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An Adaptive Bilateral Negotiation Model Based
on Bayesian Learning

Chao Yu, Fenghui Ren, and Minjie Zhang

Abstract. Endowing the negotiation agent with a learning ability such that a more
beneficial agreement might be obtained is increasingly gaining attention in agent
negotiation research community. In this paper, we propose a novel bilateral nego-
tiation model based on Bayesian learning to enable self-interested agents to adapt
negotiation strategies dynamically during the negotiation process. Specifically, we
assume that two agents negotiate over a single issue based on time-dependent tactic.
The learning agent has a belief about the probability distribution of its opponent’s
negotiation parameters (i.e., the deadline and reservation offer). By observing op-
ponent’s historical offers and comparing them with the fitted offers derived from a
regression analysis, the agent can revise its belief using the Bayesian updating rule
and can correspondingly adapt its concession strategy to benefit itself. By being
evaluated empirically, this model shows its effectiveness for the agent to learn the
possible range of its opponent’s private information and alter its concession strategy
adaptively, as a result a better negotiation outcome can be achieved.

1 Introduction

Negotiation is a fundamental topic in multi-agent systems because it allows self-
interested agents to achieve mutually beneficial agreements and partition resources
efficiently and effectively [9]. In recent years, researchers have paid their increas-
ing attention to the integration of learning techniques into agent negotiation [1] [2]
[3] [4] [5] [8] [11] [13]. In this type of learning circumstances, agents need adapt
themselves to the changes of opponents and/or the environment through learning in
order to achieve a satisfactory result. One promising paradigm of involving learning
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in negotiation is through opponent modeling to let agents learn the model of their
opponent/teammates (such as preferences, private information and capabilities etc.)
in the environment so as to make good predications for expected behaviors and to
act accordingly to cooperate with the teammates more effectively or take the best
advantage of the opponents. However, due to the essence of competition, privacy
and uncertainty in real-life negotiation [10], negotiators are always unwilling to re-
veal their private information (e.g., parameters such as the deadline, reserve price,
or strategy profiles) to their opponents in case of being forced to a worse outcome,
thus making learning in negotiation a challenging problem.

In current literature, a number of approaches have been developed by employing
agents learning methods into negotiation process. Zeng and Sycara proposed an ap-
proach based on Bayesian learning to learn the opponent’s reserve price [16]. Their
approach assumes that agents have priori knowledge about the opponent’s bidding
strategy. This assumption may not always be true in real-world negotiations. Hin-
driks and Tykhonov also proposed an approach to discover opponent’s information
[5] by using Bayesian learning based on the assumptions that 1) agents know the
opponent’s weights ranking on negotiation issues and 2) all agents’ preferences can
be modeled by three proposed functions, which may impact the use of this approach
in a wide range when these assumptions conflict with the real world situations. Ren
and Zhang introduced approaches based on regression analysis to predict the op-
ponent’s concession strategy by using the historical offers only [6] [7]. However,
their approaches did not give further advice on how to adapt agent self’s concession
strategy based on the learning results. Brzostowski and Kowalczyk also presented a
way to estimate partners’ behaviors in different types of agents, based only on the
historical offers in the current negotiation [10]. However, the accuracy of classifica-
tion on partners’ types may impact the accuracy of prediction results. The current
challenging issues in agent learning during negotiation include (1) how to design a
learning method without priori knowledge of the opponent’s private information, (2)
how to develop an effective learning strategy only based on the historical offers of
current negotiation, and (3) how to produce a constructive guidance from learning
to adapt agent’s negotiation behaviors so as to achieve a better negotiation outcome.

This research attempts to address the above three challenging issues. In this paper,
we propose a novel model by combining Bayesian learning and a regression analysis
approach to dynamically learn the opponent’s negotiation deadline and reservation
offer for an adaptive negotiation process. To be more specific, firstly, a negotiation
agent defines some regions and evenly initialize the probability of each region. The
probability here indicates how likely that the opponent’s deadline and reservation
offer are located in the corresponding region. By using the predefined regions, the
agent can have some estimations on the opponent’s negotiation behaviors. Secondly,
by using the regression analysis, the differences between the opponent’s real nego-
tiation behavior and the agent’s estimated results are calculated. The more similar
between the opponent’s real behavior and an estimated behavior, the more likely that
the opponent’s real deadline and reservation offer are located in the corresponding
region. Thirdly, based on the similarities between the opponent’s real behavior and
the estimated behaviors, the probabilities assigned to each region will be updated
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dynamically through Bayesian learning updating rule. Lastly, the agent will propose
a countermeasure for each estimated behavior of the opponent, and all countermea-
sures will be combined based on the likelihood of each estimated behavior. The
combined result will be employed by the agent to perform a reasonable reaction.
During the negotiation, each region’s probability will be dynamically updated and
gradually close to the real situation. Thus, the agent will also gradually adapt its
negotiation strategy to reach a better negotiation outcome. Our model only uses his-
torical offers in the current negotiation, without requesting prior knowledge about
the environment and the opponent.

The remainder of this paper is structured as follows. In Section 2, we recap the
general negotiation model, especially the basic principles of the time dependent tac-
tic. The proposed learning model is introduced in detail in Section 3, and in Section
4 empirical evaluation and analysis are presented. The discussion and related work
are given in Section 5. Finally the paper is concluded and some directions for future
work are outlined in Section 6.

2 A General Negotiation Model

Before laying out our learning model, we give a brief description of a time depen-
dent, bilateral single-issue negotiation model, which is widely used in many appli-
cations. Let i (i ∈ {b,s}) represent a negotiator, i.e., b for a buyer agent and s for a
seller agent. Both agents have an initial price IPi and reserve price RPi for the negoti-
ating issue. The interval [IPi,RPi] indicates the range of all the possible agreements,
and can be normalized in-between [0,1] using a utility function. In this paper, we
choose the widely accepted linear utility function [15] shown in Equation 1:

ui(pi) =
pi −RPi

IPi −RPi
i ∈ {b,s} (1)

where pi is the value of an offer in the range of [IPi,RPi].
In time dependent tactic, agent i concedes its utility ui(t) under the time con-

straint. At the beginning of negotiation, agent i has its highest utility of 1 for the
initial price. As the negotiation proceeds on, the utility ui(t) decreases according
to the decision functions [15], which are a family of polynomial functions given by
Equation 2.

ui(t) = 1− (
t
Ti
)β i ∈ {b,s} (2)

where Ti is the deadline of agent i and β is the concession parameter. Figure 1
shows three different concession strategies called Conceder, Boulware, Linear, re-
spectively, signifying different concession rates in the negotiation process.

• Conceder: When 0 < β < 1, the agent decreases its utility quickly at the early
stage of negotiation and slowly when the deadline is approaching.

• Linear: When β = 1, the agent’s utility decreases at a constant rate throughout
the negotiation process.
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Fig. 1 Three different kinds of concession strategies [15]

• Boulware: When β > 1, it is the contrary of Conceder, which means slow con-
cession at the beginning but quick concession at the late stage of negotiation.

When β is settled, the utility ui(t) can be computed during the negotiation. As a
result, the agent can give a counter offer at time t according to the following offer
generating equation.

Offeri(t) = RPi + ui(t)(IPi −RPi) i ∈ {b,s} (3)

Combining Equation 2 and Equation 3, the offer generating Equation 3 is rewritten
as Equation 4.

Offeri(t) = IPi +(RPi− IPi)(
t
Ti
)β i ∈ {b,s} (4)

In a non-learning negotiation setting, once an agent sets the value of concession pa-
rameter β , the agent will keep this value unchanged through the negotiation process,
without any adaptation to the dynamic environment or the revelation of opponent’s
private information. However, if the agent can learn some useful information from
the opponent during the negotiation, it will be able to adapt its original concession
strategies and gain more benefits to produce good outcomes for negotiation. In the
following section, we will present an adaptive negotiation model using regression
analysis and Bayesian learning to enable an agent to alter its concession strategy
dynamically, thereby a better outcome will be obtained.

3 An Adaptive Negotiation Model

In this section, an adaptive negotiation model is proposed. This model includes
two parts: a learning mechanism and an adaptive concession strategy. Each part
will be introduced in detail by Subsections 3.2 and 3.3, respectively. In this paper
hereinafter, the discussion is taken from the perspective of the buyer agent unless
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otherwise specified. However, such a discussion will not lose the generality of our
model, i.e. a seller agent can also use our model to learn its opponent’s behaviors.

3.1 Model Description

As we can see from Equation 4, the parameters of deadline and reserve price are two
main factors dominating the negotiation process and outcomes. If agents can obtain
the information about these two parameters from the opponent, a better strategy can
be employed to increase agents’ benefits and/or the negotiation efficiency. Our ami
is to model the opponent in terms of these two private information. Before going
deep into our model, we firstly give the definitions needed for further illustration.

Definition 0.1. Let x-axis represent negotiation time and y-axis represent the nego-
tiation price. A detecting region DetReg is a rectangle in this two-dimensional area
to present an estimation of the opponent’s deadline and reserve price. This area is
defined by a 4-tuple DetReg = (T l ,T h,Pl ,Ph), where T l , T h are the estimated lower
and upper boundary of the opponent’s deadline, and Pl , Ph are the estimated lower
and upper boundary of the opponent’s reserve price.

Fig. 2 An example of demonstrating our learning process
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As shown in Figure 2, the shadowy area indicates the detecting region for a buyer
agent during a learning process based on Definition 1. Tb is buyer’s deadline and
tb is the current time in negotiation. IPb and RPb represent the buyer’s initial price
and reserve price, respectively, and IPs is the seller’s initial price. Points appeared in
the detection region of the figure will be explained in Definition 3. The lines shown
in the figure will be explained in Subsection 3.2 during introducing the learning
mechanism.

A buyer agent can initialize the value of each component of DetReg according to
its estimation about seller’s private information. The more precise the estimation is,
the smaller the detecting region will be and the buyer can strive for a better result
because more errors can be avoided when the buyer agent adapts its concession
strategy based on this estimation.

After confirming the detecting region by the buyer agent, this region will be fur-
ther divided into smaller areas according to N = (Nt , N p) in which Nt denotes that
the detecting region is evenly divided into Nt columns on the x-axis (i.e. time val-
ues), and N p stands for the row number on the y-axis (i.e. price values) in the detect-
ing region. In this way, the detecting region can be divided into a number of smaller
blocks, called detecting cells. The total number of detecting cells in a detecting
region is represented by Nall and can be calculated by the formula Nall=Nt ×N p.
Fig. 2 exemplifies a scenario with N = (3,4) and there are totally 12 detecting cells
in the whole detecting region.

Definition 0.2. A detecting cell Ci (i ∈ 1,2, ...,Nall) is a divided block in the detect-
ing region, which can be denoted by a 4-tuple Ci = (tl

i , t
h
i , pl

i , ph
i ) where tl

i , th
i are the

lower and higher boundaries of time in the cell and pl
i , ph

i are the lower and higher
boundaries of price in the cell, respectively.

Definition 0.3. A random reservation point Xi(tx
i , px

i ) is a randomly selected point
in each cell Ci, where tl

i < tx
i < th

i and pl
i < px

i < ph
i .

In Figure 2, points X1,X2,X3,X4 are several random reservation points in the detect-
ing region and point X is the real reservation point of the opponent. The detecting
cell is a region where seller’s real reservation point X might be located. That means
the real reservation point X might be out of the detecting region in real case. The
buyer agent has some belief about the probability distribution of all the detecting
cells. The probability of each cell signifies the likelihood that the opponent’s real
reservation point X might be located in this cell. This belief can be revised more
precisely through learning from opponent’s historical offers (see Subsection 3.2).
Based on this learning result, the agent can adjust its concession strategy adaptively
(see Subsection 3.3) to gain more profit over its opponent.

3.2 The Learning Mechanism

The purpose of this leaning mechanism is to let the agent revise its belief about the
probability distribution of the cells in the detecting region. Because the agent has no
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knowledge about the opponent, it is hard to determine the precise location of the real
reservation point. However the agent can observe its opponent’s historical offers to
renew the belief about the approximate range of the reservation point. This mecha-
nism consists of two parts, a regress analysis and a Bayesian learning. In regression
analysis, (1) an agent chooses a random reservation point in every detecting cell
first, based on the belief that this point is the reservation point of the opponent; (2)
the agent conducts the regression analysis for all random reservation points corre-
sponding to all detecting cells, respectively; (3) the agent compares the fitted offers
on each regression line with opponent’s historical offers by the non-linear correla-
tion. By this way, resemblance between the selected random reservation point and
the opponent’s real reservation point can be calculated. The bigger the non-linear
correlation between two lines is, the more alike they will be. This also means that
the randomly chosen reservation point has a bigger possibility to be the real reser-
vation point. Then by using Bayesian learning, the agent’s belief on the probability
distribution will be dynamically updated at every step of the negotiation. The re-
gression analysis and our Bayesian learning method are introduced in the following
two subsections, respectively.

3.2.1 Regression Analysis

Before the leaning process, the buyer should initialize DetReg, N as well as the
probability distribution in each detecting cell, which presents the likelihood that the
seller’s reservation point is in this cell. When the learning begins, the buyer can do
the following steps sequentially.

Step 1: At round tb, the buyer selects a random reservation point Xi(tx
i , px

i ) in each
cell Ci of the detecting region;

Step 2: Using each point Xi(tx
i , px

i ) chosen in Step 1, the buyer calculates the re-
gression line li based on the seller’s historical offers Otb = {p0, p1, ..., ptb} until
round tb. Based on Equation 4, the following power regression function is gener-
ated to calculate the regression curve.

O f f eri(t) = p0 +(px
i − p0)(

t
tx
i
)b (5)

where p0 is the initial price of seller. The regression coefficient b is the con-
cession parameter β in the utility function in Equation 4. Then we can calculate
coefficient b based on seller’s historical offers Otb by Equation 6 as proposed
in [6].

b =
∑tb

i=1 t∗i p∗i
∑tb

i=1 t∗2
i

(6)

where p∗i = ln p0−pi
p0−px

i
, t∗ = ln t

tx
i

. In Figure 2, the solid line is the curve of the
seller’s historical offers while the dashed line is the regression curve based on
each random reservation point.



82 C. Yu, F. Ren, and M. Zhang

Step 3: Based on the calculated regression line li given by Equation 5 and 6, the
buyer can calculate the fitted offers Ôtb = { p̂0, p̂1, ..., p̂tb} at each round.

Step 4: The buyer calculates the non-linear correlation between seller’s historical
offers Otb and the fitted offers Ôtb . The coefficient of nonlinear correlation γ can
be calculated by Equation 7.

γ =
∑tb

i=1(pi − p̄)(p̂i − ¯̂p)√
∑tb

i=1(pi − p̄)2 ∑n
i=1(p̂i − ¯̂p)2

(7)

where ¯̂p is the average value of all the fitted offers till time tb and p̄ represents the
average value of all the historical offers of the seller. The non-linear correlation
γ , where (0 ≤ γ ≤ 1), is a parameter reflecting the non-linear similarity between
the fitted offers and the historical offers, which can be used as a criterion to
evaluate the resemblance between the random reservation point Xi and seller’s
real reservation point X . This is an important parameter to be used in Bayesian
learning for the belief updating as described in the following section.

3.2.2 Bayesian Learning

In general, Bayesian learning can be used when an agent has a set of hypothe-
ses about its opponent’s information. The belief about the probability distribution
of these hypotheses can be revised through a posterior probability by observing
the outcome of its opponent. In our model, we define the hypothesis space as
Hi,(i ∈ 1,2,3, ...,Nall), where Nall is the total cell number in the detecting region.
Each hypothesis Hi stands for the assumption that seller’s reservation point X is
in cell Ci. The prior probability distribution, denoted by P(Hi),(i ∈ 1,2,3...Nall),
signifies the agent’s belief about the hypothesis, that is, how likely the hypothesis
fits the real situation. At first, the agent can initialize the probability distribution of
the hypotheses based on some public information if available, otherwise a uniform
distribution P(Hi) = 1/Nall is assigned.

During each round of negotiation tb, the probability of each hypothesis can be
altered by the Bayesian updating rule given in Equation 8.

P(Hi|O) =
P(Hi)P(O|Hi)

∑Nall
k=1P(O|Hk)P(Hk)

(8)

where the conditional probability P(O|Hi) represents the likelihood that outcome O
might happen based on hypothesis Hi. In our learning model, the agent has no in-
formation about its opponent, thus the observed outcome O is opponent’s historical
offers Otb = {p0, p1, ..., ptb}. The conditional probability P(O|Hi) thereby means
how likely seller’s historical offer Otb can happen based on the hypothesis Hi that
seller’s real reservation point X is in cell Ci. The posterior probability P(Hi|O) is a
renewed belief based on the observed outcome O and at next round, the agent will
update the prior probability P(Hi) using the posterior probability P(Hi|O), thus a
more precise estimation is achieved by using Equation 8.
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To let the Bayesian learning rule work, the most critical problem is how to ob-
tain the conditional probability P(O|Hi). Most approaches using Bayesian learning
method usually require a priori knowledge as the conditional probability, such as
the one in [16]. However, our learning model does not require any priori knowledge
about the opponent and works based only on the historical offers received until tb
from the opponent. By comparing the fitted points Ôtb on the regression line based
on each random reservation point Xi with the historical offers Otb , the conditional
probability P(O|Hi) is obtained. The more consistent the fitted offers are with op-
ponent’s historical offers, the higher the conditional probability P(O|Hi) will be. As
showed at Step 3 in Subsection 3.2.1, the difference between the regression curve
and opponent’s bidding sequence can be indicated by the non-linear correlation co-
efficient γ . Thus, we can use the value of γ as the conditional probability.

The learning approach will increase the probability of a hypothesis when the
random reservation point selected in the detecting cell is most consistent with
the real reservation point of the opponent. However, in some cases, it is possible
that the learning may have errors. As seen in Figure 2, compared with point X5,
point X4 has a higher non-linear correlation with the real reservation point X , but
point X4 and X are not in the same detecting cell. As a result, the hypothesis that the
real reservation point X belongs to the cell where point X4 is located has a higher
probability. Nevertheless, we claim that this situation does not affect the learning
effectiveness based on the following two considerations. Firstly, although in certain
circumstances, using the non-linear correlation to calculate the difference between
the regression line and the real bidding sequence does not necessarily reveal the
real situation, the error will be eased through Bayesian learning from a probabilis-
tic point of view. Secondly, even the error exists, the learning approach still works
because we only need to find an approximate range of the reservation point, not the
precise value of opponent’s reservation point. In some cases, the real reservation
point X might not be located in the whole detecting region, but those cells which are
closer to point X will still have a higher probability compared with other cells.

Another issue that should be taken into account is the learning rate and efficiency.
At the early stage of leaning, the hypotheses space can be quite large depending on
the value of DetReg and N (recall Subsection 3.1). It is time consuming to keep
all the hypotheses in the searching space. Some hypotheses can be precluded from
the hypotheses space when the current time and opponent’s bidding value have sur-
passed the detecting cell boundary. For example, for a cell Ci = [tl

i , t
h
i , pl

i , ph
i ], if

current negotiation time tb > th
i , the hypothesis based on this cell is meaningless

because the negotiation process has already proved it false.

3.3 The Adaptive Concession Strategy

Through regression analysis and Bayesian learning stated above, a more precise es-
timation of the opponent’s reservation point is derived, represented by the renewed
belief of the probability distribution of the hypothesis Hi. Now, the agent needs to
take an action to give a counter offer based on this new belief, i.e. which concession
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strategy to take and how strong it should be in terms of a value of the conces-
sion parameter β . Our adaptive concession strategy includes two parts: the optimal
concession strategy described in Subsection 3.3.1 and the combining mechanism
described in Subsection 3.3.2.

3.3.1 The Optimal Concession Strategy

There are four scenarios according to different location of the random reservation
point. As we believe that the agent is rational, it always strives for a highest utility
of its own regardless of its opponent fully. Therefore, in each scenario, the buyer
needs to adopt different concession strategies to maximize its expected utility as
depicted in Figure 3. In Figure 3, point b0(t0, p0) is buyer’s current offer at time t0,
point bT (Tb,RPb) is the buyer’s reservation offer at deadline Tb, and point Xi(tx

i , px
i )

is the random reservation point of seller. Then the buyer needs to find another point
P(tp, pp), which is called a concession point, in its negotiation region to set the
concession strategy and the value of β .

• Scenario 1: (tx
i < Tb) and (px

i > p0).
In this scenario, the random reservation point Xi is in the buyer’s negotiation re-
gion. Because the buyer agent is rational, it will always try to gain the maximal
utility itself. If the buyer knows that the seller will quit the negotiation at point
Xi (i.e., the deadline of the seller tx

i is shorter than its deadline Tb), the optimal
concession strategy for the buyer is to set his bidding price to px

i at time tx
i . Oth-

erwise, if the buyer gives more concession, it cannot achieve the maximal utility
after finishing negotiation. On the contrary, a less concession may result in a fail-
ure of the negotiation. As illustrated in Figure 3(a), the random reservation point
Xi is set to be the concession point P in this case and the dashed line crossing
point Xi is the concession line of the buyer.

• Scenario 2: (tx
i >= Tb) and (px

i >= p0).
In this scenario, random reservation point Xi is out of the buyer’s negotiation
region. There are two cases in this scenario according to the different regression
lines of the seller. As can be seen in Figure 3(b), in the first case, regression
line l1 traverses the buyer’s negotiation region while l2 does not. In the same
way of analyzing in Scenario 1, buyer’s optimal concession line for l1 is to pass
through the intersection point of the line l1 and the right boundary of the buyer’s
negotiation region. Considering that the buyer should give out its reserve price at
deadline Tb, for simplicity, we let the buyer’s concession line cross the concession
point P1 on the regression line one step ahead of the deadline Tb (i.e., Tb − 1)
such that a concrete value of the concession parameter β can be computed. As
for the second case, the regression curve l2 has no intersection with the buyer’s
negotiation region, which means even the buyer concedes, the negotiation based
on this random reservation point is doomed to fail. Nevertheless, the buyer will
spare no efforts to reverse this unfavorable situation. With this aim, it will give
the reserve price at next round (t0 + 1). To compute a value of β , we choose a
variable φmax(0 < φmax < 1) which is quite close to 1. The concession point P2 in
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Fig. 3 Four Scenarios of Concession Strategy

this case is set to be P2(b0 + 1,φmax ·RPb) so as to make the price at next round
close to the reserve price of RPb and finally to give out the reserve price RPb at
the next round, i.e., its deadline.

• Scenario 3: (tx
i < Tb) and (px

i < p0).
There are also two cases in this scenario, which can be signified by l1 and l2
shown in Figure 3(c). As for case 1, the optimal strategy of the buyer is to cross
the intersection of l1 and bottom line of the buyer’s negotiation region. To com-
pute a value of β , we set the concession point P1 be the point one step ear-
lier than the intersection point on the regression line l1. As for case 2, the line
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l2 does not go through the buyer’s negotiation region. In this case, the optimal
strategy for the buyer is to keep its price unchanged until Tb−1 and then gives its
reserve price at the deadline. To compute the value of β , we can set the price at
concession point P2 very close to current price p0. Similarly, a variable φmin(0 <
φmin < 1), which is quite close to 0, can be chosen to set the price at next round
to (1+ φmin) · p0 such that this price will keep almost the same as the current
price p0.

• Scenario 4: (tx
i >= Tb) and (px

i <= p0).
This scenario, which is a combination of the former Scenarios 2 and 3, is the
most complicated case of all. Each line of l1, l2, l3 and l4 can be analyzed in
the same way as stated in the previous scenarios. In Figure 3(d), we depict the
concession line based on l1 as an example.

3.3.2 The Combining Mechanism

We have given out all possible situations of the random reservation points and the
corresponding optimal concession strategies that the buyer can adopt to increase its
utility as well as to avoid the failure of negotiation to its best. Because the buyer
still uses the family of polynomial functions to concede, the counteroffer from point
b0(t0, p0) can be generated by Equation 9 based on Equation 4.

Offerb(t) = p0 +(RPb − p0)

(
t − t0

Tb − t0

)β
(t > t0) (9)

Using this equation, we can guarantee that at its deadline Tb, the buyer will give the
reserve price RPb. At current time t0, the buyer’s offer is p0 and the buyer concedes
in the form of polynomial function. Then given the concession point P(tp, pp) in its
negotiation region, a new value of parameter β̂ can be calculated as follows.

β̂ = log tp−t0
Tb−t0

p0 − pp

p0 −RPb
(t0 < tp < Tb) (10)

We have calculated all the concession values β̂ for each valid random reservation
point in the detecting region, with a probability distribution P(Hi) = {p(H1), p(H2),
..., p(Hn)} over these values derived from the regression analysis and Bayesian
learning. Now comes to the problem of how to combine all the estimated value
of β̂ to an overall value. Let β̂i (i ∈ {1,2, ...n}) be the estimated concession value
calculated from the concession point based on the random reservation point in cell
Ci. P(Hi) is the probability of the β̂i, presenting the weighting proportion of the cor-
responding β̂i in all the concession values. The value of β̂i signifies the concession
degree of the agent, which can be represented by the area between the concession
line and the time axis, which is called concession area. As can be seen from Fig-
ure 4, the concession area of β̂1 is S1, which can be denoted by Sb0β̂1bT b. Let Si be the
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Fig. 4 Combination of the parameter β

concession area of β̂i and let the concession area of the overall concession parameter
β̄ be S̄. Based on Equation 9, we can have the following equations.

S̄ =

∫ Tb

t0
[p0 +(RPb −P0)(

t − t0
Tb − t0

)β̄ ]dt (11)

n

∑
i=1

P(Hi)Si =
n

∑
i=1

P(Hi)

∫ Tb

t0
[p0 +(RPb −P0)(

t − t0
Tb − t0

)β̂ ]dt (12)

because,

S̄ =
n

∑
i=1

P(Hi)Si (13)

we can get the overall concession parameter β̄ as follows:

β̄ =
1

∑n
i=1

P(Hi)

1+β̂i

− 1 (14)

Then the buyer can set its concession parameter as β̄ to give counter offer based
on Equation 9 at every step of the negotiation. Each β̂i is changing at each step ac-
cording to the randomly selected reservation point and the corresponding P(Hi) is
revised by Bayesian learning throughout the negotiation process. Thus the conces-
sion parameter β̄ adopted by the buyer at each step is totally different, making the
negotiation an adaptive process in the point view of the learning agent buyer.
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4 Experiment

4.1 Experimental Setting

In the experiment, a buyer and a seller negotiate over the price ranged in-between
$0 ∼ $100. In order to simplify the comparison process, we set the buyer agent’s
initial price to $0 and the seller agent’s initial price to $100. The buyer’s reserve
price is randomly selected in-between $50 ∼ $100 and seller’s reserve price is ran-
domly selected in-between $0∼ $50. Such a setting ensures that the agreement zone
between the two agents always exists. Our agents’ deadlines are randomly selected
in-between [20,40], and the concession strategies are randomly selected in-between
[0.5,2]. The negotiation parameter initialization is showed in Table 1.

Table 1 Negotiation Parameters initialization

Agent IPi RPi Ti βi

Buyer (i=b) $0 [$50,$100] [20,40] [0.5,2]
Seller (i=s) $100 [$0,$50] [20,40] [0.5,2]

To provide a benchmark we compare our negotiation model with the general
NDF model. In the general NDF model, both agents randomly initialize their ne-
gotiation parameters according to Table 1, and keep these parameters unchanged
during the negotiation process. On the contrary, in our model, the buyer agent will
learn how to adjust its concession strategy adaptively to reach a better negotia-
tion outcome. To use the learning mechanism, we set φmin = 0.01, φmax = 0.99.
We choose two initialization of detecting region as DetReg1 = (0,1.5Tb,0,RPb),
DetReg2 = (Tb,2Tb,0.5RPb,1.5RPb) to test its affect on the learning result. We out-
line four cases according to the different numbers of detecting cells as shown in
Table 2.

Table 2 Four scenarios of different detecting cell numbers

Case Nt Np Nall
1 4 4 16
2 8 8 64
3 16 16 256
4 20 20 400

4.2 Results and Analysis

As our model depends on the regression analysis which may yield errors as stated
before, we do not expect the learning result to be completely precise. Further more,
many factors affect the learning process such as the number of detecting cells, the
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Fig. 5 The average utility in different cases before & after learning

initialization of the detecting region and different values of φmin, φmax. The objective
of this experiment is therefore carried out to analyze the overall performance of this
learning approach considering these uncertainties and potential errors.

We run 100 episodes for each case to show the generality and robustness of our
model. The results of this experiment are presented in Figure 5. The x-axis indicates
the four cases and the y-axis indicates the average utility of the buyer in each case.
The blue bars represent the buyer’s average utility gained by NDF model. The brown
and green bars represent the buyer’s average utility gained by using our model when
the detecting region is initialized as DetReg1 and DetReg2, respectively. We can
see from Figure 5, the brown and green bars are higher than the blue bars in all
cases, and gradually increase as the number of the detecting cells increase. Such
experimental results indicate that: (1)using our learning mechanism and the adaptive
concession strategy will result in a higher utility than the static concession strategy;
and (2) as the total number of detecting cells increases, the agent has a more precise
estimation of the opponent’s reservation point, thus can result in a higher utility.
From Figure 5, we can also see that there are some difference between the learning
results when the detecting region is initialized differently. More specifically, the
average utilities when the detecting region is initialized as DetReg1 are higher than
the utilities when the detecting region is initialized as DetReg2. This result can be
explained by the fact that when the detecting region is DetReg2, the opponent’s
(seller’s) real reservation point is out of the detecting region all the time. Therefore
the cell with the highest probability in the detecting region (i.e., the cell that the
opponent’s real reservation point is most likely located in) cannot reflect the true
situation, making the learning result in DetReg2 be inferior to that in DetReg1.

In order to illustrate the dynamic adaptation of the concession parameter β , we
give out the whole negotiation process to show how the buyer agent changes its
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Fig. 6 The negotiation processes before & after learning

concession strategy adaptively. We select three scenarios when detecting region is
DetReg1 with the negotiation parameters as follows:

• Scenario 1 (1 < β < 2): RPb = $69.58, RPs = $11.38,Tb = 32, Ts = 36, βb = βs =
2.0

• Scenario 2 (β = 1): RPb = $81.04, RPs = $17.82,Tb = 35, Ts = 36, βb = βs = 1.0
• Scenario 3 (0 < β < 1):RPb = $50.34, RPs = $11.38,Tb = 30, Ts = 22, βb = βs =

0.5

Figures in 6(a) give the negotiation process between both agents before & after
learning. Figures in 6(b) show the adaption of the buyer’s concession parameter
β . In Scenario 1, the seller adopts the Boulware concession strategy. Before learn-
ing, the negotiation ends at $49.53 and both agents’ concession strategies keep un-
changed through the negotiation process. After learning, the buyer agent adjusts
its concession strategy adaptively in terms of parameter β and the agreement price
is reduced to $38.46, which is a better result than that of before learning for the
buyer agent. In Scenario 2, the seller uses the Linear concession strategy. Before
learning, the negotiation ends at $48.57 and after learning, the buyer can have a
better agreement at $22.34. In Scenario 3, the seller uses the Conceder concession
strategy. Before learning, the final agreement is $33.38 and after learning this value
decreases to $20.58. According to these experimental results from the three scenar-
ios, we can conclude that, through learning of the opponent’s historical offers, the
agent employing our negotiation model can effectively adapt its concession strategy
so as to increase its negotiation outcome. Our negotiation model is robust when the
opponent employs different concession strategies.
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In this section, we illustrate the experimental results of our negotiation model
and compare the results with the NDF. The experimental results indicate that our
negotiation model can dynamically adapt a negotiation agent’s concession strategy
and significantly increase a negotiation agent’s utility through the learning of the
opponent’s historical offers.

5 Related Work

Although incorporating learning into agent negotiation is a relatively new research
topic, many approaches, models and mechanisms have been developed in recent
years to solve different issues in this topic [1] [3] [6] [7] [9] [10] [11] [12] [13] [16].
We discuss several related works and compare them with our work in this paper.

Bayesian learning technique has been widely applied in negotiation for a better
negotiation outcome. Zeng and Sycara were probably the first to propose a Bayesian
learning based negotiation model [16]. A sequential decision making model called
Bazaar was introduced to model beliefs of the opponent’s reservation point. Our
model differs from their approach in two ways. (1) Bazaar can only learn the reserve
price of the opponent while our model can learn both opponent’s price and deadline,
and (2) Bazzar requests priori knowledge about the potential distribution of of the
opponent’s reserve price while our model has no this request. In [11], the authors
adopted the Markov chain frameowork to model bilateral single issue negotiations
among agents in dynamic environments and use Bayesian learning to enable agents
to learn an optimal strategy in incomplete information settings. However, as in [16],
the approach still requires the learning agent to have a prior knowledge about the
conditional probability when using the Bayesian updating rule. Furthermore, this
approach is designed to model the strategies of the opponent, while in our approach
the agent is learning by modeling the private negotiation parameters of the opponent.

Reinforcement learning [17] is another valid technique to be integrated into nego-
tiation [1] [14]. Soo and Hung used Q-Leaning algorithm in bilateral multi-issue ne-
gotiation [14]. However, in their work, the agent’s reservation price was assumed as
common knowledge. In [1], a bilateral price negotiation strategy based on Bayesian
classification and Q-learning was proposed for a negotiation agent to make the best
use of the opponent’s negotiation history to make a decision of the opponent’s classi-
fication based on Bayesian classification and then to create counter-offer efficiently
by Q-learning. However, the approach in [1] is based on the classification of the
opponent such that a learning agent can adjust its belief accordingly. This classifi-
cation rule is set beforehand and is assumed as prior knowledge while our approach
enables the agent to adapt its belief based on the learning results from the regression
analysis, which are only determined by the historical offers.

Regression analysis was also employed by Ren and Zhang to predict the op-
ponent’s concession strategy by using the historical offers only [6] [7]. However,
the approaches in [6] [7] did not give further advice on how to adapt agent self’s
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concession strategy based on the learning results. Our approach moves further by
contrive an efficient adaptive concession strategy based on the learning results de-
rived from the regression analysis and Bayesian learning, making the negotiation
process totally dynamic and adaptive in the view of the learning agent.

Narayanan and Jennings proposed a novel adaptive negotiation model consider-
ing the dynamism in E-commerce settings [12]. Their model manages a negotiation
process as a Markov Decision Process(MDP) and uses a value iteration algorithm
to acquire optimal policies to adopt different concession strategies. However, their
method can only determine the adaptive action to choose a concession strategy and
cannot produce a precise concession value while our model can provide constructive
guidance to the agent to dynamically adaptive its behaviors including both strategies
and concession values. Bzostowski and Kowalczyk [10] presented an approach for
modeling behaviors of negotiators and predictive decision-making. Both their ap-
proach and our work use the similar method in term of adaptive concession strategy
based only on the historical offers. However, their approach focuses more on the
analysis of the differences between adjacent offers from the opponents, and will be-
come ineffective when these differences are not significant. Our approach employs
the regression analysis and will not be affected by the variance of adjacent offers.

6 Conclusion and Future Work

In this paper, we proposed an adaptive bilateral negotiation model based on Bayesian
learning. This model includes a learning mechanism and an adaptive concession
strategy. Through Bayesian learning, an agent’s belief about the opponent’s reserve
price can be revised dynamically during negotiation by comparing the fitted offers
derived from a regression analysis with the opponent’s historical offers. The agent
then proposes a countermeasure based on an adaptive concession strategy. The pro-
posed model can enable an agent to adapt its concession strategies dynamically
according to the updated probability distribution in a predicting region, thus making
the negotiation process dynamic and adaptive in the view of the learning agent. The
experimental results demonstrate the good performance of our model by comparison
with non-learning NDF model.

There are several direction for future research. Firstly, it is imperative to ex-
tend our model to multi-issue negotiation. Considering another important factor
(i.e.,weighting among the issues), our model can be further extended to make a pos-
sible win-win outcome for both agents. Secondly, we will take the non-linear utility
function into account to broaden its application in practice. At last but not least,
it is necessary to suit our model for more complex scenarios when the opponent
is changing its deadline, reserve price, or even has a dynamic mixture of different
strategies. These are all feasible and worthwhile aspects for further research. We
leave them for future work.
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