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Convergence Rates Comparison of Sum-Product
Decoding of RA Codes Under Different

Message-Passing Schedules
Sheng Tong, Baoming Bai, Member, IEEE, and Xinmei Wang, Member, IEEE

Abstract— In iterative decoding of turbo-like codes, serial
schedule generally provides a much faster convergence rate
compared with parallel schedule. With the aid of extrinsic
information transfer (EXIT) charts, sum-product decoding of
repeat accumulate (RA) codes under both message passing
schedules is investigated as an example for verifying the above
statement.

Index Terms— Repeat accumulate (RA) codes, sum-product
algorithm (SPA), extrinsic information transfer (EXIT) chart,
message-passing schedule.

I. INTRODUCTION

MESSAGE-PASSING schedules play an important role
in the iterative decoding of turbo-like codes, espe-

cially in the convergence rate of iterative decoding. Different
message-passing schedules lead to different convergence rates.
Two commonly used schedules include serial (or two-way) one
and parallel (or flooding) one. In general, serial schedule offers
a much faster convergence rate compared to parallel schedule
[2-6].

In [5], we have compared the convergence rates of Gallager
codes under the two schedules. In this letter we analyze the
convergence rates of sum-product decoding of RA codes under
both serial and parallel schedules by using the EXIT chart
technique.

II. EXIT CHART OF RA CODES

A. RA Codes

RA codes is a class of serially concatenated turbo-like
codes, employing a rate-1/q repeat codes as the outer code
and a 1/(1 + D) accumulate code as the inner code linked
by an interleaver [1]. The factor graph of a rate-1/3 RA code
is shown in Fig. 1, which consists of 4 layers from top to
bottom: namely, repeat codes (REPCs) layer, an interleaver,
single parity check codes (SPCCs) layer, and another REPCs
layer. However, the last two layers can also be viewed as an
accumulate code (ACC) layer. These two different interpre-
tations lead to the application of parallel schedule and serial
schedule respectively.
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B. EXIT Curves of Repeat Codes and Single Parity Check
Codes

Assume an AWGN channel with BPSK modulation and
noise variance σ2

n. Let the binary random variables X with
realization x ∈ {±1} denote the transmitted modulated sym-
bol. The channel observation at the receiver is then y = x+n,
where n ∼ N(0, σ2

n). Define the log-likelihood ratio (LLR) Z
obtained from the channel observation y as

Z := ln
(

p(y|x = +1)
p(y|x = −1)

)
=

2
σ2

n

y =
2
σ2

n

(x + n) (1)

Thus, the mutual information IZ = I(X;Z) between X
and Z is given by [8]

IZ(X;Z) =
1
2

∑
x=±1

∫ +∞

−∞
pZ(ξ|X = x)

× log2

2 · pZ(ξ|X = x)
pZ(ξ|X = −1) + pZ(ξ|X = +1)

dξ (2)

Using the knowledge that pZ(ξ|X = x) is a Gaussian
probability density function, (2) becomes [6,7,8]

J(σ = 2/σn) := IZ(X;Z)

= 1 −
∫ +∞

−∞

e−(x−σ2/2)2/2σ2

√
2πσ2

log2(1 + e−x)dx
(3)

For a code rate R, by (1) the variance of the LLR value Z is
σ2

ch = 4/σ2
n = 8R ·Eb/N0 [6,7]. Thus the mutual information

can be written as IZ(X;Z) = J(σch).
Now, consider an (n, 1, n) repeat code, for which the

decoder operates by adding the input LLRs and outputting
extrinsic information. The EXIT function of the repeat code
is then calculated as follows [6,7].

a) If n − 1 input LLRs are from the inner edges and one
from the channel, then

IE,REP (IA,
Eb

N0
, n) = J(

√
(n − 2)[J−1(IA)]2 + σ2

ch) (4a)

b) If all the LLRs are from inner edges, then

IE,REP (IA, n) = J(
√

(n − 1)[J−1(IA)]2) (4b)

Following the duality property for the binary erasure
channel, the EXIT function for an (n, n − 1, 2) single parity
check code can be calculated as [6,7]

IE,SPC(IA, n) = 1 − IE,REP (1 − IA, n) (5)
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Fig. 1. The factor graph for a rate-1/3 RA code (open circles denote variable
nodes and filled squares denote parity check nodes).

Simulations show that this expression is an accurate approx-
imation for the case of an AWGN channel [6,7]. For computer
implementation, efficient approximations for the function J(·)
and its inverse function J−1(·) have been developed in [6], and
thus the EXIT curves for both REPCs and SPCCs are easily
accessible. In the following we use the two approximations in
[6] to obtain the EXIT curves for REPCs and SPCCs.

C. EXIT Curves of RA Codes Under Parallel Schedule

With the reference to Fig.1, the iteration step of sum-product
decoding of RA codes under parallel schedule is formulated
as follows.

1) Upward pass:

B(n) = Z + C(n−1), E(n) = B(n) � B(n) (6a)

2) Downward pass:

A(n) = E(n) + E(n), C(n) = A(n) � B(n) (6b)

where C(0) is initialized with 0, � denotes the box-plus
operation (C = A�B ⇔ C = ln

[
(e(A+B) +1)/(eA + eB)

]
)

and the superscript (n) denotes the nth iteration.
To draw the EXIT curves for RA codes under parallel

schedule in a two-dimensional graph, we consider the two
bottom layers of Fig.1, i.e., the SPCCs layer and the bottom
REPCs layer, as a single layer, named SPC&REP layer. Thus,
from (6) the EXIT function of SPC&REP layer is given by

IE,SPC&REP (IA, Eb/N0) = IE,SPC(IB , 3)
= IE,SPC(IE,REP (IC , Eb/N0, 3), 3)
= IE,SPC(IE,REP (IE,SPC(IA, IB , 3), Eb/N0, 3), 3)

(7a)

where IA, IB and IC denote the mutual information associated
with A,B,C respectively. Note that according to (6) IA and
IB are closely related by

IA = IE,REP (IE , 3) = IE,REP (IE,SPC(IB , 3), 3) (7b)

Using (7), the EXIT curve for SPC&REP layer, named ACC
EXIT curve under parallel schedule, is plotted in Fig.3. Also
shown is the EXIT curve of the top REPCs layer, denoted as
REP EXIT curve, which is in fact the EXIT curve for a (3,1,3)
repeat code in the absence of channel information.
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Fig. 2. Sum-product decoding of the accumulate code under serial schedule.

D. EXIT Curves of RA Codes Under Serial Schedule

Viewing the two bottom layers as an ACC, we can apply
serial schedule, or two-way schedule, to decode the ACC using
SPA as follows (see Fig.2).

1) Forward Pass:

Bk = Bk−1 � Ak + Zk, B1 = A1 + Z1 (8a)

2) Backward Pass:

Ck−1 = (Ck + Zk) � Ak, CN−1 = ZN � AN (8b)

3) Output Extrinsic information:

Ek = Bk−1 � (Ck + Zk) (8c)

It can be rigorously proved that the above algorithm is
equivalent to the BCJR algorithm [9] (see appendix or [3]).
The EXIT curve for ACC under serial schedule is also plotted
in Fig.3, which is obtained from simulation (for details refer
to [8,5]). The decoding trajectories under both schedules are
also shown in Fig.3, from which we can easily see that serial
schedule provides a much faster convergence rate compared
to parallel schedule. However, it should be noted that with the
decrease of Eb/N0 the ACC EXIT curve under serial schedule
and that under parallel schedule finally merge, leading to the
same threshold (Eb/N0 ≈0.57dB).

III. SIMULATION RESULTS AND CONCLUSIONS

A length-3×1024, rate-1/3 RA code is used for simulation,
whose BER performance is plotted against Eb/N0 in Fig.4.
From Fig.4, it can be easily seen that sum-product decoding
of the RA code under serial schedule really converges faster
than under parallel schedule, which confirms the statement
that serial schedule generally offers a faster convergence rate
compared to parallel schedule.

APPENDIX

THE EQUIVALENCE OF SPA UNDER SERIAL SCHEDULE

AND THE BCJR ALGORITHM

Proof: (see Fig.2.) In the proof below, we follow the
conventional notations in the BCJR algorithm [9]. A similar
proof can be found in [3].
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(1) αk(s) and Bk:

ln
αk(0)
αk(1)

= ln
αk−1(0)γk(0, 0) + αk−1(1)γk(1, 0)
αk−1(0)γk(0, 1) + αk−1(1)γk(1, 1)

= ln
(αk−1(0)p(ys

k|cs
k = 0)p(yp

k|cp
k = 0)

αk−1(0)p(ys
k|cs

k = 1)p(yp
k|cp

k = 1)
+αk−1(1)p(ys

k|cs
k = 1)p(yp

k|cp
k = 0)

+αk−1(1)p(ys
k|cs

k = 0)p(yp
k|cp

k = 1)

)

= ln
eln((αk−1(0))/(αk−1(1)))eAkeZk + eZk

eln((αk−1(0))/(αk−1(1))) + eAk

= ln
αk−1(0)
αk−1(1)

� Ak + Zk

Besides, Bk = Bk−1 � Ak + Zk and ln α1(0)
α1(1)

= ln α0(0)
α0(1)

�
A1 + Z1 = ∞� A1 + Z1 = A1 + Z1 = B1,∴ Bk = ln αk(0)

αk(1) ;
(2) βk(s) and Ck:

ln
βk(0)
βk(1)

= ln
βk+1(0)γk(0, 0) + βk+1(1)γk(0, 1)
βk+1(0)γk(1, 0) + βk+1(1)γk(1, 1)

= ln
(βk+1(0)p(ys

k+1|cs
k+1 = 0)p(yp

k+1|cp
k+1 = 0)

βk+1(0)p(ys
k+1|cs

k+1 = 1)p(yp
k+1|cp

k+1 = 0)
+βk+1(0)p(ys

k+1|cs
k+1 = 1)p(yp

k+1|cp
k+1 = 1)

+βk+1(1)p(ys
k+1|cs

k+1 = 0)p(yp
k+1|cp

k+1 = 1)

)

= ln
eln(βk+1(0)/βk+1(1))eAk+1eZk+1 + 1
eln(βk+1(0)/βk+1(1))eZk+1 + eAk+1

=
(

ln
βk+1(0)
βk+1(1)

+ Zk+1

)
� Ak

Besides, Ck = (Ck+1 + Zk+1) � Ak+1 and ln βN−1(0)
βN−1(1)

=

(ln βN (0)
βN (1) + ZN ) � AN = (0 + ZN ) � AN = ZN � AN =

CN−1. ∴ Ck = ln βk(0)
βk(1) ;

(3) Extrinsic information Ek:

ln
P (uk = 0|yN

1 )
P (uk = 1|yN

1 )

= ln
αk−1(0)γk(0, 0)βk(0) + αk−1(1)γk(1, 1)βk(1)
αk−1(0)γk(0, 1)βk(1) + αk−1(1)γk(1, 0)βk(0)

= ln
eBk−1eAkeZkeCk + eAk

eBk−1 + eZkeCk

= Ak + Bk−1 � (Ck + Zk).
∴ Ek = Bk−1 � (Ck + Zk).
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