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Direction-of-Arrival Estimation in the Presence
of Unknown Nonuniform Noise Fields

Yuntao Wu, Chaohuan Hou, Guisheng Liao, and Qinghua Guo

Abstract—A new method for estimating directions-of-arrival
(DOA) of multiple spatial narrowband signals in the presence of
spatially nonuniform independent sensor noise with unknown co-
variance is presented. An estimate of the colored noise-covariance
matrix is given first. The received data for parameter estimation
is then prewhitened using the estimated noise covariance, hence,
overcoming the highly biased estimates. Furthermore, the perfor-
mance improvement of standard MUSIC method is confirmed by
computer simulations.

Index Terms—Array signal processing, direction-of-arrival
(DOA) estimation, nonuniform noise.

I. INTRODUCTION

D IRECTION-OF-ARRIVAL (DOA) estimation is an im-
portant research problem in array signal processing. As

is well known, many high-resolution methods like MUSIC,
ESPRIT, etc., can provide excellent asymptotic performance
under the assumption of white Gaussian noise. According to
the assumption, sensor noises are considered to be a zero-mean
Gaussian process with covariance matrix , where is
an identity matrix. However, all conventional methods for
DOA estimation are sensitive to the noise model [2] and the
performance of DOA estimation degrades severely when the
assumption is not met (i.e., in colored noise) [3]. In recent
years, the problem of DOA estimation in colored noise was
extensively addressed and many algorithms were also pre-
sented by using partial prior knowledge or parameterization
of the signal or noise covariance (see [1]–[9]). In several real
applications (for example, sparse array is used), the general
colored noise assumption can be simplified by assuming the
sensor noise to become spatially white [7]–[9]. In this case,
the noise-covariance matrix of array can be represented by a
diagonal matrix, but the sensor noise variances are no longer
identical to each other (i.e., nonuniform independent sensor
noise). Such a noise model becomes relevant in situations
with hardware nonideality in receiving channels as well as
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for sparse arrays with prevailing external noise (for example,
reverberation noise in sonar or external seismic noise) [8]. This
practical relevance of the nonuniform noise model is verified
by real seismic array data processing in [8].

To the problem of DOA estimation in the presence of spa-
tially nonuniform independent sensor noise, a class of so-called
covariance difference techniques was first proposed in [6] and
[7]. More recently, a modified maximum–likelihood (ML) DOA
estimation method [8] has been also derived and its implemen-
tation was based on an iterative procedure which includes a
step-wise concentration of the log-likelihood function with re-
spect to the signal and noise nuisance parameters. However, it
requires a highly nonlinear multiple-dimension search and is
computationally inefficient, while it needs to have an appro-
priate initialized values for faster convergence.

The nonuniform noise variances may be estimated by col-
lecting signal-free data from the sensor array. However, in a real
application system, the noise parameters may be time-varying,
and a signal-free environment is not always available. This ap-
pears to be a strong motivation to use fully important a priori
knowledge of the particular noise case and propose a method
for estimation of the relevant parameters of the noise model. In
this paper, an estimate of noise covariance in the presence of un-
known nonuniform independent sensor noise is given first and,
hence, some available high-resolution methods can be straight-
forwardly applied using the prewhitened array data. Simulation
results show the performance of the MUSIC method for DOA
estimation, which is greatly improved using the modified data.

II. SIGNAL MODEL

Let an array of sensors receive narrowband signals im-
pinging from the sources with unknown DOAs .
The sensor array outputs can be expressed as

(1)

where

array data vector;

array manifold matrix;

source waveform vector;

sensor noise vector;

steering vector;

transposition of a matrix.
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From (1), the array covariance matrix is given by

(2)

where denotes the Hermitian transpose and is the
source covariance matrix. The sensor noise is assumed to be
a zero-mean spatially and temporally white Gaussian process
with the unknown diagonal covariance matrix (see [6]–[8]);
therefore, we have the following:

(3)

The following assumptions are made in the subsequent devel-
opments.

• The number of sources is known a priori (otherwise,
can be estimated by [1]) and the number of sensors
satisfies . Although the condition is mild in
some practice applications, this is a weakness of the
proposed method.

• The set of steering vectors is linearly independent.
• The signal sources are statistically independent of

each other.

The problem of interest here is to estimate the noise covari-
ance (i.e., ) and further obtain unknown pa-
rameters from the observed array output.

III. PROPOSED METHOD

We first define the following diagonal matrices from the :

One first defines a transfer matrix as follows:

(4)

where is an identical matrix and a zero
matrix, respectively.

To estimate and , one needs to reduce the dimension
of using the transfer matrix . From (2), one can get the
following:

(5)

where

(6)

(7)

where all the submatrices of and are -order square ma-
trices and needs not be estimated here. In the following,
further partition of occurs into:

(8)

All the submatrices of are also -order square matrices;
then, we have the following:

(9)

Here is of full rank according to the previous assumptions,
so is . Therefore, both and are invertible matrices.

From (9), we obtain

(10)

Similarly, one has

(11)

Seen from the estimations of and , the number of sensors
needs to satisfy for the proposed method to work.
To give an estimate of and now partition the covariance

matrix , the following occurs:

where denotes block without importance for the present
discussion.

Let the row of be partitioned as

(12)

According to (2) and using the above partition of , one can
obtain easily

and, hence, one has

(13)
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Based on the previous assumptions, the following is easily de-
rived from (13)

(14)

Noise variance vector can be estimated by
the diagonal elements of .

In real application, the array covariance matrix is estimated
by the finite sample data of array

(15)

Therefore, an estimation of the noise-covariance matrix is
obtained by the estimation of , , and , as shown in
(16) at the bottom of the page. Using the estimated noise-co-
variance matrix, we may prewhiten the received array data and
then obtain the improvement of performance in colored noise.
The computation procedure of the proposed method is summa-
rized as follows.

• Compute and obtain
the estimate of by (16).

• Use the estimated noise-covariance matrix to
prewhiten the received data and yield

• Obtain the noise subspace by the eigendecomposition
of

• Compute the spatial spectrum function and obtain the
estimate of from spectrum
peaks

Regarding main computational complexity in the proposed
method, the estimate of noise-covariance matrix only re-
quires linear operations and is computationally simpler, while
the number of multiplications involved in calculating both

and the eigendecomposition of is in the order of
. The computation of spatial spectrum function is in

the order of , where is the number of searches
conducted along the angle axis. However, in ML algorithm [8],
the update of the likelihood function at each iteration needs
also to compute the , while the ML method uses the
uniform noise assumption to obtain the initialized values of
angle estimates. The ML algorithm requires additional com-
putations to upgrade the nuisance parameters and normalizes
the data vector at each iteration. This additional complexity
increases linearly as or increase. However, the major
computation cost of the ML method is that a highly nonlinear
(global) optimization problem should be repeatedly solved,
and the computational complexity increases nonlinearly as
increase. Ignoring the same computational load, therefore, the
computational complexity of the proposed method is much
lower than that of the ML algorithm.

IV. SIMULATION RESULTS

In the first simulation, the experiments are performed with a
uniform linear array (ULA) with sensors and half-wave-
length interelement spacing. Two equally powered narrowband
sources with DOAs and impinge on the array
and the two sources are statistically independent of each other.
We assume the spatially nonuniform independent sensor noise
has the following covariance matrix:

The signal-to-noise ratio (SNR) is defined as

where denotes the power of source signal. The estimate re-
sults are obtained from snapshots and 20 independent
runs. In Figs. 1 and 4–6, the marks for different methods are
respectively given: “solid line”: Proposed method; “ ”: Dif-
ference approach [7]; “:”: MUSIC without prewhitening; “ ”:
Capon method; “dashed line”: Conventional beamforming.

The results of five methods are compared in Fig. 1. Seen
from Fig. 1, the performance of the prewhitened MUSIC
method using the estimated noise covariance is improved while
the MUSIC method without prewhitening, Capon method,
conventional beamforming, and a transform-based covariance
difference method [7] are all failed to resolve the two closely

(16)
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Fig. 1. Simulation results for 20 runs. The other parameters are ��� � � ��, 20 snapshots, and 9 sensors. “Solid line”: Proposed method; “�”: Difference
approach [7]; “:”: MUSIC without prewhitening; “�”: Capon method; “dashed line”: Conventional beamforming.

Fig. 2. Simulation results for 20 runs. The other parameters are 20 snapshots, and 9 sensors. “�” denotes the eigenvalues of the proposed method; “�” denotes
the eigenvalues of MUSIC method without prewhitening.

spaced signal sources. On the other hand, as shown in Fig. 2, the
smallest eigenvalues of the conventional MUSIC method will
be perturbed from their true values so that the signal subspace
as well noise subspace cannot be accurately separated. The
root-mean-square errors (RMSEs) of DOA estimation of the
proposed method has been compared with those of the MUSIC

without prewhitening and Capon method. Fig. 3 shows that the
performances of the latter two methods become poor in lower
SNR cases. The results for source 1 are similar and, hence,
omitted. It is further seen from Fig. 4 that the performances of
MUSIC method with prewhitening, MUSIC method without
prewhitening, and Capon method are nearly identical when the
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Fig. 3. Simulation results for 50 runs. The other parameters are 20 snapshots, and 9 sensors.”�”: Proposed method; “�”: MUSIC without prewhitening; “�”:
Capon method.

Fig. 4. Simulation results for 20 runs. The other parameters are ��� � �� �	, 20 snapshots, and 9 sensors. “Solid line”: Proposed method; “�”: Difference
approach [7]; “:”: MUSIC without prewhitening; “�”: Capon method; “dashed line”: Conventional beamforming.

SNR is high enough. Both Figs. 3 and 4 also show that for a
higher SNR case, the degradation due to the colored noise is
negligible. In particular, the performances of the five methods
are also compared in white Gaussian noise, seen from Fig. 5.
The performances of the proposed method, MUSIC method,
and Capon method become nearly identical.

In the second simulation, the spatially nonuniform indepen-
dent sensor noise covariance has the following matrix:

The number of sensors is (i.e., small number of sen-
sors) and the is taken. As expected in Fig. 6, the
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Fig. 5. Simulation results for 20 runs in white noise. The other parameters are ��� � �� ��, 50 snapshots, and 9 sensors. “Solid line”: Proposed method; “	”:
Difference approach [7]; “:”: MUSIC without prewhitening; “�”: Capon method; “dashed line”: Conventional beamforming.

Fig. 6. Simulation results for 20 runs. The other parameters are ��� � 
 ��, 20 snapshots, and 6 sensors. “Solid line”: Proposed method; “	”: Difference
approach [7]; “:”: MUSIC without prewhitening; “�”: Capon method; “dashed line”: Conventional beamforming.

proposed method with prewhitening provides essential perfor-
mance improvements relative to the rest four methods when the
number of sensors is small.

V. CONCLUSION
The problem of estimation the DOAs of multiple sources in

the presence of spatial nonuniform independent sensor noises is

considered. A new estimator of noise-covariance matrix based
on the developed nonuniform noise model is derived and, hence,
the received data of sensor array can be directly prewhitened
using the estimated noise-covariance matrix. Finally, simula-
tion results show the performance improvements of the stan-
dard MUSIC method using the modified array data achieved. A
weakness of the proposed method is that the number of sensors



510 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 31, NO. 2, APRIL 2006

needs to satisfy , while the proposed method does
not consider the effect of array manifold error. One needs to fur-
ther improve our method in the future work.
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