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Abstract. Bayesian inference methods are applied within a Bayesian hierarchical
modeling framework to the problems of joint state and parameter estimation, and of state
forecasting. We explore and demonstrate the ideas in the context of a simple nonlinear marine
biogeochemical model. A novel approach is proposed to the formulation of the stochastic
process model, in which ecophysiological properties of plankton communities are represented
by autoregressive stochastic processes. This approach captures the effects of changes in
plankton communities over time, and it allows the incorporation of literature metadata on
individual species into prior distributions for process model parameters. The approach is
applied to a case study at Ocean Station Papa, using particle Markov chain Monte Carlo
computational techniques. The results suggest that, by drawing on objective prior
information, it is possible to extract useful information about model state and a subset of
parameters, and even to make useful long-term forecasts, based on sparse and noisy
observations.

Key words: Bayesian hierarchical modeling; data model; inference in nonlinear models; parameter
(prior) model; prediction; stochastic process model; uncertainty.

INTRODUCTION

The last century has seen major advances in the

ecological and earth sciences, both in the development of

theoretical understanding, encapsulated in mechanistic

process models, and in the development of sophisticated

statistical theories and models for the interpretation and

analysis of observations. However, as Berliner (2003)

has pointed out, until recently the development of

process models and the statistical analysis of observa-

tions have occurred in parallel and somewhat at arms

length. Over the last two decades, there has been

increasing effort devoted to the integration of observa-

tions and process models, so that model–data compar-

ison and data assimilation are now key research topics.

There are a number of drivers for this increased

emphasis on the integration of models and observations.

The scientific community increasingly insists on the use

of more objective and quantitative measures or metrics

to evaluate model predictions against observations (e.g.,

Allen et al. 2007). But ecological and earth-system

models are increasingly used for practical purposes,

from short-term environmental forecasting to local

issues of pollution, conservation, and renewable re-

sources, to global issues of climate change. Users of

model outputs would like more accurate predictions and

increasingly demand formal assessments of the uncer-

tainty in model predictions, to inform decision-making

and risk management.

Techniques for the integration of models and obser-

vations are intended to quantify model performance and

allow intercomparison of alternative models, to improve

performance or skill in model predictions, and to

provide error estimates or confidence/credible intervals

around those predictions. Errors enter into an integrated

model–data system from at least three sources. First,

there are errors in the process of making observations,

which typically provide a distorted and/or fragmented

glimpse of the underlying reality. One consequence is

that we do not know the exact state of the system when

we initialize dynamic models. Second, process models

make simplifying assumptions and approximations, so

that model simulations cannot be expected to reproduce

reality exactly. Many ecological and earth system

models are dynamic models, predicting the evolution

of system trajectories over time, and model errors are

typically stochastic, leading to divergence of simulated

trajectories over time. Finally, process models typically

incorporate a number of parameters, assumed to be

constant over time, whose values are uncertain.

The term ‘‘data assimilation’’ has been used broadly

to describe model–data integration (e.g., Gregg 2008,
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Luo et al. 2011). In practice, approaches and applica-

tions have tended to fall into one of two categories. In

the first, attention has focused on the estimation of

uncertain parameters in deterministic process models

(e.g., Matear 1995). Parameters are often estimated by

minimizing some kind of cost function based on model–

data mismatches, typically a sum of squared errors. In

some cases, the cost function is constructed and

interpreted as a negative log-likelihood based on a

formal error model but, in other cases, the cost function

is ad hoc. The second class of applications typically

involves short-term environmental forecasting or hind-

casting, where errors are believed to be dominated by

uncertainty about the true value of the system state.

Sequential data assimilation techniques are used to

update estimates of the state based on current or recent

observations. In these approaches, there tends to be a

strong emphasis on building realistic observation

models, while the stochastic model error is often

modeled as simple additive white noise and adjusted to

achieve convergence of the assimilation procedure. Very

sophisticated data assimilation schemes are now widely

adopted and routinely used in weather and ocean

forecasting.

The last decade especially has seen increasing advo-

cacy of Bayesian approaches to data assimilation (e.g.,

Link et al. 2001, Berliner 2003, Calder et al. 2003,

Cressie et al. 2009, Zobitz et al. 2011). Bayesian methods

typically yield posterior distributions for the inferred

state and parameters, most often summarized using

large samples from these distributions. These can be

particularly useful in applied contexts, where users may

be interested in the probability distribution of perfor-

mance measures derived from model predictions. A key

attraction of the Bayesian approach is its ability to

formally incorporate prior information about models

and parameters. Given that the rationale for using

mechanistic, process-based models is that they build on

prior scientific knowledge about the structure and

function of system components, it makes sense to use

methods that allow this knowledge to be formally

represented in model-data comparisons. It is of course

possible to use the Bayesian formalism, while discount-

ing or ignoring prior information, through uninforma-

tive priors or empirical Bayes methods. In these cases,

Bayesian methods can generally be shown to be

equivalent to classical methods (e.g., Ver Hoef 1996,

Cressie et al. 2009).

Within the broader Bayesian tradition, Bayesian

hierarchical modeling (BHM) offers a particularly

attractive framework for the integration of mechanistic

process models and observations. BHM provides a

consistent, formal probabilistic framework combining

error or uncertainty in model parameters, model state,

model processes, and observations (Berliner 2003, Wikle

2003, Cressie et al. 2009). This framework encourages

the modeler to think carefully and systematically about

the approximations and assumptions involved in process

model formulation, about the observation process and

the relationship between model state variables and

observations, and about the relationship between model

parameters and independent prior knowledge. One can

think of BHM not just as an integration of models and

data, but as a deep integration of mechanistic and

statistical modeling; Berliner (2003) describes this as

‘‘physical-statistical’’ modeling.

The last decade has seen a rapid growth of Bayesian

applications in ecology and the earth sciences, ranging

from population dynamics and dispersal (e.g., Link et al.

2001, Calder et al. 2003, Wikle 2003, Clark and

Bjornstaad 2004, Clark and Gelfand 2006, Barber and

Gelfand 2007, Hooten et al. 2007) to plant ecology and

terrestrial surface fluxes (e.g., Ogle et al. 2004, Baker et

al. 2006, Sacks et al. 2006, Xu et al. 2006, Zobitz et al.

2007, 2008) to ocean circulation and climate (e.g.,

Berliner et al. 2000, Berliner 2003). Encouragingly,

Bayesian approaches are now widely and successfully

used for stock assessment and fisheries management

(Maunder 2004).

In this paper, we focus on the application of Bayesian

methods, specifically BHM, to aquatic biogeochemical

(BGC)/ecological models. Model–data integration in

this field has paralleled the broader trajectory we have

outlined. Earlier studies focused on the problem of

parameter estimation in deterministic models (Matear

1995). Over the last decade, and following developments

in data assimilation into physical ocean circulation

models, there has been considerable progress in imple-

menting sequential data assimilation techniques for state

estimation in three-dimensional biogeochemical models

(Gregg 2008). Examples of Bayesian approaches in this

area fall into two streams. The first uses a Bayesian

approach to obtain posteriors for parameters and state

estimation in (effectively) deterministic eutrophication

models (Arhonditsis et al. 2007, 2008, Zhang and

Arhonditsis 2009). The second, in contrast, uses

sequential Bayesian assimilation to obtain posteriors

for current and forecast state in stochastic models in

which the underlying parameters are assumed constant

and known (Dowd and Meyer 2003, Dowd 2006, 2007).

More recently, Dowd (2011) has extended this work to

obtain joint posteriors for the state and a subset of

parameters. These examples all embed the ecological

dynamics physically within a zero-dimensional box

model setting, but Mattern et al. (2010) extend this to

a one-dimensional setting.

The study presented here aims to build on previous

work by using the BHM probabilistic framework to

underpin enhancements in several areas:

1) The process models used here include stochastic

errors in a way that accounts for key simplifying

approximations made in replacing communities of

species by a single biomass variable. These approx-

imations are widely used in ecological and biogeo-
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chemical models, and the approach seems likely to

find broader application.

2) Our approach also allows prior distributions for

model parameters to be more directly and objectively

related to prior information obtained from field and

laboratory studies, and from in literature meta-data.

This prior information makes a valuable contribu-

tion to state estimation and forecasting in the

application considered here, where observations are

severely limited.

3) The process model has been modified to include a

diagnostic variable, chlorophyll a (chl a), to support a

simpler and more rigorous observation model.

4) Bayesian inference in nonlinear problems is generally

analytically intractable, and computationally inten-

sive simulation-based methods, such as Markov chain

Monte Carlo, are used to obtain large random

samples from the posterior. Our study exploits new

methods for Bayesian inference (Andrieu et al. 2010)

to derive a joint posterior for parameters and state in

nonlinear dynamical models. This allows us to

simultaneously address problems of parameter esti-

mation, state estimation, short-term forecasting, and

long-term projections in a unified probabilistic

framework.

The remainder of this paper is organized as follows. In

General methodology, we provide a brief introduction to

BHM and its application to dynamical state-space

models. Reformulating a marine BGC model as a BHM

presents a reformulation of a conventional deterministic

model as a stochastic process model within the BHM

framework. Uncertainty in the parameters is captured

through a collection of time-varying stochastic process-

es. In Learning and predictability given observations, we

provide a case study of this generic model applied to a

time series of observations at Ocean Station Papa.

Bayesian inference procedures are used to extract

information in the form of posteriors for state and

parameters from a set of observations that are sparse

and patchy in time, and include only a subset of state

variables. Twin experiments are used to test the

performance and consistency of the inference proce-

dures, and to draw some preliminary conclusions about

the effect of observation intensity on posteriors.

Discussion and conclusions discusses the results obtained

in the context of the enhancements listed above, and we

make some observations about the strengths and

weaknesses of this approach for marine biogeochemical

modeling, and ecological modeling more broadly. Links

are included to mathematical, statistical, and computing

appendices.

GENERAL METHODOLOGY

Bayesian hierarchical models (BHMs)

The physical-statistical models described by Berliner

(2003), formulated as BHMs, are models that explicitly

represent three sources of uncertainty: (1) the data

model expresses uncertainty arising from observations

subject to measurement error and bias; (2) the process

model expresses uncertainty arising from scientific (here,

biophysical) processes that are not completely under-

stood or are approximated; (3) the parameter (prior)

model expresses uncertainty arising from parameters not

known exactly.

BHMs are probabilistic models, constructed from

conditional probability distributions. The data are

treated as conditional on the process and some

parameters, and the process is treated as conditional

on other parameters. Hence, the three components,

data, processes, and parameters, can be thought of as

hierarchical levels in a chain of conditional dependence,

which we now formalize.

Let the data (observations), process(es), and param-

eters be represented by the vectors Y, W, and h,
respectively. In some models, the process has a

continuous index in time or space; for the purpose of

computations it is enough to consider W as a high-

dimensional vector. The joint uncertainty is denoted [Y,

W, h], where the notation [A] represents ‘‘the probability

distribution of A.’’ It makes sense to partition the

parameters into biophysical parameters and so-called

statistical parameters arising from the observation

process. Therefore, we write h ¼ fhY, hWg.
Applying the rules of conditional probability, we can

factorize the joint probability distribution as

½Y;W; h� ¼ ½Y jW; hY; hW�½W; hY; hW� ð1Þ

where [A jB] denotes ‘‘the conditional probability of A

given B.’’ Repeating this for the second component of

Eq. 1, we find

½Y;W; h� ¼ ½Y jW; hY; hW�½W j hY; hW�½hY; hW�: ð2Þ

The components of Eq. 2 may be simplified a little by

noting that the biophysical parameters, hW, are not

needed in the data model when we also condition on the

process; similarly, the statistical parameters, hY, are not

needed in the second component when we also condition

on the biophysical parameters. Hence, we obtain

½Y;W; h� ¼ ½Y jW; hY�½W j hW�½hY; hW�: ð3Þ

We see that the three probability distributions on the

right-hand side correspond to the BHM hierarchy of

sources of uncertainty identified above, representing a

data model, a (stochastic) biophysical process model,

and a parameter model, respectively. The parameter

model is often referred to as the prior distribution.

Of key interest is how one can make inferences about

the unobserved process state W and the parameters h,
given the observations Y on the biogeochemical process.

Appealing to Bayes’ Theorem (e.g., Cox and Hinkley

1986:365–367), we may write

½W; h jY�} ½Y jW; hY�½W j hW�½hY; hW� ð4Þ

where the constant of proportionality is a function of Y

June 2013 681BAYESIAN LEARNING AND PREDICTABILITY



only and guarantees that the right-hand side of

statement 4 is a proper joint probability distribution.

This so-called posterior distribution is proportional to

the product of the three levels of the BHM (data model,

process model, parameter model) that we have devel-

oped above. We return later in this section to the issue of

making inferences based on statement 4.

The use of the three levels of conditional probability

models via Bayes’ Theorem to learn from data is

precisely the BHM framework we alluded to at the

beginning of this section. Examples of its use have been

growing in the last decade. It was introduced in a

climate-modeling and climate-prediction context by

Berliner et al. (2000), in an introductory geophysical

context by Berliner (2003), and in an ecological context

by Wikle (2003); see also the review by Cressie et al.

(2009).

A state-space representation

We are interested here in the application of BHM to

dynamical systems, in which the state evolves as a

function of time (discrete or continuous), and the data

are collected by sampling (potentially irregularly and

coarsely) in time, while the process evolves at a relatively

fine time step. We write the time-evolving process W as

(W0, W1, . . . , WT) with corresponding observations

(Y1, . . . , YT) taken after the initial value of the process

W0. We use subscript t to index time, such that Wt is

coincident with Yt, for t ¼ 1, . . . , T. A graphical

depiction of the dependencies is shown in Fig. 1.

We remark that, in practice, observations will be

missing at some times, which the BHM framework can

readily handle.

We henceforth assume that the forward evolution of

the process W depends only on the current state; that is,

W is a Markov-process model described by [Wt jWt�1,

hW], for t ¼ 1, . . . , T. This form of conditional

independence implies that [W j hW] ¼
QT

t¼1[Wt jWt�1,

hW]. Further, observations at time t are assumed to be

independent of observations at other times, conditional

on the state Wt. Thus, the data model has the form,

[Y jW, hY]¼
QT

t¼1 ¼ [Yt jWt, hY].

Statistical inference

The focus of our statistical inference is the calculation

of the posterior distribution described by Eq. 4, which is

rarely amenable to analytic solutions. As a result,

modern Bayesian inference has harnessed efficient

algorithms deployed on contemporary computing archi-

tectures to simulate samples from the posterior distri-

bution. Statistics calculated for these samples, such as

means and quantiles, can be shown to converge to the

appropriate quantities for the posterior distribution

(Tierney 1994).

Suppose for instance that we are interested in

estimating some function f(�) of the state and parame-

ters. We obtain a simulated sample f(W(‘), h(‘)) : ‘ ¼
1, . . . , Lg from the posterior distribution [W, h jY], and
we use the transformed sample f f(W(‘), h(‘)) : ‘¼ 1, . . . ,
Lg to calculate summary statistics. For example, we can

produce an estimate of its expectation, denoted Ê, as

Êð f ðW; hÞjYÞ[ð1=LÞ
XL

‘¼1

f ðWð‘Þ; hð‘ÞÞ

so sampling from the posterior distribution over states

and parameters is key to the success of Bayesian

hierarchical modeling in this context. The computation-

al approach adopted must also be able to cope with the

nonlinear behavior of the process model, noting that the

state transition density function is not available in closed

form.

Particle Markov chain Monte Carlo (PMCMC) was

developed for exactly this situation, and so we have

applied it in our case study. In particular, we use the

particle marginal Metropolis-Hastings (PMMH) sam-

pler (Andrieu et al. 2010), which we have previously

applied successfully to a simple Lotka-Volterra type

model (Jones et al. 2010). Details of PMMH are given in

Appendix C.

REFORMULATING A MARINE BGC MODEL AS A BHM

A general description of the BHM framework and its

use for scientific inference was given in General

methodology. We now show how these ideas can be

applied in a marine BGC setting.

The process model

Recall from General methodology that the biogeo-

chemical process model is at the second level of the

BHM hierarchy. We present the model first in terms of a

deterministic model, and then we derive a stochastic

version of it.

A deterministic biogeochemical process model.—One of

the advantages of the BHM framework is that it allows

us to build on existing scientific understanding, typically

incorporated in deterministic process models. We can

draw here on a long and rich history of (deterministic)

marine BGC models that describe the cycling of

nutrients (e.g., nitrogen) and/or carbon through living

and nonliving organic and inorganic compartments, in

simplified marine ecosystems. Open-ocean models typ-

ically deal only with pelagic planktonic systems, while

FIG. 1. A graphical representation for the process W and observations Y.
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coastal models may deal with coupled pelagic-benthic

systems. In this article, we deal with the simpler case of

pelagic models.

In the general case, the state variables in marine BGC

models are expressed as component concentrations

(mass per unit volume) as functions of space x and time

t. These components are subject to physical transport

(advection and mixing), as well as local biological and

chemical reactions. If c(x, t) is a vector of state variables,

we can write the general reaction-transport equation as

]c

]t
¼ Rðc; x; tÞ þ Tðc; x; tÞ ð5Þ

where R represents local biological and chemical

reactions and T is a transport operator; see Appendix

A: The transport operator for the specific form of Eq. 5

used in the case study in Learning and predictability given

observations. In this paper, we consider the highly

simplified physical setting of a mixed-layer one-box

model and, for the moment, we ignore the transport

operator and focus on the local reactions R. This setting

allows us to formulate a BHM most clearly. However,

we do include a simple transport term to account for

vertical mixing in the case study and this is presented in

Appendix A: The transport operator.

Pelagic planktonic ecosystems are complex systems

that involve many species of phytoplankton and

zooplankton, multiple (potentially limiting) nutrients,

and dissolved and particulate organic matter pools

comprised of complex mixtures. All models of these

systems require simplifying approximations, and the

level of detail varies across models and depends on the

purpose of the model. Model detail and complexity have

tended to increase over the last decade, as scientific

understanding and computational power have increased.

However, this in turn has led to concern about the

identifiability of complex models with many uncertain

parameters (Hood et al. 2006).

We have chosen a relatively simple, classic NPZD

model formulation, which represents the cycling of a

limiting nutrient (nitrogen) through four compartments:

dissolved inorganic nitrogen or DIN (N ), phytoplank-

ton nitrogen (P), zooplankton nitrogen (Z ), and detrital

nitrogen (D). We can write the equations for the local

rate of change of the state variables as

dP

dt
¼ g 3 P� gr 3 Z ð6Þ

dZ

dt
¼ EZ 3 gr 3 Z � m 3 Z ð7Þ

dD

dt
¼ ð1� EZÞ3 fD 3 gr 3 Z þ m 3 Z � r 3 D ð8Þ

dN

dt
¼ �g 3 Pþ ð1� EZÞð1� fDÞ3 gr 3 Z þ r 3 D: ð9Þ

Notice that dP/dtþdZ/dtþdD/dtþdN/dt¼0, which is a

consequence of ‘‘mass balance’’ in the currency of

nitrogen. In Eqs. 6–9, g is the phytoplankton-specific

growth rate (per day, or d�1), gr is the zooplankton-

specific grazing rate (mg P grazed�mg Z�1�d�1), m is the

zooplankton-specific mortality rate (d�1), and r is the

specific breakdown rate of detritus (d�1). A fraction EZ

of zooplankton ingestion is converted to zooplankton

growth and, of the remainder, a fraction fD is allocated

to detritus, with the rest released as dissolved inorganic

nitrogen, N. The fractions, EZ and fD, are treated as

constant, independent of ingestion rates. This is a

common simplifying assumption in biogeochemical

models (e.g., Wild-Allen et al. 2010).

The process rates g, gr, m, and r are all functions of

state variables and/or exogenous forcing variables, and

hence they are functions of time. As we shall see below, a

multiplicative temperature correction Tc is applied to all

rate processes; to define Tc, we use a so-called ‘‘Q10

formulation’’ for dependence on temperature T:

Tc ¼ Q
ðT�Tref Þ=10
10 : ð10Þ

Notice that T depends on time and, hence, so does Tc,

where Tref is a reference temperature, and Q10 is a

prescribed parameter.

We use a flexible formulation for the dependence of

zooplankton’s grazing rate on phytoplankton concen-

tration (zooplankton functional response):

gr ¼ Tc 3 IZ 3 At

ð1þ AtÞ ð11Þ

where t is a given power; the relative availability of

phytoplankton A is

A ¼ ClZ 3 P

IZ

ð12Þ

where A depends on time because P does. In Eq. 12, IZ is

the maximum zooplankton ingestion rate (mg P�mg

Z�1�d�1); and ClZ is the maximum clearance rate (m3

swept clear�mg Z�1�d�1). Both are constant in the

deterministic formulation. This is a standard rectangular

hyperbola or Type-2 functional response (Holling 1965)

when t ¼ 1, and a Type-3 sigmoid functional response

when t . 1.

We follow Steele (1976) and Steele and Henderson

(1992) in adopting a time-dependent quadratic formu-

lation for zooplankton mortality:

m ¼ Tc 3 mQ 3 Z ð13Þ

where the constant quadratic mortality rate mQ has units

of (mg Z/m3)�1�d�1. The detrital remineralization rate is

assumed to depend only on temperature (which is time

dependent):

r ¼ Tc 3 rD ð14Þ

where the constant parameter rD prescribes the rate at

the reference temperature and has units of d�1.

June 2013 683BAYESIAN LEARNING AND PREDICTABILITY



Finally, the phytoplankton specific growth rate g

depends on temperature T, available light or irradiance

E (see Appendix A: The light model ) and dissolved

inorganic nitrogen N. The submodel given below for g is

somewhat more elaborate than the submodels used for

the other rate processes. We shall see that it predicts

changes in phytoplankton composition (nitrogen : car-

bon ratio and chlorophyll a : carbon ratio) as well as the

phytoplankton specific growth rate, as phytoplankton

adapt to changes in available light and nutrients.

In the BHM framework, we are encouraged to pay

careful attention to the relationship between process

model variables and what we can observe. For example,

the process model predicts phytoplankton biomass P in

the currency of mg N/m3, but we typically measure

phytoplankton as a pigment (mg chl a/m3). The

submodel given in the following paragraphs allows us

to relate these chlorophyll observations (chl a) more

rigorously to the state variable P. Our formulation

represents a variant on models proposed by Geider et al.

(1998), and details of our derivation are given in

Appendix A: A simple adaptive model of phytoplankton

growth and composition in response to light, nutrient, and

temperature.

The phytoplankton-specific growth rate g is expressed

in terms of gmax (in units of d�1), a constant maximum

specific growth rate at the reference temperature, Tref, a

light-limitation term hE, and a nutrient-limitation term,

hN. That is,

g ¼ Tc 3 gmax 3 hE 3 hN=ðhE þ hNÞ: ð15Þ

The light limitation term is given by

hE ¼ 1� expð�a 3 kmax 3 E=gmaxÞ ð16Þ

where a is the initial slope of the photosynthesis vs.

irradiance curve (mg C�mg chl a�1�mol photon�1�m�2)
and kmax is the maximum chlorophyll a : carbon ratio

(mg chl a/mg C). The parameter a ¼ aCh 3 Q is the

product of the chlorophyll-specific absorption coeffi-

cient for phytoplankton, aCh (m2/mg chl a), and the

maximum quantum yield for photosynthesis, Q (mg C/

mol photons).

The nitrogen limitation term is given by

hN ¼ N=½ðgmax 3 Tc=aNÞ þ N� ð17Þ

where aN is the maximum specific affinity for nitrogen

uptake (mg N�1�m3�d�1).
The phytoplankton nitrogen : carbon ratio, v, predict-

ed by the model is given by

v ¼ vmin 3 hE þ vmax 3 hN

hE þ hN

ð18Þ

where vmin and vmax are the minimum and maximum

nitrogen : carbon ratios (mg N/mg C).

The model predicts the phytoplankton chlorophyll

a : carbon ratio k, and this can be combined with the

nitrogen : carbon ratio v to convert phytoplankton

biomass P (mg N/m3) to a predicted chl a concentration

as

chl a ¼ Pðkmax=vmaxÞ3 hN 3 Tc=ðRN 3 hE þ hNÞ ð19Þ

where RN ¼ vmin/vmax. This growth model involves six

parameters (gmax, a, kmax, aN, vmax, RN). The parame-

ters a, kmax, and vmax appear only in terms of the ratios

a/kmax, and kmax/vmax, but since vmax is fixed based on

the Redfield ratio, this does not result in redundant

parameters in our inference procedure.

While this completes the specification of the local

reactions R given in Eq. 5, in the simple one-box, mixed-

layer (i.e., zero-dimensional) model adopted here, we do

need to allow for effects of physical exchanges between

the mixed layer and the underlying water mass. These

exchanges add additional source–sink terms to the right-

hand sides of Eqs. 6–9, and these are specified in

Appendix A: The transport operator.

From a deterministic to a stochastic BGC process

model.—The BHM framework encourages us to formu-

late the state or process model in probabilistic or

stochastic terms, in order to capture the effects of

approximations and errors in the process representation.

Note that a stochastic-model formulation is not

equivalent to recognizing prior uncertainty in the

(constant) parameters in a deterministic model. A

deterministic model effectively asserts that, given the

initial state and the parameters, the future state can be

predicted exactly at all future times. A stochastic model

asserts that, given the model state and parameters at the

current time, we can make statements only about the

probability distribution of the state at future times.

A deterministic model of the kind described in

Reformulating a marine BGC model as a BHM: The

process model can be converted to a stochastic model in

a number of ways. The simplest approach is to introduce

an additive error term on the right-hand side of

equations, either as a continuous Wiener process for

the differential equations Eqs. 6–9, or as a Gaussian

error term at each time step in the discretized version.

We have not adopted that approach here; we have tried

instead to introduce randomness into the process model

in a way that better reflects the approximations we make

in formulating such models, and that preserves mass

balance. Specifically, we replace the constant ecophys-

iological parameters in the deterministic model with

stochastic processes that change as the underlying

plankton community composition changes. In the

remainder of this section, we provide motivation for,

and a detailed explanation of, this approach.

A key approximation made in formulating models like

the one given in The process model, involves biological

aggregation. Phytoplankton and zooplankton commu-

nities, which consist of many different species, are each

represented in the model by a single compartment. More

complicated models may divide phytoplankton or

zooplankton biomass into two or more functional

groups with different ecological roles, but each group
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still constitutes an aggregation of diverse species. The

model formulations used in The process model are

largely derived from many, many, laboratory studies

of individual species or isolated samples, which give us

reason for confidence in the structural form of the

models. However, these studies also show very large

levels of variation in many of these ecophysiological

parameters, across individual species, or across field

samples. Hence, the properties assigned to functional

groups in these models must be thought of as

representing some kind of average across the community

of species making up the functional group.

The key point here is not just that variation exists, and

so there is uncertainty in specifying these community

properties, but that community composition varies over

time, and so the community parameters must also be

expected to vary over time. In models like those given in

The process model, we do not attempt to explain or

predict these changes in community composition (and

consequently in community properties) mechanistically,

but we can account for them by treating them as

stochastic processes. Now, we expect some level of

persistence in community composition, so it does not

seem realistic to treat community properties as being

drawn independently from some underlying distribution

at each time step. Instead, we allow for community

persistence by treating community properties as the

outcome of a first-order autoregressive stochastic

process.

This means that if b is a generic biogeochemical

parameter in the deterministic model, we replace b by a

stochastic BGC process B in the model, with

Bðt þ DtÞ ¼ BðtÞ3ð1� Dt=sÞ þ fBðtÞ3 Dt=s ð20Þ

for j 1 � Dt j , 1. Here, Dt is the discrete time step

(assumed to be 1 day in our example), s is the

characteristic time of the autoregressive process (that

is, the time scale on which community composition

changes), and ffB(t)g represents a sequence of indepen-

dent and identically distributed random variables with

distribution [fB]. Detailed properties of this process

required for our study are provided in Appendix B.

We can obtain prior information on the distribution

[fB] by considering past laboratory and field studies. In

fact, meta-analyses of past studies for many ecophysi-

ological parameters have been conducted by researchers

looking to establish systematic relationships between

these parameters and individual size. These analyses

show that parameters typically vary over orders of

magnitude, so there is good reason to propose log-

normal distributions for [fB] (i.e., normal distributions

for log (fB(t))), for most parameters.

There are some further complications we need to

consider in making the step from a meta-analysis of

laboratory studies to specifying a prior for distributions

like [fB]. The meta-analyses summarize results of

measurements on individual species drawn from a wide

variety of locations, but the processes B refer to means

over the community of species present at a particular

location. We would expect the variance of the commu-

nity mean to be less than the variance over the

constituent species; this effect is dealt with explicitly in

Appendix B. It is also possible that the species

comprising a functional group at a particular location

will be less diverse, and may exhibit lower variance, than

the species represented in meta-analyses. We denote the

ratio of the coefficient of variation (CV) of community

mean parameters to the CV of species parameters by

PDF for phytoplankton, and ZDF for zooplankton. In

Appendix B, we relate these ratios to measures of

community diversity.

Because of the lognormal nature of the autoregressive

error fB (t) in Eq. 20, we consider the mean of B, E(B),

and the coefficient of variation of B, namely CV(B) [ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðBÞ

p
/E(B). Appendix B shows how it is possible to

choose the mean and variance of logfB (t) such that E(B)

and CV(B) are consistent with the mean and variance of

individual species properties, given the values of PDF

and ZDF. We treat PDF, ZDF, and the expected value

E(B) [ lB, where B is the set of all BGC autoregressive

processes, as parameters in hW. We also assume

characteristic time scales for changes in phytoplankton

community composition (sP), and likewise for zooplank-

ton community composition (sZ).
We need to establish priors for the parameters

controlling the behavior of the autoregressive processes:

PDF, ZDF, and lB;. We set broad, relatively uninfor-

mative, priors for PDF and ZDF. We also set relatively

uninformative priors for the components of lB, by

assigning them the same distribution (mean and

variance) used to describe the individual species

parameters, based on the meta-data (Appendix B). This

means that the prior distribution allows the community

parameter to take on the most extreme values revealed

by individual species. For further information on priors

and their derivations, see Appendix A: The parameter

(prior) model and Reformulating a marine BGC model as

a BHM: The parameter (prior) model.

We can now translate the stochastic BGC process

model into the BHM formalism presented in General

methodology. The process W, as defined in Bayesian

hierarchical models (BHMs), can be split into the state

vector X and a vector B that recall is the set of

autoregressive BGC processes. That is,

½W� ¼ ½X;B� ð21Þ

where the state is X ¼ fN, P, Z, Dg and the (random)

BGC processes are B¼ fgmax, kmax, Rn, aN, IZ, ClZ, EZ,

rD, mQg. Similarly, hW in Eq. 3 can be split into two

parameter sets, those appearing explicitly in the equa-

tions updating X, namely, hX ¼ fKW, ach, SD, fDg, and
those appearing in the autoregressive equations for the

BGC processes B, namely hB¼ fPDF, ZDF, lgmax , lkmax ,

lRN
, laN

, lIZ
, lClZ

, lEZ
, lrD

, lmQ
g taking note that PDF

and ZDF effectively scale the coefficient of variation,
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CV(B), given in Appendix A: Table A1. The state-space
representation is now as given in Fig. 2.
In terms of conditional probabilities, the formulation

developed in this section means that

½Wt;Wt�1; hW � ¼ ½Xt;Bt jXt�1;Bt�1; hW �

¼ ½Xt jXt�1;Bt�1; hX�½Bt jBt�1; hB� ð22Þ

where the last equality expresses the fundamental
evolution of the process model (Reformulating a marine
BGC model as a BHM: The process model: From a

deterministic to a stochastic BGC process model ).

The parameter (prior) model

The priors assigned to the parameters specified in this
study were drawn from a meta-analysis of the literature.
A summary of the prior information available for the

BGC parameters and processes, and the sources of this
information, is given in Appendix A: The parameter

(prior) model. Each component of the prior is assumed
independent of the other components, and no attempt
has been made to introduce any dependence structure

between the parameters.

The data model

The data model explicitly links the process model with
the observations. The parameters hY in Eq. 2 control the
observation process, and we consider the following two

broad classes of observation error: (1) Analytical
measurement errors should reflect the precision of in

situ instruments or laboratory analyses. For example,
laboratory determinations of chlorophyll a pigment
concentration might be expected to have a precision of

a few percent. (2) Representation errors can arise from
mismatches in scale (we may model a large volume of
ocean, many kilometers across, but make measurements

on bottle samples comprising a few liters) and mis-
matches in type (we may predict zooplankton concen-
tration in the currency of nitrogen, but measure volume

or wet mass of biomass).
In most real-world situations, errors associated with

mismatches in scale and type outweigh analytical
measurement errors. The use of a simple one-box
mixed-layer model here introduces an additional ambi-

guity. We are neglecting horizontal advection, which
might be thought of as an additional process-model
error. The significance of horizontal advection com-

pared with local processes depends on the area of ocean
represented by the box. If we regard the box as

representing an ocean area several hundred kilometers

in extent, we might hope that the errors involved in

neglecting advection are small. But we must then expand

the observation error to account for the spatial

variability observed on these length scales.

In Learning and predictability given observations, the

data model for our application to data from Ocean

Station Papa is given by

jY jW; hY� ¼
YT

t¼1

½Yt jXt; hY�: ð23Þ

Treatment of hY for our case study is discussed in

Learning and predictability given observations. Recall

that W is made up of X and B; note that if we had direct

observations of the ecophysiological properties repre-

sented in B, these could be incorporated into the data

model.

LEARNING AND PREDICTABILITY GIVEN OBSERVATIONS

We demonstrate the application of the BHM frame-

work to a marine BGC model using the historical Ocean

Station Papa (OSP) data set as a case study. This site

was chosen over alternative subtropical time series sites

because the simple mixed layer model is believed to be a

better approximation at OSP. Two experiments were

conducted. First, a twin experiment was run using

climatological forcing at OSP, with synthetic observa-

tions of all state variables assimilated daily. The

synthetic observations were generated by adding noise

to a known ‘‘true’’ trajectory through the state space.

Second, a subset of the historic OSP data set comprising

observations of chlorophyll a (chl a) and nitrate (N ) was

assimilated for the period January 1971–November

1974. This corresponds to part of a sustained observing

campaign, and we found that the marginal posteriors for

parameters did not change greatly if additional years

were included.

Ocean Station Papa site description

Ocean Station Papa (OSP) is located at 508 N, 1458 W

(Fig. 3), in 1500 m of water in the subarctic region of the

north east Pacific Ocean. It experiences a strong

seasonal cycle in temperature, wind stress, and incident

solar radiation (Whitney and Freeland 1999). During

winter and spring, a mixed layer of depth 80–120 m is

sustained by a high wind stress with the low incident

solar radiation unable to induce any persistent stratifi-

cation of the water column. During summer, the

thermocline shallows in response to increased surface

heating and a reduction in the wind stress. Consequent-

FIG. 2. Evolution of the state (X) and the biogeochemical (BGC, B) processes. Recall that W¼ [X, B] and that Fig. 1 shows
how observations Y are related to the process W.
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ly, a relatively shallow mixed layer is maintained of

typical depth 25–40 m.

It has been noted that there are persistently high

macronutrient concentrations in the mixed layer and the

phytoplankton biomass is typically low. This phenom-

enon is observed throughout much of the open sub-

arctic Pacific ocean. While the concentration of dis-

solved inorganic nitrogen (DIN) is lower in summer

than in winter, it is rarely if ever depleted to levels that

may cause nutrient limitation in primary producers

(Harrison 2002). There is no discernible seasonal cycle in

chlorophyll a. Previous modeling studies of Matear

(1995), Denman and Pena (1999), and Denman (2003)

discuss the likely controls on phytoplankton biomass

and the seasonal variation in primary productivity and

zooplankton biomass.

Learning from observations: twin experiment

with climatological forcing

Twin experiments in a setting like that of OSP have

been conducted to compare samples from the posterior,

[W, h jY], produced by Bayesian inference, with known

‘‘true’’ values of the state and parameters. The term

‘‘twin,’’ borrowed from the data-assimilation literature,

refers to experiments where the model used for

inference, and the model from which synthetic observa-

tions are generated, are the same. Model forcing and

boundary conditions are taken from Matear (1995) and

are climatological in nature; details are given in

Appendix D.

Twin experiment: design.—To generate the synthetic

observations, we select a parameter set h* (the ‘‘true’’

parameters) and take a single realization of the

stochastic model fW�t : t ¼ 0, 1, . . . , Tg to produce the

trajectory fX�t : t ¼ 0, 1, . . . , Tg through state space

(again referred to as the truth). We have chosen a set of

‘‘true’’ parameters in the twin experiment that are shifted

away from the prior means (to provide a clearer test of

the inference procedure), but that nevertheless yield

state-variable trajectories qualitatively consistent with

OSP observations (e.g., high-nutrient low-chlorophyll

(HNLC) conditions). The (synthetic) observations Y are

generated by

Yt ¼ X�t expðntÞ t ¼ 0; 1; � � � ; T ð24Þ

where nt are independent and identically distributed

(IID) as the normal distribution N(0, r2
obs). The

standard deviation, robs, was 0.1 for DIN observations

and 0.2 for observations of the remaining state variables.

The log-normal error model was adopted because errors

in the estimates of plankton density are typically better

represented by log-normal multiplicative error than by

additive normal error (Campbell 1995), and the log-

normal multiplicative-error model delivers synthetic

observations that are nonnegative. The observation

errors are assumed to be independent over time,

FIG. 3. A map of the northeast Pacific Ocean displaying the location of Ocean Station Papa (Stn. P) with range circles at 100,
500, and 1000 km.
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reflecting either analytical error or (more likely)

uncorrelated small-scale variation in concentrations.

Twin experiment: results.—We first generate an

ensemble of model trajectories by sampling from the

prior distribution for parameters and running the

stochastic model forward through the period January

1971–November 1974, without assimilating any obser-

vations. This so-called free-run process-model ensemble

is precisely a sample from the prior distribution over the

state (Fig. 4, blue shading), which expresses the

uncertainty in the state based only on the prior

knowledge of the parameters gained from a meta-

analysis of the literature. In spite of the large prior

uncertainty in some of the process-model parameters,

the median values of the (marginal) prior distributions

over state variables show surprisingly similar qualitative

behavior to the observed climatology at OSP (Fig. 4,

dark blue line). The median DIN values remain elevated,

and median chlorophyll a values remain low. However,

the 95% contours of the prior ensemble include

unrealistic behaviors not observed at OSP, involving

near-complete depletion of DIN and intense phyto-

plankton blooms.

When the synthetic observations described in Twin

experiment: design are assimilated, using the methodol-

ogy described in Reformulating a marine BGC model as a

BHM, the 95% credibility intervals for the posterior

distribution of the state are very tightly constrained

about the true trajectory (Fig. 4, red shading), compared

with the prior intervals and with the observations.

Despite the 20% observation error, the dynamical BHM

implemented through the PMCMC described in Appen-

dix C, accurately tracks the true state (Fig. 4, green line).

The case for N deserves additional explanation. The

seasonally varying N concentration, prescribed below

the mixed layer as a boundary condition, imposes a

sharp upper limit to the predicted mixed-layer N

concentrations. Provided grazing control keeps phyto-

plankton biomass and N utilization small, the predicted

concentration is very close to this upper bound. In most

prior trajectories, grazing control is effective, so the

prior median is close to the upper limit. Some prior

parameter combinations allow phytoplankton blooms

and N depletion, resulting in the drawdown of N to

near-zero levels seen in the prior lower 95th percentile

for N. The truth is chosen to be OSP-like, and so

produces N concentrations close to the upper bound.

Since we add noise to the truth, a significant fraction of

the observations lie above the upper bound.

The prior distributions over the parameters given in

Appendix A: Table A1 are the blue curves in Fig. 5.

These priors are discussed in Reformulating a marine

BGC model as a BHM: The parameter (prior) model and

are considered ‘‘global’’ in that they represent experi-

mental results encompassing a wide range of species and

domains. For some model parameters (aCh, sD, PDF,

ZDF, lgmax , lkmax , lClZ
, lEZ

, lrD
, and lmQ

) the marginal

posteriors in Fig. 5 show evidence of learning in that the

posterior mode has moved toward the truth and the

posterior variances have contracted compared with the

prior. However, for others, the inference procedure

appears to extract little or no information from the data,

and the marginal posteriors appear to merely recover the

prior distributions. This is true for the parameters

controlling light attenuation due to water (KW), the

fraction of zooplankton waste diverted to detritus ( fD),

the parameters related to nitrogen uptake and nitro-

gen : carbon ratios (aN and RN), and the maximum

zooplankton ingestion rate (IZ). In the case of aN, the

posterior variance is slightly reduced, but the posterior

median remains centered at the prior mean.

The inference procedure generates posterior distribu-

tions for time series of the autoregressive processes B(t),

and could provide information about changes over time

in the ecophysiological properties they represent. How-

ever, the results from this twin experiment are only

mildly encouraging in this regard. In cases where the

observations are uninformative about the parameters

underlying the autoregressive processes, one can hardly

expect to obtain information about the temporal

variation in the processes themselves. Indeed, in those

cases, the posteriors for the stochastic-process trajecto-

ries are the same as the priors. In two cases (gmax and

ClZ), the posterior median trajectories appear to track

the truth, although with consistent bias in the case of ClZ
(Fig. 6). But for these, and all other autoregressive

processes, the 95% credibility interval for the posterior

exceeds the amplitude of the temporal variation in the

truth by some margin. The inference procedure does not

allow us to conclude that there are significant changes in

these processes over time.

These results reflect the particular nature of the

climatological forcing and system behavior at OSP.

Given that concentrations of dissolved inorganic nitro-

gen at OSP remain well above levels expected to limit

phytoplankton growth, it is unsurprising that parame-

ters controlling nitrogen limitation of growth rates are

poorly constrained. Similarly, phytoplankton biomass

remains at levels well below those required to saturate

zooplankton grazing, and zooplankton growth rates are

controlled by the clearance rate ClZ, not by the

maximum ingestion rate.

Learning from observations: Ocean Station Papa data set

To demonstrate the application of the BHM approach

to a real data set, we have used a subsample of historical

OSP data.

Ocean Station Papa: data model.—Observations of

nitrate (DIN) and chlorophyll a taken between January

1971 and November 1974 are used. Observation errors

are large and dominated by spatial sampling errors,

because we neglect horizontal advection and assume a

large model domain with high levels of within-domain

variability. The presence of larger observation errors

means that the data will be less informative. We draw on
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a number of studies below for estimates of the

appropriate levels of spatial variability.

The spatial and temporal variability of particulate

organic carbon (POC) in this region has been investi-

gated at a number of scales (Bishop et al. 1999). The

spatial variability in the vertical and horizontal direc-

tions was calculated from the beam-attenuation coeffi-

cient obtained from a transmissometer. Small-scale

horizontal variability (1–10 km) of POC appears to be

5–10%, which is deemed negligible in comparison to the

ocean scale and temporal variability. Large-scale hori-

zontal variability (100–300 km) of POC appears to

range from 10% to 40%, however, we attribute some of

this variability to the passage of weather systems on time

scales of 5–10 days. Ocean-basin-scale variability (800–

2000 km) exceeds both the large-scale and small-scale

spatial variability, but this is due to the change from

HNLC conditions in the deep ocean to a more typical

temperate seasonal cycle on the continental shelf.

Bishop et al. (1999) also noted significant interannual

variability that may be linked to El Niño events. Nitrate

data collected along the Line P transect (a 1425 km long

transect between the coast adjacent to the Juan de Fuca

Strait and Ocean Station Papa [e.g., Pena and Bograd

2007]) from 1992 to 1997 display a similar pattern to the

POC data. Again, it appears that on the scale of 100–300

km around OSP, variability in total concentrations of

nitrates and nitrites appears to be 10–30%, with

FIG. 4. Twin experiment: a time series of the prior and posterior distributional properties of the state variables for
phytoplankton (P), zooplankton (Z ), nutrients (N ), and detritus (D) in the common currency of nitrogen (measured as lg N/L)
and the instantaneous concentration of chlorophyll a pigment (chl a; lg chl a/L). Note that the posterior credibility intervals remain
so close to the posterior median that they are difficult to distinguish.

June 2013 689BAYESIAN LEARNING AND PREDICTABILITY



interannual variability exceeding the large-scale spatial

variability (Whitney and Freeland 1999).

Taking all these sources of information into account,

we have assigned a CV (robs) of 0.5 to the observation

error for both DIN and chlorophyll a. This is a

conservative (upper) estimate, representing an upper

bound to spatial variation, and allowing for other

nonspatial contributions, including analytical measure-

ment error.

Ocean Station Papa: results from hindcast.—A prior

ensemble over the state was constructed in a similar

manner to the twin experiment, using real forcing from

January 1971 to November 1974. Model parameters

were sampled from the prior distributions described

FIG. 5. A comparison between the prior (blue curve) and the posterior (red histogram) for all parameters hX and hB. The true
value is given by the vertical green line. The vector hX¼ fKW, aCh, sD, fDg and contains parameters affecting the state, while hB¼
fPDF, ZDF, lgmax , lkmax , lRN

, laN
, lIZ

, lClZ
, lEZ

, lrD
, lmQ

g and contains parameters controlling the distributional properties of the
autoregressive processes. For a description of the parameter symbols, please refer to Appendix A: Table A1. Graphs show
probability densities; the area under each curve and of each histogram is normalized to 1.
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earlier. As in the twin experiment, a wide range of model

behaviors was observed (Figs. 7 and 8), ranging from

near-complete depletion of DIN during summer, to

year-round grazing control. As in the twin experiment,

the median of the prior over the state based on 1971–

1974 forcing qualitatively agreed with observed OSP

behavior, in that DIN was never limiting, and there were

no strong phytoplankton blooms as zooplankton

grazing maintained relatively constant phytoplankton

biomass (Matear 1995, Denman and Pena 1999, Den-

man 2003).

When observations of chlorophyll a and DIN are

assimilated, the 95% credibility interval is dramatically

reduced. Due to the relatively large observation error

prescribed (see Reformulating a marine BGC model as a

BHM: The parameter (prior) model ), the transient, low-

magnitude increase in chlorophyll a seen in the summer

of 1972 is absorbed into the observation error and not

tracked in the state. While the three individual

observations of this anomalous bloom do not fall within

the posterior 95% credibility interval, this cannot be

interpreted immediately as lack of model fit. This is

because the credibility interval depicted is over the latent

chlorophyll a state variable, not over the ‘‘noisier’’

observed chlorophyll a; this distinction is important and

is discussed by Cressie and Wikle (2011: Section 2.2.2).

Although short-lived transient features are not tracked

by the model, slow seasonal and intra-seasonal varia-

tions are well captured. The methods described in

General methodology: Statistical inference not only

condition the state on observations from previous times,

as do filtering approaches, but also on future times. This

is referred to as smoothing in the Bayesian filtering

literature (Briers et al. 2010, Fearnhead et al. 2010). The

advantage of such smoothing is evident in time periods

where there are very few observations (e.g., mid-1973).

Through the process model, Bayesian methods allow

inference on the unobserved state variables P, Z, and D;

see Fig. 8. Notice that there is a substantial reduction in

the uncertainty expressed through the posterior com-

pared with that expressed through the prior, even for

unobserved state variables. For example, there is a

strong seasonal cycle in the zooplankton biomass, which

has been observed in a number of studies (Harrison

2002). The peak in the zooplankton biomass occurs

during mid summer, which coincides with a peak in

primary production (not shown).

The marginal posteriors for model parameters shown

in Fig. 9 demonstrate that the sparse and limited OSP

observations carry very little information about many of

the parameters. This was not unexpected; previous

studies have also experienced difficulty in using the

OSP data set to estimate parameters in deterministic

models (Matear 1995). The large observation variances

used here, which compensate for effects of advection,

reduce the effective information content of the data, but

we believe this is realistic, given the model structure. The

FIG. 6. Twin experiment: a time series of the prior and posterior distributional properties of the autoregressive for the
maximum carbon-specific growth rate of phytoplankton (gmax, measured as d�1) and the maximum zooplankton clearance rate
(ClZ, measured as [m3 swept clear]�[mg N]�1�d�1). These processes are a subset of B(t).
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FIG. 7. A time series of prior and posterior distributional properties of observed state variables, comparing observations (open
black circles), prior (blue), and posterior (red). DIN stands for dissolved inorganic nitrogen. Note that chl a was measured in lg/L.

FIG. 8. A time series of prior and posterior distributional properties of unobserved state variables for phytoplankton (P),
zooplankton (Z ), and detritus (D) (all measured as lg N/L), comparing the prior (blue) and posterior (red).
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posterior marginals show evidence of learning for four

parameters: ZDF, gmax, lClZ
, and lIZ

.

Perhaps unsurprisingly, given the high noise levels and

sparse observations, the OSP data do not allow us to

derive useful information about temporal variation in

the autoregressive processes B(t). Even for those

parameters, gmax and ClZ, where the observations

appear to inform the posteriors for the underlying

parameters, the posteriors for the autoregressive trajec-

tories show no significant variation over time (not

shown).

One advantage of the BHM framework is that we can

use the sample generated from the joint posterior of the

state and parameters, conditioned on past observations,

to assess the uncertainty in model forecasts and

scenarios. In this case, we have used the posterior

conditional on observations from January 1971 to

November 1974 to make a probabilistic forecast for

FIG. 9. A comparison between the prior (blue curve) and the posterior (red histogram) for all parameters hX and hB, where hX¼
fKW, aCh, sD, fDg and contains parameters affecting the state, while hB¼fPDF, ZDF, lgmax , lkmax , lRN

, laN
, lIZ

, lClZ
, lEZ

, lrD
, lmQ

g
and contains parameters controlling the distributional properties of the autoregressive processes. For a description of the parameter
symbols, please refer to Appendix A: Table A1. Graphs show probability densities; the area under each curve and of each
histogram is normalized to 1.
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1975. We do this simply by propagating all posterior

trajectories forward the additional year, using the

boundary and forcing fields for that year. The results

from this forecast ensemble (median and 95% credibility

intervals) are shown in Fig. 10. Agreement with the

(non-assimilated) observations in the forecast period is

very good.

DISCUSSION AND CONCLUSIONS

A key consideration in building BHMs is the

treatment of model error. In our study, we used the

fact that the aggregation of communities of species into

single trophic levels or functional groups, and the

replacement of well defined ecophysiological parameters

for individual species by community-average parame-

ters, is an important source of model error. Conse-

quently, we have replaced the constant community

parameters used in most biogeochemical models by

stochastic autoregressive processes that vary slowly in

time. This is in contrast to the common approach of

simply adding white noise to the rate equations.

A potential drawback of this approach is that it

increases the complexity and dimensionality of the

model and the inference problem. We have augmented

the four-dimensional primary state space (N, P, Z, D)

with nine additional state variables (B). Instead of

estimating nine constant parameters, we must estimate

nine means and nine variances controlling the evolution

of the stochastic processes B(t). We have mitigated this

problem by using prior information to set the relative

magnitudes of the variances of phytoplankton and

zooplankton community parameters, and using stochas-

tic factors related to community diversity to set the

absolute magnitude. One advantage of the process

model, as formulated, is that it allows a strong and

direct connection to literature meta-data on the distri-

butions of ecophysiological parameters across species.

This allows us to set informative objective priors for

most of the parameters, exploiting a key advantage of

Bayesian approaches, and partially counterbalancing the

increase in unknowns.

The inference procedure was designed to derive joint

posteriors for system parameters and the (augmented)

system state. Many examples of data assimilation in

dynamical models concentrate on either state estimation

or parameter estimation. Joint inference is particularly

difficult in nonlinear models with sparse data, and it has

typically required strong simplifying approximations,

such as the replacement of nonlinear dynamics by

approximating linear models. The underlying determin-

istic NPZD model is highly nonlinear, displaying two

qualitatively different modes of behavior or local

stability domains, and the observed behavior at OSP

correspond to only one of these domains. The new

particle MCMC techniques employed here are able to

cope with this nonlinear, threshold behavior, but are

computationally expensive.

Given these challenges, the results of the OSP case

study offer a number of grounds for encouragement.

First, the stochastic process model allows the construc-

tion of priors over the model state, by drawing random

samples from the prior distribution for model parame-

ters and initial conditions, and running ensembles of

model simulations. We can think of this prior ensemble

as encapsulating our ability to predict system behavior

at OSP, given independent scientific knowledge about

BGC processes, and local environmental forcing, but no

other local knowledge. Encouragingly, the state median

in these prior distributions bears a strong qualitative and

even quantitative resemblance to OSP observations

(Figs. 4 and 7), even though the priors were chosen to

reflect the full range of species attributes reported in the

literature. But the 95% credibility intervals for the prior

distribution also include trajectories involving phyto-

plankton blooms and nitrate depletion, which are

incompatible with observations at OSP.

Data assimilation into dynamical process models can

serve a variety of different diagnostic and prognostic

purposes (see, e.g., Gregg 2008, Luo et al. 2011). One

class of diagnostic applications targets the hindcasting

or nowcasting of system state, given limited observa-

tions. Despite sparse observations with large sampling

errors on one state variable (N ) and one diagnostic

variable (chl a), the Bayesian inference procedure

recovers quite tight posteriors for these observed

variables (Fig. 7). The Bayesian inference procedure is

also able to transfer information from observed to

unobserved state variables, reducing the uncertainty in

the unobserved state variables (P, Z, and D) by about

one-half (Fig. 8).

A second class of diagnostic applications focuses on

learning about, and interpretation of, model parameters.

Here, the parameters describe the ecological character-

istics of the plankton communities present at OSP. To

the extent that these parameters have smaller variances a

posteriori, we can conclude that the observations have

provided information about the parameters and the

communities they represent. The results for OSP are

informative and cautionary. In the twin experiment,

with observations on all state variables, the posteriors

for some parameters are essentially identical to the

priors, so provide no additional information (Fig. 5).

These results can be explained in terms of model

dynamics. Since nutrients under OSP conditions are

always saturating, and phytoplankton concentrations

remain low, the parameters affecting phytoplankton

growth at low nutrient concentrations, and zooplankton

ingestion at high phytoplankton concentrations, have

negligible effect on model predictions, and are not

identifiable. This pattern of identifiability is an intrinsic

characteristic of the environmental forcing and dynam-

ics at OSP. In other ocean conditions, such as

oligotrophic mixed layers where nutrient concentrations

are always low and limiting, one would expect different

sets of model parameters to be identifiable.
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Using the limited set of historical observations

available for OSP, the inference procedure is able to

extract information about a few key parameters only

(Fig. 9). For the most part, these parameters directly

control the key processes involved in zooplankton

grazing control of phytoplankton. The posterior distri-

butions for the parameters controlling the variance in

model parameters (PDF and ZDF) are shifted toward

lower values, compared with the priors. At the inferred

lower levels of stochastic noise, trajectories are less likely

to escape the local stability domain corresponding to

grazing control.

The Bayesian inference procedure provides posterior

distributions for the trajectories of the stochastic BGC

processes, B(t). Reliable information on changes in these

processes would be of particular interest to plankton

ecologists. However, even in a twin experiment with

daily data on all state variables, we were only able to

obtain suggestive (but not confirmatory) information

about temporal variation in two parameters. This

limited success is understandable, given that we are

effectively trying to extract information about changes

in unobserved variables on relatively short time scales,

when the evidence of these changes is available only

indirectly through changes in the time derivatives of the

observed state variables. Even modest levels of obser-

vation noise are sufficient to confound this attempt. We

conclude that higher frequency observations, and/or

FIG. 10. A forecast (magenta shading) for the model’s state variables of phytoplankton (P), zooplankton (Z ), and detritus (D)
in the common currency of nitrogen (DIN) and the instantaneous concentration of chl a pigment for the period December 1974–
December 1975. The forecast was initialized from the posterior values shown in Figs 7, 8, and 9. The posterior and prior of the state
are given by the red and blue shading, respectively. Observations are denoted by the open black circles; during the forecast period,
the observations were not assimilated.
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lower observation noise, would be required to learn

about temporal variation in these community properties

from observations of state variables alone.

A twin experiment with similar forcing, sampling

pattern and observation noise to the historical OSP

observations yielded qualitatively equivalent results to

those obtained using the real data. While not conclusive,

this does suggest that the limited information about

state and parameters obtained using the historical

observations may be attributed to their sparseness and

high observation noise, rather than an inconsistency

with structural model assumptions.

It is common practice to distinguish short-term

forecasts, in which uncertainty is dominated by the

error in estimates of the current system state, from

longer-term forecasts or projections, in which uncer-

tainty may be dominated by errors in model structure,

errors in parameter estimates, and the underlying

stochastic process error. The methods used here allow

us to move seamlessly from short-term to long-term

forecasts. The forecast results are encouraging (Fig. 10),

especially given that the inference procedure and

observations have provided information about a small

subset only of model parameters. This limited informa-

tion, combined with prior information on other param-

eters, is sufficient to produce a long-term forecast that

agrees both qualitatively and quantitatively with obser-

vations.

Given the limited identifiability of both parameters

and the related stochastic biogeochemical processes, one

could reasonably ask whether the model is over-

parameterized. This would be the case if we were

building a model specifically for the purpose of

explanation or prediction at OSP that ignored prior

information on model structure and parameters. How-

ever, we are engaged in developing a generic model,

based on well accepted principles and strong prior

information. The model is applied at OSP, but we

envisage the same model (or a similar model) being

applied at many other locations, and in the long run

used as a basis for basin-scale or global BGC models

spanning many different environmental conditions.

Under these circumstances, it would be inappropriate

to eliminate processes from the model on the grounds

that they are not important at OSP, or that they are not

identifiable from a particular set of historical observa-

tions from OSP. We are interested rather in the question

of what such a model allows us to infer and predict

about OSP and other regions, given generic objective

prior information and the limited available observa-

tions.

Models with many, poorly identified parameters can

be subject to over-tuning and poor predictive perfor-

mance, especially if parameter estimation procedures are

heuristic, and/or are designed to produce a single

‘‘optimal’’ parameter set. The BHM framework and

inference procedures used here provide protection

against over-tuning. The posterior distribution yields

samples from the full range of possible parameters and

states, conditional on priors and observations, and it

therefore provides a realistic picture of the effects of

equifinality (Von Bertalanffy 1969, Beven and Binley

1992) on model hindcasts and predictions. The perfor-

mance of the posterior for the long-term forecast for

OSP (Fig. 10) supports this conclusion.

Emerging observing systems promise much richer

data sets than in the past. New automated in situ and

remote sensors can provide data for more variables with

much higher temporal resolution and/or spatial cover-

age. The twin experiment with daily observations

presented here provides a hint of what we might expect

from such improved observing systems. Data assimilat-

ing models are increasingly being used to assess the

information value of alternative observing system

designs, as part of so-called observing system simulation

experiments (OSSEs; e.g., Masutani et al. 2010). The

twin experiments presented were intended primarily as a

check on the consistency and performance of the

inference methods; an OSSE would require careful

attention to observing system elements and costs, and

the use of replicate experiments. We anticipate using the

BHM framework to build OSSEs. Oceanographic field

studies often include local in situ or ship-board

experiments that effectively measure the instantaneous

values of community ecophysiological properties. The

model formulation proposed here offers the opportunity

to integrate these measurements with standard observa-

tions of state variables (biomass) within a consistent and

rigorous inference framework. We see this as an

interesting direction for further research using both

OSSEs and real observations.

We recognize that, in order to fully exploit the

potential for OSSEs, and for hindcasting and forecasting

more generally, it will be necessary to extend our

approach from the zero-dimensional box model consid-

ered here to spatially resolved models, including both

one-dimensional vertical mixing models (e.g., Mattern et

al. 2010) and three-dimensional circulation models (cf.

Gregg 2008). The adoption of spatially resolved models

would avoid the ambiguity about spatial scales inherent

in the box model and allow a more rigorous treatment of

spatial sampling errors. We do not foresee major

conceptual problems in extending the formulation to

spatially resolved models, but Bayesian inference in

these models will involve formidable computational

challenges, and may require the development of effective

approximate techniques.

We believe that the example presented here delivers at

least in part on the promise described by Berliner (2003)

and Cressie et al. (2009) of BHM as a self-consistent

probabilistic framework that integrates statistical and

mechanistic process models. The specific process model

developed here shows promise as a basis for applications

for many local and regional aquatic BGC applications.

We hope that some of the methods developed here,
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including the use of stochastic processes for aggregate

community properties, will find broader application.
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Appendix A

Detailed information on the process model developed and used in this paper, including derivation of the prior distributions for
the process model parameters (Ecological Archives A023-033-A1).

Appendix B

Derivation of the autoregressive processes used in the paper (Ecological Archives A023-033-A2).

Appendix C

Some technical details on the particle Markov chain Monte Carlo (PMCMC) sampling approach used to conduct statistical
inference (Ecological Archives A023-033-A3).

Appendix D

Supplementary material describing the forcing data used in the case study (Ecological Archives A023-033-A4).
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