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Advanced active pixel architectures in standard CMOS technology

Abstract
This paper aims at exploring and validating the adoption of standard fabrication processes for the realization
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complete radiation sensor system, including on a CMOS integrated circuit the sensitive devices, read-out and
signal processing circuits. A prototype chip (RAPS01) based on these principles has been already fabricated,
and a chip characterization has been carried out; in particular, the evaluation of the sensitivity of the sensor
response on the actual operating conditions was estimated, as well as the response uniformity. Optimization
and tailoring of the sensor structures for High Energy Physics applications are being evaluated in the design of
the next generation chip (RAPS02). Basic features of the new chip includes digitally configurable readout and
multi-mode access (i.e., either sparse of line-scan readout). © 2005 IEEE.
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Advanced Active Pixel Architectures in
Standard CMOS Technology

Alessandro Marras, Daniele Passeri, Guido Matrella, Pisana Placidi, Marco Petasecca, Leonello Servoli,
Gian Mario Bilei, and Paolo Ciampolini

Abstract—This paper aims at exploring and validating the
adoption of standard fabrication processes for the realization
of CMOS active pixel sensors, for particle detection purposes.
The goal is to implement a single-chip, complete radiation sensor
system, including on a CMOS integrated circuit the sensitive
devices, read-out and signal processing circuits. A prototype chip
(RAPS01) based on these principles has been already fabricated,
and a chip characterization has been carried out; in particular,
the evaluation of the sensitivity of the sensor response on the
actual operating conditions was estimated, as well as the response
uniformity. Optimization and tailoring of the sensor structures
for High Energy Physics applications are being evaluated in the
design of the next generation chip (RAPS02). Basic features of the
new chip includes digitally configurable readout and multi-mode
access (i.e., either sparse of line-scan readout).

I. INTRODUCTION

I N RECENT years, active-pixel (APS) architectures, com-
monly exploited for vision applications, have been proposed

for detecting minimum ionising particles [1], [2], as an alter-
native to customary architectures based on microstrips or pas-
sive pixel arrays. In APS schemes, each pixel includes a few
control devices (usually, MOSFETs), which take care of photo-
diode buffering, precharge and reset. This potentially improves
the signal-to-noise ratio (S/N) and, thus, makes it unnecessary
the adoption of dedicated fabrication technologies (e.g., high-re-
sistivity or epitaxial substrates). Standard fabrication processes
bring a number of advantages, in term of both performance and
costs. This work aims at implementing a single-chip, complete
radiation sensor system, including sensitive device as well as
read-out and signal processing sections, by means of a fully
standard CMOS technology. In [3], [4], design and development
of a prototype chip based on these principles were introduced,
the functionality of which was experimentally validated in [5].
In this paper, this approach is extended, and the organization
and design of a new architecture is discussed. We still focus on
a flexible read-out scheme, through which the same sensor array
can be interrogated either in a fast, sparse mode, or in a conven-
tional line-scan mode, tailoring its behavior for different oper-
ating requirements.
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II. TECHNOLOGY AND DESIGN ISSUES

In solid-state detectors, an impinging ionising particle can be
identified by collecting the free charge generated in the semi-
conductor bulk: detection capability depends, thus, on both
the charge generation rate and the charge collection efficiency.
High bias-voltages and low-doped (i.e., high-resistivity) sub-
strates are, hence, used in several solid-state radiation detectors
(e.g., [6]) so that thick (200–500 m) semiconductor layers can
be fully depleted. Unfortunately, full-depletion of the substrate
layer cannot be achieved in advanced CMOS technologies:
low supply voltages are to be used (to avoid breakdown), and
low-resistivity substrates are needed (due to latch-up concerns).
Some technologies may offer a relatively thick, low-doped
epitaxial layer, which can be exploited for enhancing charge
sensitivity [2]. On the other hand, the adoption of mainstream
technology ensures definite advantages in terms of steady,
progressive reduction of fabrication costs and increase of
performance figures [7].

A more specific advantage of deep submicron technologies
consists of the intrinsic radiation hardness of MOS conventional
circuitry: due to the thinning of gate oxide, radiation-induced
leakage current and threshold voltage shift become less critical.
Radiation damage also influences charge sensing devices: traps
induced into the sensitive volume may alter charge collection
properties to some extent. A recent literature work, however,
discusses such an issue, with reference to APS fabricated in a
0.25 m CMOS technology. According to [8], radiation toler-
ance constraints for linear colliders or space applications, can
still be readily fulfilled by advanced CMOS technologies.

In this work, the photodiode response was preliminarily eval-
uated by means of physical device simulation [9], allowing for
taking into account most geometrical and physical details re-
lated to the actual technology process.

The first prototype was fabricated by UMC, with a 0.18 m
CMOS process, which features 1 polysilicon layer and 6 metal
interconnect layers. It provides no epitaxial layer and the supply
voltage is limited to 1.8 V. The substrate is, therefore, far from
being fully depleted; simulations [3], [10] show that the effec-
tive charge collection is practically limited to a sensitive volume
which is about ten microns deep. Hence, the hit of a Minimum
Ionising Particle (MIP) generates less than 1000 electron/hole
effective pairs. Due to such a small charge budget, the careful
control of parasitic devices and the actual sizing of sensitive area
are of the utmost importance, in order to optimize charge-col-
lection and noise properties.

Proper amplifier stages were designed, to ensure a proper
output S/N ratio. The transfer function of such amplifiers can

0018-9499/$20.00 © 2005 IEEE
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Fig. 1. Single pixel total noise evaluation: values are sampled 75 �sec after
the reset falling edge for several acquisitions. A mean value of 1.553 V has
been measured, with a 1.157-mV deviation (�).

be digitally controlled, allowing for adjusting the bias point and
the actual gain. Configurability is useful for calibrating the ac-
tual chip with respect to fabrication process tolerances, as well
as for adapting the chip response to different applications (e.g.,
different radiation sources). Such a flexibility can be exploited
to select optimal trade-offs among sensitivity, spatial resolution
and read-out speed.

III. RAPS01 CHIP TEST

The RAPS01 chip includes several prototypal matrix struc-
tures ranging from 8 8 to 32 32 pixel arrays: different pixel
layout options have been investigated; several arrays differing
in pixel size (ranging from 4.4 4.4 m to 16 16 m ) and
pitch were included, thus resulting in a large number of control
signals and I/O pins. In order to efficiently manage the corre-
sponding large amount of data, a dedicated PCB test board has
been designed and realized: it communicates with three data
acquisition boards. Two digital boards (National Instruments
PCI-DIO-96, PCI-6503) and an analog/digital one (PCI-6014)
are used, managing about 130 I/O and control signals. LabView
routines, combined in a common graphic interface, have been
written, which allow for fast, flexible and inexpensive setting
of control and addressing signal and for analog/digital output
read-out.

Pixel noise has been evaluated: in Fig. 1, the distribution of
several acquisitions, taken during the reset pulse, is reported. An
overall single pixel noise below 1.6 mV has been extracted from
the distribution’s sigma. A pixel kTC noise of 22 electrons has
been evaluated, in line with results reported in literature for such
devices [11].

This value includes signal-amplification and noise-reduction
effects of read-out circuitry and, thus, can be quite different from
the noise estimated at the photodiode [5].

Uniformity of the response over the whole matrix has been
checked for as well. In particular, Fig. 2 shows the distribution
of the pixel responses for a 8 8 APS matrix during the reset
phase. Fixed pattern noise effects can be reduced by means of
correlated double sampling techniques, if needed.

Fig. 2. Mean values of all 64 pixels of a 8� 8 APS structure; values are
evaluated during the reset phase. A mean value of 1.58 V has been measured,
with a 21.13-mV deviation (�)).

Fig. 3. Alpha particle response: voltage shift at the output node (�V) for
a particle crossing position in the middle of a sensitive area. Histogram bars
represent output data from adjacent pixels in the matrix structure. Digital
(on/off) readout mode.

After preliminary functional tests [5], more articulated char-
acterizations were carried out in order to validate the re-con-
figurable read-out electronics capabilities and their effect on
the sensor performance (e.g., on spatial resolution and sensi-
tivity). For the sake of simplicity, the structure was illuminated
by means of 5.4 MeV alpha-particles source (i.e., an Americium
Am source, featuring a 1.6 KBq/cm disintegration rate).

With reference to spatial resolution, it is worth observing
that substrate doping significantly affects charge collection and
lateral diffusion. Device simulation tools have been exploited
in order to evaluate its impact, suggesting that thick epitaxial
substrates, although more effective in collecting the charge,
should suffer form a larger lateral diffusion of the generated
carriers. This possibly makes the charge spreading over a larger
number of pixels (depending on pixel size and pitch). Without
a low-doped epi-layer, the overall amount of collected charge
is reduced, whereas a more selective spatial response should
be obtained. It is worth observing, however, that debate is still
open on this point [10].

By properly configuring the output amplifiers, however, a
highly nonlinear (i.e., a step function) can be obtained, thus,
straightforwardly selecting the hit pixel. Such a behavior
(“winner-take-it-all”) is demonstrated in Fig. 3, which illus-
trates the response to an alpha particle hit of a subset of pixels:
due to amplifiers configuration, only the pixel closer to the
particle hit site exhibits a significant ( V) voltage swing.
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Fig. 4. Alpha particle response: voltage shift at the output node (�V).
Histogram bars represent output data from adjacent pixels in the matrix
structure. Analog readout mode.

Quite different information can be obtained through reconfig-
uration: by selecting a more linear response (i.e., reducing the
gain) of the amplification chain, a larger cluster of pixels exhibit
nonnegligible swing, as shown in Fig. 4. Such a pattern can be
analyzed in order to extract the cluster centroid, thus enhancing
spatial resolution beyond the pixel pitch. Centroid-extraction al-
gorithm can be implemented on-chip, thus, again taking advan-
tages from the enhanced processing power given by advanced
CMOS technology.

Extensive testing of RAPS01 chip is still under way: test plans
include detailed spatial-resolution and crosstalk anlyses, as well
as the evaluation of the sensibility to different radiation sources.
To this purpose, an optical test bench has been implemented,
which allows for precise mechanical movements (position re-
peatability below 0.2 m) and includes a laser beam, which can
be focused to a few microns wide spot and features MIP-equiv-
alent energy.

IV. RAPS02 CHIP DESIGN

In the development of RAPS01 chip, an asynchronous
readout mode has been introduced, conceived for faster de-
tection of sparse particle hit. In the so-called WIPS scheme
[5], the sensor array acts as a switch matrix, in which column-
and row-lines are precharged at opposite values. As soon as
a pixel is hit, its output turns on the switch so that charge
sharing between row and column lines occurs, allowing for
asynchronous detection of hit coordinates. In order to
maximize the voltage swing, in the original WIPS scheme the
switch transistor is biased close to its threshold voltage, which
may imply relatively large leakage (i.e., dark) currents. In this
work, we discuss an alternative approach, which still allows for
sparse access to the array (if needed), at the same time allowing
for reduced leakage and introducing some further degree of
flexibility in the control scheme. The pixel scheme shown in
Fig. 5 has been devised and investigated; the small voltage
swing at the photodiode cathode drives a high-gain, on-pixel
CMOS amplifier, which, in turn, still drives the source-fol-
lower buffering stage (i.e., the switch): the voltage swing
there is, thus, greatly enhanced, and the column-row charge
sharing can be more neatly controlled. By using an inverting
pixel amplifier, the switch can be implemented by means of a
nMOSFET, instead of the pMOSFET originally included in the
WIPS scheme: since the switch should drive a nonnegligible
current, transistor size does matter, and avoiding relatively
large pMOSFETs reduces parasitic charge drain effects. An

Fig. 5. SHARPS basic circuit.

Fig. 6. Simulated photodiode response: feedback enabled for event-triggered
reset (left); feedback disabled by the “freeze” transistor for synchronous readout
(right). Note the different time scales.

additional advantage comes from the availability of a positive
pulse at the amplifier output of the hit pixel, which can be
straightforwardly fed back to drive the photodiode RESET
transistor. So doing, a self-triggered reset can be carried out,
and fully asynchronous operating mode is attained, with no
need of periodic reset signals.

The feedback path is actually controlled by a “freeze” tran-
sistor: if the transistor is cut off, self-resetting is turned off,
and the array can be used in a more conventional synchronous
frame-scan access mode. Subthreshold currents of the freeze
transistor (which features zero threshold voltage) actually may
limit the “hold” time of the reset transistor: estimates however
show that a reasonable operating window is available; resetting
time-constants may range from 100 ns (feedback active) to 80

s (when the feedback path is inhibited), as shown in Fig. 6.
This scheme has been named Self-resetting high-gain active

radiation pixel sensor (SHARPS), and the overall pixel layout is
shown in Fig. 7: the pixel size is 10.3 m by 10.3 m; the size
of the n-well needed by the pMOS device is much smaller than
the sensitive area of the photodiode, so that charge collection
efficiency is not significantly affected by this.

Simulations have been carried out, to evaluate the competi-
tive action of the n-well and to estimate parasitic capacitances.
To this purpose, an accurate model of the photodiode charge col-
lection [3] has been accounted for.

In Fig. 8, simulated pixel response is reported, accounting
for different relative positions of the impinging radiation. The
estimated output voltage swing is in the range of several hun-
dreds of mV, and a marked response discrimination is attained.
This suggests that a fair charge resolution can also be achieved.
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Fig. 7. SHARPS pixel layout.

Fig. 8. SHARPS pixel simulated response, at different relative positions of the
impinging radiation respect to the photodiode center: 0.0 �m (“central” hit), 1.3
�m, 2.6 �m, 5.15 �m, 6.5 �m 7.8 �m, 9.1 �m, 10.3 �m (hit “at the boundary”
between adjacent pixels).

To exploit such a possibility, an on-chip 2-bit A/D conversion
is performed at each row and column, so that a spatial resolu-
tion finer than the pixel pitch can be achieved: by analysing the
cluster response, a spatial resolution of 2.6 m is obtained.

More generally, the adoption of CMOS technology makes
it possible to implement versatile and powerful function in a
straightforward manner: here, configurable row and column am-
plifiers allows for digitally configuring the detector response.
Some circuit features have been explicitly devised for the de-
tection of sparse events: nevertheless, conventional frame-scan
readout can be carried out as well.

This task is accomplished by the control unit, which can
manage control signals in a suitable way (i.e., inhibiting the
pixel feedback and activating in a given sequence line ampli-
fiers). Digital signal processing does not pose critical speed
issues, since the operating frequency is actually limited by the
analog section (down to 1.5 MHz for sparse, event-triggered
readout; 10 MHz for traditional synchronous readout). A small
area impact is expected as well, with respect to the pixel array.
The flexible, configurable readout circuitry, introduced above
can also be exploited to make the same chip suitable for de-
tection of radiation of different kind; the chip configurability

will be tested against different radiation sources, prospectively
evaluating applications.

V. CONCLUSION

A prototype chip (RAPS01) based on standard CMOS tech-
nology has been fabricated, aimed at exploiting the inherent ad-
vantages coming from the adoption of advanced fabrication pro-
cesses.

Test and characterization has been carried out, demonstrating
the practicality of the submicron-CMOS approach. Further opti-
mization and tailoring of the integrated sensor system has been
included in the design of the next-generation chip (RAPS02).
A novel pixel scheme has been suggested, featuring high-gain
on-pixel amplification (to increase S/N ratio) and capable of op-
erating in a fully asynchronous fashion. Thanks to the intrinsic
system flexibility allowed by CMOS design, further perspec-
tive application fields, not strictly limited to HEP experiments,
can be considered such as -microdosimetry, spectrog-
raphy, and X-microradiography.
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