval from 

different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 

46, pp 316-327.  

STATHOPOULOU, M. AND CARTALIS, C., 2009, Downscaling AVHRR land surface 

temperatures for improved surface urban heat island intensity estimation. Remote Sensing 

of Environment, 113, pp. 2592-2605. 

STREUTKER, D.R., 2002, A remote sensing study of the urban heat island of Houston, 

Texas. International Journal of Remote Sensing, 23, pp. 2595-2608. 

STREUTKER, D.R., 2003, Satellite-measured growth of the urban heat island of Houston, 

Texas. Remote Sensing of the Environment, 85, pp. 282-289. 

TEILLET, P.M., 1992, An algorithm for the radiometric and atmospheric correction of 

AVHRR data in the solar reflective channels. Remote Sensing of Environment, 41, pp. 

185-195. 



22 
 

TOMLINSON, C.J, CHAPMAN, L., THORNES, J.E., BAKER, C.J., 2010, Derivation of 

Birmingham’s summer surface urban heat island from MODIS satellite images. 

International Journal of Climatology. doi: 10.1002/joc.2261. 

TUNGALAGSAIKHAN, P. AND GUENTHER, K.P., 2007, NOAA AVHRR derived Land 

Surface Temperature Maps (LST). Available online at: http://eoweb.dlr.de/short_guide/D-

LST.html (accessed on 13 May 2010). 

VAN DE GRIEND, A.A. AND OWE, M., 1993, On the relationship between thermal 

emissivity and the normalized difference vegetation index for natural surfaces. 

International Journal of Remote Sensing, 14(6), pp. 1119-1131. 

VOOGT, J.A. AND OKE., T.R., 2003, Thermal remote sensing of urban climates. Remote 

Sensing of Environment, 86, pp. 370-384. 

WENG, Q., 2003, Fractal analysis of satellite-detected urban heat island effect. 

Photogrammetric Engineering and Remote Sensing, 69 pp. 555-566. 

WENG, Q., Lu, D. AND SCHUBRING, J., 2004, Estimation of land surface temperature-

vegetation abundance relationships for urban heat island studies. Remote Sensing of 

Environment, 89, pp. 467-483. 

YU, Y., PRIVETTE, L. AND PINHEIRO, A.C., 2008, Evaluation of split-window land 

surface temperature algorithms for generating climate data records. IEEE Transactions on 

Geoscience and Remote Sensing, 46, pp 179-192. 

 

http://eoweb.dlr.de/short_guide/D-LST.html
http://eoweb.dlr.de/short_guide/D-LST.html

	University of Wollongong
	Research Online
	2013

	An evaluation of thermal Earth observation for characterizing urban heatwave event dynamics using the urban heat island intensity metric
	Tomas Holderness
	Stuart Barr
	Richard Dawson
	Jim Hall
	Publication Details

	An evaluation of thermal Earth observation for characterizing urban heatwave event dynamics using the urban heat island intensity metric
	Abstract
	Keywords
	Disciplines
	Publication Details


	tmp.1382425450.pdf.gAblG

