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ABSTRACT   

    Many models involving combination of multiple Weibull distributions, modification of Weibull 

distribution or extension of its modified ones, etc. have been developed to model a given set of failure data. 

The application of these models to modeling a given data set can be based on plotting the data on Weibull 

probability paper (WPP). Of them, two or more models are appropriate to model one typical shape of the 

fitting plot, whereas a specific model may be fit for analyzing different shapes of the plots. Hence, a problem 

arises, that is how to choose an optimal model for a given data set and how to model the data. The motivation 

of this paper is to address this issue.               

    This paper summarizes the characteristics of Weibull-related models with more than three parameters 

including sectional models involving two or three Weibull distributions, competing risk model and mixed 

Weibull model. The models as discussed in this present paper are appropriate to model the data of which the 

shapes of plots on WPP can be concave, convex, S-shaped or inversely S-shaped. Then, the method for 

model selection is proposed, which is based on the shapes of the fitting plots. The main procedure for 

parameter estimation of the models is described accordingly. In addition, the range of data plots on WPP is 

clearly highlighted from the practical point of view. To note this is important as mathematical analysis of a 

model with neglecting the applicable range of the model plot will incur discrepancy or big errors in model 

selection and parameter estimates.       

 
    Keywords:  Weibull models, Failure data analysis, Model selection, Parameter estimation, Weibull 

probability paper       

 
 

NOTATION 

 

f(t), F(t) [pdf, Cdf] for a distribution that may involve sub-populations     

i  index to sub-population i, i = 0, 1, 2 unless otherwise specified      

Tieling Zhang and Richard Dwight. Choosing an optimal model for failure data analysis by graphical approach, 
Reliability Engineering and System Safety, Vol. 115 (2013), pp. 111–123.   
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R(t) reliability function (survivor function (Sf))    

h(t), hi(t) hrf of a distribution and its ith sub-population       

fi(t), Fi(t), Ri(t) [pdf, Cdf, Sf] of sub-population i       

Cf fitting plot: y(x) vs x     

Wj the jth section of Cf, j = 1, 2, 3         

i, i     [scale, shape] parameter of Ri(t), all are positive    

   location parameter of three-parameter Weibull distribution             

x n (t)   

y(t) n ( n (R(t)))   

y(x) n ( n (R( xe )))    

Li  a straight line, yi(x) = i(x n (i))          

I intersection of L1 & L2    

II intersection of L0 & L1 or L0 & L2      

La asymptote to Cf as x       

'y , ''y  [first, second] derivative of y(x)   

(xI, yI) coordinates of point I in the x-y plane   

(xII, yII) coordinates of point II in the x-y plane    

 
 

1. Introduction  
 

    Modeling a given set of data by the graphical approach is an intuitive and fast way to formulate 

the data. The graphical approach is based on plotting data on probability papers such that normal 

distribution probability paper, log-normal probability paper, Weibull probability paper (WPP), etc. 

have been developed and widely applied. Among them, the WPP is more frequently utilized in data 

analysis as a Weibull distribution is appropriate to model failure times and it is flexible in modeling 

as such the corresponding failure rate can be decreasing, increasing, constant or other forms. If a set 

of data plotted on WPP is roughly scattering on a straight line, one can model the data as coming 

from the two-parameter Weibull distribution. If not, one can try three-parameter Weibull models or 

models involving multiple Weibull distributions or other types of distributions instead.    

A large number of Weibull-related models have been developed, which are applied to modeling 

the data whose fitting plots on WPP take different shapes. These include modified Weibull 

distribution and its extension models [1–5], exponentiated Weibull family [6–8], mixture models 

[9–10], competing risk models, multiplicative models and sectional models [11–14]. These models 
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can be utilized to analyze a given data set whose fitting plot on WPP is concave, convex, S-shaped 

or further other shapes. An overview on the Weibull models can be found in [15]. In recent years, 

there are many research papers published on the extended Weibull and modified Weibull 

distributions and their applications, see for example, [5, 16–22]. The interest is that each of the 

distribution models can present a hazard function that is decreasing, increasing or bathtub shaped. 

While the model plot on WPP of the modified Weibull given by Lai et al. [1] and the modified 

Weibull extension proposed by Xie et al. [2] shows a concave curve, the extended Weibull 

distribution given by Marshall and Olkin [3] presents a model plot that is S-shaped or inversely S-

shaped [5]. A further Weibull extension model [e.g., 18] or a generalized modified Weibull 

distribution [e.g., 19,22] with four parameters can provide more versatile properties in terms of 

probability density function and hazard function for model application. However, the characteristics 

of the model plot on WPP of these newly developed models have not been discussed. Murthy et al. 

[23] present the method for Weibull-related model selection with a list of commonly used 

distribution models but there is not a discussion in detail on the characteristics of the model plots. 

They first categorize the shapes of pdf, hazard function and WPP plots and then identify the 

category which each model belongs to. The shapes of each model plots are categorized based on the 

mathematical background of the model. The readers cannot find the characteristics of the models in 

detail and then they have to read the original papers that present the models in order to have a good 

understanding of the models and apply them to data modelling. Lai et al. [24] give a review paper 

that reviews the properties of the basic Weibull distribution and lists the various extensions of the 

Weibull distribution. It describes the use of Weibull probability plots as a tool for model selection 

and briefly discusses the parameter estimation and model validation. However, this is a short 

overview paper and there is not a discussion in detail on the characteristics of the WPP plots of each 

model. In addition, it does not describe the way to select an optimal model for modeling a given 

data set.          

It is of interest to discuss model selection and associated parameter estimation based on the data 

plot on WPP. Most models are appropriate for modeling the data whose fitting plot on WPP shows 

a concave or convex curve. These models include 3-parameter Weibull models and models 

involving two or three Weibull distributions.      

The models with multiple Weibull distributions are more flexible in application to modeling the 

given data set of which the fitting plot on WPP can take S-shape or further other shapes. The 
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models as discussed in this paper include competing risk model, multiplicative model, mixed 

Weibull and sectional model. Each of them is reviewed shortly.          

The competing risk model was discussed in [11,25]. A physical justification for the model is that 

an item failure occurs due to more than one cause or failure mode, and these causes and failure 

modes are statistically independent. The item fails whenever a failure mode occurs. The competing 

risk analysis has many applications, see, e.g., [26–28] and a thorough review was given in [29].   

    As for multiplicative model, an interpretation to such a model is that a system consists of n 

components connected in parallel and such that the time to failure of the system depends on the 

maximum of {T1, T2, , Tn} where Ti is distributed according to Fi(t). Here, Fi(t) is cumulative 

distribution function of component i. As a result, we have the model F(t) = F1(t)F2(t)  Fn(t). If 

such a model involves two Weibull distributions of each with two parameters, the model plot on 

WPP is a convex curve, see, e.g., [11].              

Mixed distribution model such as the mixed Weibull distribution has been applied in industry for 

many years. Essentially, a mixed distribution is a distribution comprised of a number of distinct 

sub-distributions that have been "patched together" to form one continuous function [30]. The 

mixed distribution is useful when modeling the data set that can be divided into subgroups and the 

data in one subgroup can be treated as coming from one subpopulation because of the same failure 

cause. It has been recognized for more than four decades that the mixed Weibull distribution is an 

appropriate distribution to use in modeling the lifetimes of units that have more than one failure 

cause [31]. Jiang and Kececioglu [9,32], Jiang and Murthy [10], Kececioglu and Wang [31] and 

Ling et al. [33] studied the parameter estimation of the model by maximum likelihood estimate, the 

method of Least Squares and the graphical approach. The model plot on WPP of the mixed Weibull 

involving two distributions shows a complex pattern that has two inflection points.                      

    The more flexible models which are appropriate to analyze complex data are sectional ones. In a 

sectional model (also called composite model, piece-wise model, or step function model), the 

failure distributions over different time intervals are given by different distribution functions. The 

main possible reasons to use sectional models are as follows [12]:     

1. It is mathematically tractable and yields a bathtub shape for the failure rate function.  

2. Its flexibility allows modeling complex data set.  

3. When the material properties of an item change significantly after a certain length of time in 

application, then failures of the item before and after the change should be modeled by 
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different distributions. Thus, in the case, a sectional model is appropriate to model the 

combined failures.          

    A literature review on sectional models can be referred to [12,13]. Mann, et al. [25] and Elandt-

Johnson and Johnson [34] discussed the sectional model involving two Weibull distributions.  Jiang 

and Murthy [12,14] studied the sectional models involving two Weibull distributions and parametric 

properties of these models. Furthermore, other forms of the sectional models involving three 

Weibull distributions were proposed by Jiang and Murthy [13], Zhang and Ren [35]. The shapes of 

plots on WPP of the sectional models with three Weibull distributions are very flexible such as 

those with S-shaped, three sections, concave and convex curves [35]. Sectional models have been 

and will be applied to many applications.                 

     As summarized above, one typical shape of data plots can be modeled by different models and 

on the other hand one distribution model may be used to model different shapes of the data plots.  

From this, it is of interest to us that how to choose an optimal model to model a given data set based 

on plotting the data on WPP.        

     The purpose of this paper is to summarize the characterization of plots on WPP defined by 

different models and to present a basic procedure for choosing an optimal model to formulate the 

given set of data and the method for parameter estimates. The reasonability for model application is 

discussed from the practical point of view, as some analysts may depend on or overly emphasize the 

model characterization in mathematics but neglect its applicability in practice so as to incur errors 

or discrepancy in model selection and parameter estimation.              

    The outline of this paper is as follows: Section 2 discusses the general range of WPP plots from 

the point view of real application; Section 3 summarizes the properties of plots defined by different 

models that involve two or three Weibull distributions; Section 4 discusses the method for choosing 

an optimal model for modeling a given set of data, which is based on the data plot on WPP; Section 

5 shows two examples and Section 6 gives remarks on application of the graphical approach.       

 
2.  WPP plot and its property    

 
    The two- and three-parameter Weibull distributions are given in (1) and (2):   

                                                     F(t) = 1  R(t) = 1 exp[ )/(t ],                                                (1) 

                                                     F(t) = 1  R(t) = 1 exp{  ]/)[( t }.                                       (2)                     

Using the following transformations   
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                                                  x = n (t)    and     y =  n ( n (R(t))),                                            (3)   

one can plot y vs x on WPP. Equation (3) is called the Weibull transformation. By using equation (3) 

in equation (1), the following is obtained,  

                                                      y =   (x n ()).                                                                           (4)                    

This is a straight line. The slope of this line is  and the intercept on the x-axis is n (). Similarly, 

by applying equation (3), equation (2) is transformed into the following:    

                                    y =   [ n (t  )  n ()] =  [ n ( xe   )  n ()].                                     (5)                     

As the above, plotting y vs x on WPP yields a convex curve as shown in Fig. 1. This curve has the 

following characteristics:    

                                                       dy / dx =  [1 + /(ex  )],                                                          (6) 

                                                              dxdy
nx

/lim
)(

=  ,                                                                (7) 

                                                           dxdylim
x

/


 = ,                                                               (8) 

and  

                                                        d2y/dx2 =  ex/(ex )2 < 0.                                                      (9)        

 

         
 
 
 
 
                               
                                                   
        
                                           
 
 
                                            
 

Fig. 1.  Plot of 3-parameter Weibull distribution on WPP 
 
There are two asymptotes:    

                                                     y =  [x ℓn()]          as         x    

and       

                                                     x = ℓn()                      as        x  ℓn().         
Note that Cf intersects the x-axis at x = ℓn( +). Let Ix denote this point, the slope of Cf at this point 

is   

x 

 y 

0 )(  n)(n

Ix

x = )(n
 y = (x )(n )  

Cf 
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)(

/
  nx

dxyd


=  (1+ /).                                                      (10)   

    For a given set of n data, the plotting procedure and parameter estimates can be performed in the 

following steps.  

  #1. Rearrange the data in increasing order, like t1 , t2, , ti, , tn.  

  #2. Compute xi and yi, 1  i  n, as follows:    

                                         xi = ℓn (ti)   and    yi = ℓn {ℓn [1  i  (n +1)]}                                        (11) 

or                    

                                         xi = ℓn (ti)   and    yi = ℓn {ℓn [1  (i  0.3)  (n +0.4)]}                                          

if n is smaller.                                      

  #3. Plot yi vs. xi on WPP.    

    If the data points scatter roughly along a line, this set of data can be adequately modeled by a 

two-parameter Weibull distribution. If not, one can try a three-parameter Weibull distribution or, 

otherwise, other models as will be discussed in the following section.     

    If the data set (t1 , t2, , ti, , tn) contains censored data, #2 ought to be modified. Refer to [36] 

for description in detail on the modifications.       

Plotting a given set of data on WPP is based on the Weibull transformation. From equation (11), 

we know that yi  [ℓn (ℓn(1  1(n +1))), ℓn (ℓn(1  n (n +1)))] where n is the total number of 

data in a set. When n = 1000, for example, yi  [ 6.90826, 1.93279], that means, the fitting plot is 

in the range of y  [ 6.90826, 1.93279]. Similarly, if n = 100, y  [ 4.61015, 1.52934]. Table 1 

gives the range of the plot versus the data sample size, n. Because the minimum and maximum 

values of y depend on n, on the other hand, if y = 3.0, then n is larger than 5.28108.  How large the 

sample size is!          

    To note the range of fitting plot on WPP in general is important. As without considering this will 

incur big error or discrepancy in model selection and parameter estimates. Unfortunately, this was 

neglected in some research papers when discussing the model properties and associated parameter 

estimation by the graphical approach.             

 
                                         Table 1   Values of y1 and yn  (yn = ℓn{ℓn [1  n  (n +1)]})     
                           

   n 106 105 104 103 102 50 20 

F(tn) 9.9999910-7 9.999910-6 9.99910-5 9.9900110-4 9.9009910-3 0.0196078 0.047619 

  yn 2.62579 2.44347 2.22034 1.93279 1.52934 1.3691 1.11334 
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F(t1) 0.999999 0.99999 0.9999 0.999001 0.990099 0.980392 0.952381 

  y1 -13.8155 -11.5129 -9.21039 -6.90826 -4.61015 -3.92194 -3.02023 

  
    Based on these discussions, we examine different shapes of plots on WPP and associated models 

for fitting the plots. Parameter estimates of the models are also presented.        

 
 

3.   Plots on WPP and associated models    
 

    In this section, we discuss different shapes of WPP plots and present the corresponding models 

that are appropriate to fit. These plot shapes are concave, convex, S-shaped or inversely S-shaped. 

Accordingly, the models are of competing risk model, multiplicative model, mixed Weibull model 

and sectional model. The main points on parameter estimates of these models are also presented.                

 
3.1.  Convex curve and associated models     
 
3.1.1.  Sectional models involving two Weibull distributions      

Look at Fig. 2, the left side of the plot is quite like on a straight line. On the other hand, when x 

tends to be very large, the right side of the plot tends to another straight line. The sectional models 

involving two Weibull distributions are appropriate to model this plot. Here, we describe the 

relevant models.                      

   

 
 

4 5 6 7
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-1

0

1

2

 
           
                                                   Fig. 2.   A typical plot for sectional models (1 > 2)    
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Model-a:  

    The Cdf is     

                                          1  exp[ 1)/( 1
t ],                0  t  t0;                                             

                                          1  exp{ 2])[( 2
t },   t0< t < .                                

                    
    Its pdf and reliability function are imposed continuity at t = t0, the parameters are constrained to 

satisfy the following relations:  

                                           t0 = )(1
2121

2121 ])([    ,                                                                 (13) 

                                            = (1 12  ) t0.                                                                                                        (14) 

    It needs 1 > 2  for the model. Using the Weibull transformation, from equation (12), we have  

                                                 1 [x  )( 1n ]                           < x  )( 0tn , 

                                                 2 [ )( xen  )( 2n ]            )( 0tn < x < .          

As a result, Cf is a straight line for   < x  )( 0tn = 0x , which is identical with L1, and a smooth 

curve for 0x < x <  as shown in Fig. 2. As x  , the asymptotic slope of Cf is given by 2  and 

hence the asymptote is L2,                 

                                                 y(x) = 2 [x  )( 2n ].                                                                    (16)     

 

Model-b:   

    The Cdf is given by     

                                             F1(t)                    for 0  t  t0,                   

                                          1  k R2(t)          for t0 < t  <      

where, F1(t) = 1  exp[ 1)/( 1
t ] and R2(t) = exp[ 2)/( 2

t ], k is a parameter with k > 0. Or, this 

model is given in another form      

                                             R1(t),                               0  t  t0;                 

                                          k R2(t),                          t0 < t  <  .   

    Impose the continuity hold for the pdf and reliability function at t = t0, the parameters are 

constrained to satisfy the following two equations:      

                                            t0 = [ 12
1221
  )(1 12]   ,                                                                  (18) 

                                           k = exp[(1 12  )( 2)20
t ].                                                               (19)      

F(t) =  (12)      

   y = y(x) =       (15)  

F(t) =     (17)  

R(t) =
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As a result, the model has 4 independent parameters other than 6. This model requires 1  2 , 

otherwise, it reduces to a single Weibull distribution. From equation (19), k > 1 if 1 > 2  and k < 1 

if 1 < 2 .        

    The model plot on WPP is as follows:      

                                                 1 [x  )( 1n ] ,                          < x  )( 0tn   

                                                 2 [ x  )( 2n ] + n [1  xekn 22 )(2
  ],   )( 0tn < x < .          

This defines that Cf is a straight line for   < x  )( 0tn = 0x , which is identical with L1, and a 

smooth curve for 0x < x <  as indicated in Fig. 2 with 1 > 2 . If 1 < 2 ( k < 1), Cf is concave for          

0x < x < . As x  , the asymptotic slope of Cf  is given by 2 , as a result, this asymptote is L2 

given by (16).      

    The differences for model plots between Model-a and Model-b are  

                                          0x  = Ix  [ 2 )/( 21 n ] / ( 1  2 ),                                                    (21) 

and 

                                          0y = y(x)
0xx = Iy  [ 1 2 )/( 21 n ] / ( 1  2 )                               (22) 

for Model-a, while                               

                                          0x  = Ix  [ )/( 21 n ] / ( 1  2 )                                                          (23) 

and  

                                          0y = y(x)
0xx = Iy  [ 1 )/( 21 n ] / ( 1  2 )                                    (24) 

for Model-b. These conditions are used to judge which model is better to model the data plot as 

shown in Fig. 2. The discussion in detail about Model-a and Model-b can be referred to [11].     

  

Model-c     

    This model is given by     

                                             kF1(t),             0  t  t0 ;  

                                              F2(t),               t0  t.          

As F(t) and f(t) are required to be continuous at t = t0, there are the following two equations:    

                                 kF1(t0) = F2(t0)    and     kf1(t0) = f2(t0) .                                                           (26) 

By defining   

                                 z1 = 1)/( 1
t , z2 =  2)/( 2

t , c = 2)/( 21
  and  = 2 / 1 ,    

equation (26) is changed into the following two equivalent ones.     

                                     exp(c z )  c 1z ( ze  1)  1= 0,                                                            (27) 

   y = y(x) =       (20)  

F(t) =    (25)



 11

and                       

                                                  k = 
)exp(1

)exp(1

0

0

z

cz


 

                                                                          (28) 

where z  z1 = 1)/( 1
t , and z0 = z1(t0) = 1)/( 10

t is the nonzero solution of equation (27). The 

characteristics of the model are as follows.   

   i. This model requires 1  2 , otherwise, it reduces to a single Weibull distribution.  

   ii. When 1 < 2 ( > 1), equation (27) has a nonzero solution z0 (z0 > 0).  As z0 = 1)/( 10
t , then t0 

= 1 1/1
0
z . It is proved that t0 = 1 1/1

0
z > 1

)/(1 21  c and k > 1 under  > 1.  Details for the proof can 

be referred to [12].         

   iii. When 1 > 2 ( < 1), equation (27) has a nonzero solution z0 (z0 = 1)/( 10
t ), hence, t0 > 

1
)/(1 21  c and k < 1. Refer to [12] for details of the proof.          

    
 

4 5 6 7

-4

-3

-2

-1

1

2

 
 
                                                      Fig. 3.   WPP plot of Model-c for 1 > 2 ( < 1)                                                              

                                       1 = 2.5,  1 = 141;   2 = 1.35,  2 = 440;   t0 = 158.606,  k = 0.3018.                      

 

    By using the Weibull transformation in equation (3), from equation (25) we have the following:       

                                  n ( n (1 k + k exp( 1)/( 1
xe )),      < x  x0    

                                  2 (x  n ( 2 )),                                     x0 < x < .                            

As known that n (1 u)   u for small u, then      

                                 y  n (k) + 1 (x  n ( 1 )) = 1 x + n ( k / 1
1
 )                                          (30) 

as x   (or t  0). This implies that the WPP plot has an asymptote La given by (30), which is 

parallel to L1 but displayed vertically by )(kn  as x  . La locates above L1 when   > 1 and 

y 

x
La

L1
L2

y = y(t) =   (29)  
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below L1 when  < 1. See Figs. 3 and 10 (given in Section 3.2.1.2) for the two cases. The WPP plot 

is convex when   < 1 and concave when   > 1, and it is identical with L2 in the range of x > x0 (x0 

= n (t0)).         

 

3.1.2.  Multiplicative model      

In general, an n-fold multiplicative model is given by  

                                                     F(t) = F1(t) F2(t)   × Fn(t)                                                (31) 

where, F(t) and Fi(t) (i = 1 to n) are cumulative distribution functions, respectively.     

Here, we focus on the 2-fold multiplicative model which is described by      

                                                        F(t) = F1(t) F2(t)                                                                     (32) 

where Fi(t) = 1 exp[ i
it  )/( ], t  0, i = 1, 2. It is named the 2-fold Weibull multiplicative model.  

Without loss of generality, assume that 1  2  and 1 > 2 for the case 1 = 2 .        

     From equation (32), the reliability function is   

                                                  R(t) = R1(t) + R2(t)  R1(t)R2(t) .                                                    (33)      

Using the Weibull transformation (3), we have  

                                           y = n { n [R1(e
x) + R2(e

x)  R1(e
x)R2(e

x)]}.                                      (34)                      

Hence, equation (34) gives a smooth curve Cf.  As the derivation given in [11], there are the 

followings   

                                               dxxdyim
x

/)(


  = 1 + 2   

and          

                                                 dxxdyim
x

/)(


  = 1 .     

This implies Cf is a convex curve, see for example, Figs. 4 ~ 6. Note that Cf has two asymptotes. 

One is straight line La given by    

                                      y(x) = 1 [x  )( 1n ] + 2 [x  )( 2n ]                                                    (35)  

as x    and the other is line L1 as x  . Equation (35) shows that there exists an interesting 

relation between La, and L1 and L2.          

    Let A(xA , yA) and B(xB, yB) denote the intersections of La with L1 and L2, respectively. Hence,     

                                           xA = )( 2n ,    yA = 1 )/( 12 n                                                          (36) 

                                           xB = )( 1n ,    yB = 2 )/( 21 n .                                                        (37) 
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By noting that I is the intersection of L1 and L2, the relationship among A, B and I can be derived, 

that depends on the parameter values of the distribution functions involved. First, to consider the 

case of 1  2  and then the case of 1 = 2 .     

 

3.1.2.1.  Case of 1  2       

 

Case (i): 1 << 2  (well separated case) 

    In this case, there exists           

                                                       dy(x) / dx )( 2nx   2 .                                                               (38)       

This implies that the tangent to Cf at x = )( 2n  is approximately overlapping with line L2. A 

typical plot of y vs. x is shown in Fig. 4. This is interesting that xB < xA < xI.         
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     Fig. 4.   1 = 1.05, 1 = 155;  2 = 3.5, 2 = 389      (1<<2)         
 
Case (ii): 1 >> 2  (well separated case)    

    In this case, we have       

                                                        dy(x) / dx )( 1nx   1 .                                                               (39)       

The implication of this is that the tangent to Cf at x = )( 1n is approximately overlapping with Line 

L1.  A typical plot of y vs. x is shown in Fig. 5. The important to note is that xI < xA < xB.        
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  Fig. 5.    1 = 1.25, 1 = 454.9;  2 = 3.7, 2 = 154.9       (1>>2)   
 
Case (iii): 1  2      

    In this case, there are   

                                     xA  xB = )( 2n    and       yA  yB   0.6731.                                             (40)      

 A typical plot of y vs. x is shown in Fig. 6 and where xA  xB   xI .            
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     Fig. 6.      1 = 1.5, 2 = 3.25, 1 = 2 = 105        
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  Fig. 7.      1 = 2 = 1.75, 1 = 326, 2 = 105              
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   Fig. 8.        1 = 2 = 1.25,  1 = 2 = 155          
 
 

3.1.2.2.  Case of 1 = 2     

    When 1  2 , the lines L1 and L2 are parallel to each other and a typical plot is as shown in Fig. 

7. When  1 = 2 , the lines L1 and L2 merge together and a typical plot is shown in Fig. 8.        
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Comment  

Based on above analysis, it can be found that the 2-fold Weibull multiplicative model with 1 = 2 

gives the special case of fitting plots that are modeled by exponentiated Weibull family model when 

 >1. The exponentiated Weibull family is expressed by F(t) = )]([ tFw  where )(tFw  = 1  

exp ])/([ t  and  is a parameter. The model property and parameter estimation are given in [6–8].  

When   = 2, the exponentiated Weibull family model is a special case of the 2-fold Weibull 

multiplicative model.         

 

3.2.  Concave curve and associated models   
 
3.2.1.  Sectional model involving two Weibbull distributions  

 

3.2.1.1.  Model-b        

    This model was discussed in Section 3.1.1 in detail. This model requires 1  2 . If 1 < 2 , the 

WPP plot is concave as shown in Fig. 9. The property of the fitting plot is the same as analyzed in 

Section 3.1.1 and the parameter estimates can be referred to [11].      
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                                                         Fig. 9.     Plot for Model-b (1 < 2) 
 
3.2.1.2.  Model-c      

Refer to Section 3.1.1 for the property of this model. This model requires 1  2 . When 1 < 2 , 

the model plot is a concave curve, see Fig. 10.  Details for parameter estimates can be referred to 

[12].     
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Fig. 10.    WPP plot for 1 < 2 ( >1)            

                                    1 = 1.35,  1 = 441;   2 = 2.50,  2 = 241;   t0 = 292.268,  k = 1.837.   

 
 
3.2.2.  Competing risk model  
 

Competing risk model is applied to modeling an item’s failure that is caused by more than one 

failure mode or cause, and these failure modes are statistically independent. The item fails whenever 

any failure mode occurs. The model is given by    

                                                                R(t) = 


n

i
i tR

1

)(                                                                   (41) 

where, Ri(t) = 1 – Fi(t), Fi(t) is failure probability due to the ith failure mode or cause. Here, we are 

interested in the model as shown below:      

                                                         R(t) = R1(t)  R2(t)                                                                    (42) 

with Ri(t) = exp[ i
it  )/( ], t  0. This model is analyzed in [11]. It needs 1  2 , otherwise, the 

model reduces to a single Weibull distribution. Without loss of generality, it is assumed that 1 is 

less than 2 .           

    Under the Weibull transformation given in equation (3), there is the following from equation (42),  

                             y = y(x) = 1 [x  )( 1n ] + n [1 + ( 1
1
 / 2

2
 ) xe )( 12   ] ,                                   (43)   

or  

                             y = y(x) = 2 [x  )( 2n ] + n [1 + ( 2
2
 / 1

1
 ) xe )( 12   ].                                 (44)    
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y 
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La
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    This defines y(x) is a non-linear function of x. Since 1  < 2 , it is not difficult to obtain the 

followings:     

                                         
x

lim n [1 + ( 1
1
 / 2

2
 ) xe )( 12   ] = 0                                                        (45) 

from equation (43) and        

                                         
x

lim n [1 + ( 2
2
 / 1

1
 ) xe )( 12   ] = 0                                                       (46) 

from equation (44). That means Cf has two asymptotes L1 as x    and L2 as x  . Cf is 

concave as shown in Fig. 11.     

    Note that at x = Ix , R1( Ix ) = R2( Ix ), where I ( Ix , Iy ) is the intersection of L1 & L2, and as a 

result we have  

                                                  y(x)
Ixx = Iy + )2(n                                                                       (47) 

and  

                                             dy(x) / dx
Ixx = ( 1  + 2 ) / 2.                                                             (48) 

 

    Note that if 1  = 1 in equation (42), this model reduces to a special case named as B distribution. 

B distribution has been applied to lifetime data analysis of systems where the system failure 

involves random failure and wear-out failure [37].            
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               Fig. 11.   The typical WPP plot for the competing risk model given by equation (42)     
 
     
3.2.3.  Sectional model involving three Weibull distributions   

3.2.3.1.  Model-d    
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Here, reliability function R(t) is characterized by the following equations:  

                                           R(t) =







.),()(

;0),(

021

00

tttRtR

tttR
                                                             (49)   

Where, )(tRi = 1exp[ i
it  )( ],   i  and i > 0, i = 0, 1, 2.       

    According to the continuity of R(t) and pdf at t = t0, the parameters are constrained to satisfy the 

following equations:  

                                            0)( 00
t = 1)( 10

t + 2)( 20
t ,                                                   (50)  

                                             0 0)( 00
t = 1 1)( 10

t + 2 2)( 20
t .                                                                 (51)   

From equations (50) and (51), 0t  is obtained as  

                                          0t  =

)(1

2

1

01

20

21

2

1



























=

)(1

1

0

02

12

10

1

0



























                             (52) 

As 0t > 0, it holds that either ( 0  2 ) > 0 and ( 1  0 ) > 0 or ( 0  2 ) < 0 and ( 1  0 ) < 0. 

Hence, 1 > 0 > 2  or 1 < 0 < 2 . Without loss of generality, use the form 1 < 0 < 2 . If 1 = 2 , 

this model reduces to a single distribution.         

    Under the Weibull transformation, equation (49) is transformed into    

                                              y = 0 [x )( 0n ],    < x  )( 0tn ;                                                (53) 

and   

                                              y = 1 [x )( 1n ]+ )1( )(

2

1 12

2

1
xen 






                                                 (43)  

or                                           y = 2 [x )( 2n ]+ )1( )(

1

2 12

1

2
xen 






  ,                                            (44)   

in the section x0 < x. This implies Cf is a straight line for  < x  )( 0tn , which is indicated by L0 

and then a smooth curve for )( 0tn < x < ; see Fig. 12.          

    As discussed in Section 3.2.2, there are equations (45) and (46) so that Cf is a concave curve. As 

a result, the asymptotic behavior of equation (43) in its tendency with decreasing of x is given by    

                                          y = 1 [x )( 1n ]                                                          

as x  . This is identical with L1. Furthermore, from equation (44), the asymptotic behavior of 

the fitting plot is characterized by L2:    

. 
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                                                               y = 2 [x )( 2n ]                         

as x  . Hence L2 is the asymptote to the right end of Cf when x  . Similarly as before, let the 

intersection of L1 and L0 be II (xII , yII), there exist       

                                      xII = [ 0 )( 0n  1 )( 1n ] / ( 0  1 ),                                                     (54)                    

                                      yII = [ 0 1 )/( 10 n ] / ( 0  1 ) .                                                            (55) 

Refer to Section 3.2.2, equations (47) and (48) apply for the model.     

 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                Fig. 12.    Fitting plot for Model-d 
 

Based on the model property, we can carry out parameter estimation as follows.      

 

Parameter estimation  

Plotting data on WPP is the same as what are given in Section 2.  

#4. Use a straight line to fit the left side of the plot, the slope of this line yields 0  and the x-axis 

intercept gives n ( 0 ).      

#5. Try to draw the asymptote L2 to the right side of the plot with increase of x. Its slope gives 2  

and the x-axis intercept yields n ( 2 ).  

#6: To determine the point I on L2, from which the vertical distance to Cf is )2(n . The horizontal 

coordinate of this point yields xI. Draw a tangent to Cf at x = xI, its slope gives ( 1 + 2 )  2. Thus 1  

is obtained. Draw a straight line through this point with slope 1 , as a result, L1 is determined. The 

x-axis intercept of L1 yields n ( 1 ).                      
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#7. Calculate t0 by using equation (52) and hence x0 = )( 0tn  is known.        

    If the calculated x0 is not identical with what should be through careful observation, readjust a 

little bit L2 and further L1, and repeat Steps 5 ~ 7.             

 

 3.2.3.2.  Model-e 

Similar to Model-d, R(t) is given by   

                                           R(t) =







.),(

;0),()(

00

021

tttR

tttRtR
                                                        (56)   

Where, )(tRi is reliability function of Weibull distribution with parameters i  and i  (i = 1, 2).          

    The character of fitting plot for this model is shown in Fig. 13. The plot is concave and its right 

side with larger x is a straight line which is identical with L0 given by y = 0 [x )( 0n ].         

Refer to the procedure given for Model-d, the parameters of this model can be estimated in a 

similar way.       

 

 
 
 
 
 
 
 
 
 
 
 
 
                                             
                                 Fig. 13.   Character of fitting plot of Model-e on WPP  
 
Comment  

   The shape of fitting plot determined by Model-d or Model-e is similar to the competing risk 

model shown in Section 3.2.2. If one fitting plot looks like to take the shape character of these 

models. The competing risk model is first applied and then justify if the condition y(x) = yI + n 2 at 

x = xI  is satisfied and the calculated value of dy(x)/dx at x = xI  is coincident with what looks like in 

the figure. If either of them is satisfied, the competing risk model is a good choice. Otherwise, try to 

use Model-d and Model-e. It is not difficult to choose one from them. Or, if the right side of the plot 
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looks quite like on a straight line, Model-c as given in Section 3.2.1.2 is also a good choice. Else, if 

the left side (where the data are smaller) of the plot looks quite like on a straight line, Model-b 

given in Section 3.2.1.1 is appropriate for modeling the given set of data.                     

 
3.3.  Another sectional model involving two Weibull distributions  Model-f      

    Model-f is a sectional model, it is       

                                           F(t) =







.),(1

;0),(

02

01

tttkR

tttkF
                                                  (57)   

 Where, k is a parameter, k > 0; )(tRi is reliability function of the Weibull distribution with 

parameters i  and i  (i = 1, 2) and F1(t) = 1 – )(1 tR . Note that this model is the same as Model-c 

when t[0, t0] and Model-b when t(t0, ).                    

It is similar to Section 3.1.1, by using the Weibull transform, the model plot on WPP is obtained 

as   

                                  n { n [1 k + k exp( 1)/( 1
xe )]},              < x  )( 0tn                       (58)     

                                  2 [ x  )( 2n ] + n [1  xekn 22 )(2
  ],      )( 0tn < x < .                       (59) 

Note that equation (58) is the same as equation (29) for x  ( , )( 0tn ] and equation (59) is the 

same as equation (20) for x  ( )( 0tn , ). From Section 3.1.1, it is known that the plot of equation 

(58) is convex when k < 1 and concave when k >1, whereas the plot of equation (59) is concave 

when k < 1 and convex when k > 1. Therefore, the model plot is S-shaped or inversely S-shaped, 

and there is one inflection.        

According to the discussions given in Section 3.1.1 and as analyzed in [12–13], it is concluded as 

below in three cases.           

    Case 1: 1 = 2       

If c < 1 (c = 2)( 21
 ), then  k < 1;  if c > 1, then  k > 1.   

If c < 1, then 1 < 2 ;  if c > 1, then  1  > 2 .          

    Case 2: 1 < 2       

    k >1 or k <1.      

    Case 3: 1 > 2     

    k >1 or k <1.    

    Hence, the property of the model plot on WPP is determined by k as follows:       

y = y(t) = 
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    When k >1, it is concave for x (, )( 0tn ) and then convex for x > )( 0tn ;   

    when k <1, it is convex for x (, )( 0tn ) and then concave for x > )( 0tn .        

The model plot shows S-shaped or inversely S-shaped curve, and there is one inflection. If 

assuming this inflection as If, the x coordinate of If, Ifx , is given by )( 0tn , i.e., Ifx = )( 0tn . As an 

illustration, the model plots are shown in Fig. 14 for the two cases of k >1 and k < 1.              

 

 

 
         

                                         Fig. 14.     Typical plots of Model-f on WPP   

                    Case k <1: 1 = 1.5, 1 = 100,   2 = 3.0, 2 = 51,  k = 0.5136,  t0= 211.910;      

                      Case k >1: 1 = 2.5, 1 = 100,   2 =1.5, 2 = 0.31,  k = 3.593,  t0= 50.177.           

 

3.4.  Mixed Weibull distribution      

     A mixed distribution is given by   

                                                                    f(t) = 



n

i
ii tfp

1

)(                                                           (60) 

with 


n

i
ip

1

= 1 and where ip > 0, fi(t) (i = 1 to n) stands for probability density function of 

subpopulation i.       

Here, we are interested in the mixed Weibull distribution given by   

                                                               f(t) = pf1(t) + qf2(t)                                                       (61) 

where, p is mixing weight, p  (0, 1), p + q =1 and fi(t) =
1 ii tii

 exp[ i
it  )/( ], t  0, i = 1, 2. 

Without loss of generality, we assume that 1 < 2 . If 1 = 2 , it needs 1  2 and we assume 1  > 

k <1  k >1  

L2  
L2  

x  

y  
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2  without loss of generality; otherwise, it reduces to one Weibull distribution. The detailed 

analysis of the model and parameter estimation can be referred to [9,10,31–33,38]. From equation 

(61), it is derived that    

                                                           R(t) = pR1(t) + qR2(t).                                                      (62) 

The plot of the model on WPP is as follows:    

                                                 y = y(x) =  )]()([ 21
xx eqRepRnn    .                                          (63)  

The plot of equation (63) is constrained by the two straight lines L1 and L2, see Figs. 15 and 16. If 

1  2 , L1 and L2 has an intersection, I, which is the first inflection of the plot of equation (63). In 

fact, the plot has two inflections as shown in Fig. 15. If 2 < 1 , I locates below x-axis. If 2 > 1 , I 

locates above x-axis. I moves up and right with increasing of 2 giving L1. If x tends to be very large, 

the plot tends to an asymptote defined by L1. On the other hand, if x becomes very smaller, the plot 

tends to another asymptote which is parallel to L1. The distance from this asymptote to L1 is 

determined by the value of p. That is, the smaller the value of p, the larger the distance.               

    If 1 = 2 , L1 is parallel to L2 and the plot of equation (63) has only one inflection, see Fig. 16. 

When x becomes very large, the plot tends to L1 which is an asymptote. If x becomes quite smaller, 

there is another asymptote to the left side of the plot of equation (63), which is parallel to L1 and L2. 

The distance between this asymptote and L2 becomes smaller with decreasing of p. These properties 

are important in model selection and parameter estimation.        
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                             (c)  η2 = η1                                                                       (d)  η2 = 3η1                    
 
                   

                                Fig. 15.   Character of the mixed Weibull model plot on WPP  
                                                 β1 = 1.3,   β2 = 3.9,  η1= 100,  p = 0.1, 0.3, 0.5, 0.7, 0.9      

 

 

 
                                     Fig. 16.   Character of the mixed Weibull plot on WPP  
                                         β1 = β2 = 3.9,  η1= 100,  η2= 0.3η1,  p = 0.1, 0.3, 0.5, 0.7, 0.9         

 

 
 

4. Basic procedure for choosing an optimal model  

 

     Selecting an appropriate model is important for analysis of a given set of test data. One can use 

two different ways to choose a model for the given data set. One is through analysis of physics of 

failure and the other is by examining the shape properties of the data plot on WPP. We discuss these 

two approaches in this section with focus on model selection based on the data plot on WPP.  
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4.1.  Choose a model by analysis of physics of failure       

To select an appropriate model, the following aspects need to be considered:  

1. What is the failure mode or dominant failure modes in various life periods?  

2. What is the failure distribution of the similar products in history?  

3. Is an item failure caused by two or more causes or modes which are independent of each other? 

If yes, one can try the competing risk model.   

4. Is the time-to-failure of an item or system represented by the largest time-to-failure of 

components that consist of the system? If yes, one may try multiplicative model.   

5. Can the given data set be divided into subgroups and the data in one subgroup be treated as 

coming from one subpopulation? If yes, one can try mixed distribution model. If a system’s 

failure is caused by more than one cause, a mixed Weibull model would be appropriate to use 

in modeling the lifetime of the system.                  

6. Does an item’s failure behavior show difference in various life periods? If yes, the sectional 

distribution models may be appropriate for modeling.                     

  

4.2.  Choose a model according to the shape property of the plot   

    An easy and intuitive way to model a given set of data is by the property of the fitting plot of the 

data on WPP. As discussed in Section 3, each model gives its special property for the model plots 

on WPP. Therefore, based on these properties, we can easily choose an appropriate one for 

modeling the given data set, see Table 2 for model selection.           
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Table 2     Property of model plots    

 
 
 
 
 
 
 
 
  

  

   Multiplicattive Weibull model 
   with (1 =2)      

                Model-a 
                Model-b (1 > 2)    

                  Model-c (1 > 2)    
 

 
 
 
 
 
 
 
 
 

 

   
  

 

   

   Multiplicative Weibull model  
 

       Mixed Weibull model (1  2)       
  

      Mixed Weibull model (1 = 2)       
    

 
 
 
 
 
 
 
 
 

  

      Model-f  with k >1 and k <1       
 

               Model-b (1 < 2)     
 

                 Model-c (1 < 2)    
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    In general, the procedure for choosing an optimal model by the graphical approach is as follows.  

a. Plot data on WPP.  

b. Analyze the shape property of the plot.   

c. Use Table 2 and choose a model for the plot according to its shape property. Some times, several 

models could be appropriate.     

d. Perform parameter estimates of the selected models through combination with the Least Squares 

method.        

e.  Make comparison of R2 values between different models selected or carry out goodness-of-fit 

test, or calculate AIC (Akaike’s Information Criterion) values [39] through MLE to evaluate the 

selected models and then to choose a best one for the given set of data.            

 

4.3. Models involving three Weibull distributions              

    A few other forms of Weibull models involving three Weibull distributions were discussed in [13] 

and [35]. For a complex data set, if the Weibull models with three parameters and all the models as 

discussed in this paper are not satisfied for modeling, one may have a trial to construct other forms 

of sectional models involving multiple Weibull distributions.                         

    In this section, a general procedure for choosing an optimal model for a given set of data is 

proposed. In order to give an illustration, two examples are presented in the following section.   

  
 

5. Examples  
 
Example 1    
     
    A set of data is shown in Table 3. Each of the data represents the time until death of mile mice 

exposed to 300 rads of radiation. This group of male mice was maintained in a germ-free 

environment. Though this group of data represents the survival days of male mice due to thymic 

lymphoma, the failure could also be involved in the effect of other failure modes and other causes. 

It is of interest, for example, to evaluate the effect of a germ-free environment on the incidence rate 

of reticulum cell sarcoma while accommodating the competing risks of developing thymic 

lymphoma or other causes of failure [40]. This set of data is selected for demonstrating the data 

modeling method as discussed in this present paper.      
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Table 3  Days of until death of male mice exposed to 300 rads of radiation (Germ-Free Group) [40]       

 

158 192 193 194 195 202 212 215 229 230 

237 240 244 247 259 300 301 321 337 415 

434 444 485 496 529 537 624 707 800  
 

Based on the procedure as described in Section 3, plot the data on WPP as shown in Fig. 17. Clearly 

the data points do not scatter on a straight line and the data plot shows first convex and then 

concave. It is clearly to show that the fitted plot has one inflection. Therefore, the mixed Weibull 

model and Model-f may be appropriate to model this set of test data according to Table 2. After 

trial, however, it is found that the mixed Weibull distribution does not fit to modeling this set of 

data. Model-f is an appropriate one for this set of data. Finally, the model parameters are obtained 

with corresponding to calculation of R2 value for the model and associated parameters. The 

estimated parameters are 1 = 8.25, 1 = 234.25, 2 = 2.59, 2 = 506.56 and k = 0.556 with R2 = 

0.992. That means this model fits the data set very well. See the model fitting and the data plot in 

Fig. 17. The survival probability and the empirical plot are presented in Fig. 18. Again, it shows that 

the model fits the data quite well.                    

                          

 

 
 
                                   Fig. 17.    Data plot (dot line) and model fitting (solid curve)   
                                                   β1 = 8.25, 1=234.25;  β2=2.59, 2 =506.60;  k = 0.556.        
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                            Fig. 18.    Survival probability curves of the empirical distribution  
                                             and the fitted distribution of Model-f (R2 > 0.99)  
 
 
Example 2   
 

A sample of data representing months of survival of 26 patients being treated for one disease is 

shown in Table 4, of whom 13 patients taking irinotecan plus cisplatin and another 13 patients 

taking etoposide plus cisplatin. This set of data was presented for illustration of data processing and 

analysis in [41]. As described in Section 3, the WPP plot of this set of data is generated first as 

shown in Fig. 19. By observing carefully the characterization of this plot, one can judge that Model-

a and the multiplicative Weibull model would be appropriate ones for fitting this set of data. After 

trial, it is found that Model-a is better than the multiplicative Weibull model. At the same time, 

another potential 3-parameter Weibul model proposed by Dimitrakopoulou et al. [42] was also 

selected for verification. Here, it is named as D-K-S model. This model is given by R(t) = 

})1(1exp{ t  for t > 0, where  is scale parameter, α and  are of shape parameter (, α,  > 

0).     

By fitting the data plot using Model-a and D-K-S model, it is found that Model-a is better than 

D-K-S model for modeling this set of data. The parameters of D-K-S model are obtained by the 

method of maximum likelihood estimate, which are α = 0.3174,  β = 2.650 and  = 0.007758. And 

the R2 value with the estimated parameters is 0.97364. The parameters of Model-a are estimated by 

the graphical approach, which are β1 = 2.078, 1=12.897; β2=0.380, 2 =1.380 and  = 11.930. And 

the R2 value for Model-a with the estimated parameters is 0.9902. Therefore, Model-a would be an 

      Time (days) 
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optimal model for modeling this set of data. The fitting plot of Model-a is shown in Fig. 19 and the 

survival probability curves of the empirical distribution given in dotted line, and Model-a and D-K-

S model fitted with the estimated parameters are shown in Fig. 20. It is clearly verified that Model-a  

fits the data very well.            

 
Table 4   Months of survival of patients after treatment [41]    

 

13.57 11.7 12.52 30.65 2.73 25.49 13.31 16.89 10.94 

8.18 9.72 15.61 56.38 8.11 5.82 1.94 13.34 7.56 

6.47 14.69 16.26 9.43 9.49 4.86 14.65 5.95  
 

 
 

 
                                                  Fig. 19.    Data plot and fitting plot of Model-a with   

                                  β1 = 2.078, 1=12.897;  β2=0.380, 2 =1.380;   = 11.930;  R2 = 0.9902.        

 

 

 
 

                                 Fig. 20.    Survival probability curves of the empirical distribution  

                                                  and the fitted distribution of Model-a and D-K-S model  
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6. Remarks  

 
    In this paper, the property of Weibull-related models involving more than three parameters is 

summarized and the method and procedure for choosing an optimal model to formulate a given set 

of data are proposed. The graphical approach can provide us with shape characterization which a 

failure data set has, so that it yields some insight for us to select a better model to fit the data. This 

is straightforward and easy to be applied. It can provide the initial estimates of model parameters. 

Although the parameter estimates by graphical representation are approximate to some extent, the 

initial estimates can be refined through combination with the method of Least Squares.         

    In the graphical method for model parameter estimates, the asymptotic property of the fitting plot 

of the given data set is frequently utilized. If the model function converges very fast to its limit 

when x  , or x  , it is easy to draw an asymptote with higher accuracy. Otherwise, it will 

involve error when to fit a curve end with a straight line. To fit an accurate asymptote to the end 

part of a section of the plot is very important in parameter estimates. Often one’s expertise in 

parameter estimates by the graphical approach plays an important role in improving accuracy of the 

estimation.        

    After a few appropriate models or an optimal model is determined, the next step is to perform 

parameter estimation of the selected models. As parameter estimation by the graphical approach 

yields an initial estimate and it involves a certain degree of subjectivity, other more accurate 

statistical methods are necessary to be applied, such as MLE, Least Squares estimation, etc. For 

MLE method for the parameter estimates of the sectional models, the recursive method should be 

applied as the section partition points (such as t0 and t1) can not be chosen accurately from the plot. 

In general, it might require several iterations before a good fit is obtained. Often is it to apply the 

recursive method to solving a set of equations that have several parameters involved.                
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