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Continuous Particle Manipulation and Separation in a 
Hurdle-combined Curved Microchannel Using DC 

Dielectrophoresis 
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1 School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW, 
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Kong 

Abstract.  This paper presents a novel dielectrophoresis (DEP)-based microfluidic device which combines round hurdle 
with an S-shaped curved microchannel for continuous manipulation and separation of microparticles. Local nonuniform 
electric fields are generated by means of both constricted gaps and curved sections having equal width. Under the effect 
of negative DEP, particles transporting throughout the microchannel electrokinetically will be directed away from either 
inner wall or hurdle edge. Both experiment and numerical simulation were conducted, the results of which showed that 
the trajectories of fix-sized (i.e. 10 or 15 m) polystyrene (PS) particles could be controlled by adjusting applied voltage, 
and continuous size-based separation of 10 and 15 m particles was achieved. Compared to other microchannel designs 
that make use of either obstacle or curvature individually for electric field gradient, the developed microchannel offers 
advantages such as improved controllability over particle motion, lower requirement of applied voltage, reduced fouling 
and particle adhesion, etc.  

Keywords: hurdle-combined curved microchannel, particle manipulation, particle separation, DC dielectrophoresis 
PACS: 47.57.jd, 47.85.Np, 85.85.+j, 87.50.ch 

INTRODUCTION 

Dielectrophoresis (DEP), first adopted by Pohl [1], 
is a phenomenon that occurs due to a translational 
force exerted on a dielectric particle in a nonuniform 
electric field. With the rapid development of lab-on-a-
chip (LOC) devices, DEP has been widely used to 
manipulate various micro/nano scale bioparticles (i.e. 
DNA, protein, bacteria, virus, mammalian and yeast 
cells) in microfluidic systems [2, 3], due to its great 
advantages including label-free nature, favourable 
scaling effects, simplicity of the instrumentation, 
ability to manipulate neutral bioparticles, and analysis 
of high selectivity and sensitivity [4-6].  

Traditionally, the spatial nonuniformities required 
for DEP are generated by applying alternative current 
(AC) electric fields to the microelectrodes patterned 
within microchannels [6], however, such electrode-
based systems suffer from fabrication complexities, 
electrode fouling [5], and electrochemical reactions on 
the electrode surface [7]. These problems are avoided 
in insulator-based DEP microdevices, where direct 
current (DC) electric fields are applied via external 
electrodes submerged in reservoirs, and electric field 
gradients are induced around insulating objects. In 
such devices, two main approaches have been used to 
generate required electric field gradient [8]: obstacles 

and microchannel curvature. However, microdevices 
with electrically insulated obstacles (i.e. posts, 
rectangular/triangular hurdles, ridge, oil droplet and oil 
menisci) embedded in straight microchannels, have 
such limitations as locally amplified electric fields, 
large trans-membrane voltages and shear stresses on 
cells, Joule heating, and fouling due to particle 
clogging or adhesion [9]. Although high-intensify 
local electric fields can be avoided in insulating curved 
(i.e. sawtooth, serpentine, circular, spiral and waved) 
microchannels, this curvature-based method requires 
sufficiently large applied DC voltage and/or long 
curved section for effective performance of the device, 
and the microchannel is more sensitive to 
contamination (i.e. particle adhesion on channel wall).  

In this work, we developed a novel design coupling 
the effects of obstacle and curvature to generate 
electric field gradient required for the DEP effect, 
where multiple round hurdles are embedded within an 
S-shaped microchannel. The aforementioned adverse 
effects of using each approach individually, therefore, 
have been significantly reduced. The manipulation 
functioning of the design was demonstrated by 
directing 10 or 15 m polystyrene (PS) particles to 
distinct outlets via adjusting applied voltages. In 
addition, the separation functioning was verified by 
the effective and successful separation of 10 and 15 
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