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    Abstract— In this paper, we propose a low-complexity 
iterative joint channel estimation, detection and decoding 
technique for doubly selective channels. The key is a 
segment-by-segment frequency domain equalization (FDE) 
strategy under the assumption that channel is approximately 
static within a short segment. Guard gaps (for cyclic prefixing or 
zero padding) are not required between adjacent segments, which 
avoids the power and spectral overheads due to the use of cyclic 
prefix (CP) in the conventional FDE technique. A low-complexity 
bi-directional channel estimation algorithm is also developed to 
exploit correlation information of time-varying channels. 
Simulation results are provided to demonstrate the efficiency of 
the proposed algorithms. 

I. INTRODUCTION 
    Single-carrier block transmission with frequency domain 
equalization (FDE) [1] is an efficient technique to alleviate 
inter-symbol interference (ISI) in multipath channels. The use 
of cyclic prefix (CP) avoids inter-block interference and 
converts linear convolution to cyclic convolution, which allows 
efficient implementation of receivers based on fast Fourier 
transform (FFT). However, the use of CP incurs overheads (in 
terms of both power and spectral efficiency loss) that can be 
measured by the following ratio: 

CP length / block length. 
In the conventional FDE technique, this ratio is limited by the 
following two requirements: 

• The channel should be static within a block (and so the               
block length is limited by channel coherent time);   

• CP should be longer than channel memory length. 
Due to the above two requirements, the overhead ratio can be 
high in doubly selective channels (i.e., time-varying ISI 
channels) when channel coherent time is small and channel 
memory is long.  

Using shorter CP is a way to reduce overhead. However, CP 
length less than channel memory length may cause interference 
among consecutive blocks, and the assumption of cyclic 
convolution for FDE is also invalid in this case. Remedies for 
these problems have been studied in [2-4].  

In this paper, we propose a novel detection technique for 
doubly selective channels, in which each block of the 
transmitted signal is partitioned into a number of short 
segments {xk} as shown in Fig. 1(a). There is no guard interval 
between two consecutive segments, which avoids the related 

 
 

overhead. The signal in a block is transmitted continuously in 
the same way as a conventional scheme, i.e., the segmentation 
does not affect the structure of the transmitted signal. We 
assume that the channel remains static within a segment but not 
necessary within a block. The received signal is shown in Fig. 
1(b) where the observation vector rk covers all the contribution 
of segment xk. Due to delay spread, rk is longer than xk, so it 
suffers from the interference form its adjacent segments xk-1 and 
xk+1. In this paper, an iterative technique is developed to handle 
such interference. Since the block length is not limited by the 
channel coherent time, it can be large enough to ensure a 
negligible overhead caused by the guard interval.     
 

��������������������������������� �����������

 
Fig. 1 (a) The transmitted signal x is partitioned into a number of short 
segments {xk}. Each segment is assumed to undergo a static ISI 
channel. (b) ISI causes interference among adjacent segments, as 
illustrated by the shadowing parts. 
 

We will also develop a low-complexity bi-directional 
channel estimation algorithm that can be incorporated in the 
iterative process for joint channel estimation, equalization and 
decoding. This provides a solution for channel estimation that 
is another challenging problem in doubly selective channels.  

Simulation results are provided to demonstrate the efficiency 
of the proposed technique. 
    The notations used in this paper are as follows. Lower case 
letters denote scalars, bold lower case letters denote column 
vectors, and bold upper case letters denote matrices. We use 
superscript “T” to denote transpose, “*” conjugate and “H” 
conjugate transpose. I denotes an identity matrix with proper 
size. Expectation and (co)variance are denoted by E(•) and 
V(•), respectively. For a complex variable, e.g., x, we use xRe to 
denote its real part and xIm its imaginary part. 

II. PRELIMINARY 
    In this section, we provide a brief outline of the underlying 
MMSE estimation principle, and list the key results to be used 
in the following sections. 

A. MMSE Estimation for Gaussian Variables   
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    Consider a standard estimation problem based on the 
following linear model  

= +r Ah n ,                                   (1) 
where r is an observation vector, A a system transfer matrix, h a 
vector to be estimated,  and n a sample vector of Gaussian 
noise.  

Assume that h is Gaussian distributed and its a priori mean 
vector and covariance matrix are denoted by E(h) and V(h), 
respectively. Then the a posteriori mean and variance of h can 
be computed as [10] 

( ) ( )1
E ( ) E( ) V( ) V( ) V( ) E( ) E( )p H H −

= + + − −h h h A A h A n r A h n ,(2a) 

( ) 11 1V ( ) V( ) V( )p H −− −= +h h A n A .                                     (2b) 

B. Joint Gaussian Estimation for Binary Variables 
    The estimation becomes much more complicated for the 
following linear model 

= +r Ax n ,                                      (3) 
where the entries in x are binary.  
    We first assume that all the variables involved in (3) are real. 
In this case, the estimation is usually given in an entry-by-entry 
extrinsic logarithm of likelihood ratio (LLR) form as [5], [6], 
[14] 

   
( | 1)

( ) ln
( | 1)

j
j

j

p x
e v

p x
= +

=
= −

r
r

,                   (4) 

where xj is the jth entry of x. The optimal approach to 
computing (4) is based on the maximum a posteriori 
probability (MAP) criterion, but its complexity is usually 
prohibitive. A low-complexity sub-optimal alternative is the 
so-called joint Gaussian (JG) approach [14], in which (3) is 
rewritten in the following form, 

    j j jx=r a + ξ ,                                       (5) 
where aj is the jth column of A and    

    ' ''j j jj j
x

≠
= +� a nξ .                    (6) 

Note that ξj is the sum of the contributions of all entries in x 
except xj and noise. By the central limit theorem, we can 
approximate the entries of ξj as joint Gaussian variables with  

E( ) E( ) E( ) E( )j j jx= − +A x a nξ ,               (7a) 

    V( ) V( ) V( ) T
j j j jx= −r a aξ ,                           (7b) 

V( ) V( ) V( )T= +r A x A n .                            (7c) 
Based on the above assumption, (4) can be computed as 

1

1

exp ( E( )) V( ) ( E( ))
( ) ln

exp ( E( )) V( ) ( E( ))

T
j j j j j

j
T

j j j j j

e x

−

−

1� �− − − − −� �2� �=
1� �− + − + −� �2� �
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r a � r a �

ξ

ξ
 

( )12 V( ) E( ) E( ) E( )T
j j j j+ x−= − −a r A x n aξ  

( )1 1

1

V( ) E( ) E( ) V( ) E( )
2

1 V( ) V( )

T T
j j j j

T
j j j

+ x
x

− −

−

− −
=

−
a r r A x n a r a

a r a
.            (8) 

The result (8) is the same as that in the so-called LMMSE 
approach derived in [5] and [6]. Compared with the derivation 
in [5] and [6], the derivation described above is more concise 
and straightforward.   

The above result can be extended to complex systems. In this 

case, denote Re Im
j j jx x ix= +  where 1i = −  and { Re

jx , Im
jx } 

are binary. Define 
  Re Im( ) ( ) ( )j j je x e x ie x= + ,                           (9) 

where 
Re

Re
Re

( | 1)
( ) ln

( | 1)
j

j
j

p x
e x

p x
= +

=
= −

r
r

, and
Im

Im
Im

( | 1)
( ) ln

( | 1)
j

j
j

p x
e x

p x
= +

=
= −

r
r

. (10) 

Let Re ImV( ) V( ) 0.5V( )j j jx x x= =  and assume Re ImV( , ) 0j jx x =  
(i.e., the real and imaginary parts of xj are uncorrelated). Then 
e(xj) can be calculated as   

( )1 1

1

V( ) E( ) E( ) V( ) E( )
( ) 4

1 V( ) V( )

H H
j j j j

j H
j j j

+ x
e x

x

− −

−

− −
=

−
a r r A x n a r a

a r a
, (11) 

or in a vector form as (letting e(x) = [e(x0), e(x1), …]T) 

( )( )1 1( ) 4( ) V( ) E( ) E( ) E( )He − −= − − − +x I VU A r r A x n U x , (12) 

where     
V(r) = AV(x)AH+V(n),          (13a) 

 V = diag{V(x0), V(x1), ...},           (13b) 
U = (AHV(r)-1A)diag.           (13c) 

In (13c), the operator (⋅)diag returns a diagonal matrix consisting 
of the diagonal elements of the matrix in the parentheses. For 
space limitation, we omit the derivation of (11). 

III. THE OVERALL JOINT PROCESS 
    In this section, we introduce the signal model and the 
framework of joint channel estimation, detection and decoding. 
The detailed estimation and detection algorithms will be 
discussed in the following sections. 
    Consider a time-varying (complex) ISI channel model 

 
0

L
l

j j j l j
l

r h x η−
=

= ⋅ +� ,                         (14) 

where {xk} are the transmitted signal formed by the outputs of a 
forward error correction (FEC) encoder with quadrature phase 
shift keying (QPSK) and Gray mapping, {rj} the observations, 
{ηj} the samples of additive whiten Gaussian noise with zero 
mean and variance 2σ2, and { l

jh  , l = 0,1,…, L} the channel 
state information (CSI) at time j.     
     Return to Fig. 1 where the transmitted signal x is partitioned 
into K short segments {xk}, each with length M. We assume that 
each segment xk undergoes a static ISI channel 

0 1[ , ,..., ]L T
k k k kh h h=h . As shown in Fig. 1, the observation vector 

related to xk can be represented in a convolution form as 
1 1

Inter Inter
k k k k k k− += ∗ + + +r h x y y η ,                    (15)   

where “∗” denotes linear convolution operation. Note that the 
length of rk is M+L (see Fig. 1(b)), and all the information about 
xk is included in rk. 1  In (15), 1

Inter
k −y  and 1

Inter
k +y  represent the 

interference from the adjacent segments xk-1 and xk+1 
respectively, and they can be expressed as 

1 1 1[ ( * ),0,...,0]Inter T
k k ktail− − −=y h x , and 1 1 1[0,...,0, ( * )]Inter T

k k khead+ + +=y h x  

 
1 Here the detection of xk is based on rk. In contrast, the detection of xk discussed 
in [2-4] is based on the first M elements of rk, and hence some useful 
information is lost. 
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where tail(⋅) and head(⋅) represent two truncation functions that 
return the tail part and head part of the sequence in the 
parentheses, respectively. The length of tail/head part is L. We 
rewrite (15) in a more compact form as                 

 k k k k= ∗ +r h x n ,                                 (16a) 
with      

1 1
Inter Inter

k k k k− ++ +n = y y η .                          (16b) 
We assume that a guard interval in the form of zero padding is 
appended to each block (see Fig. 1(a)). Thus the last segment xK 
only sees the interference from xK-1 and there is no inter-block 
interference. This allows independently processing the blocks.  
    The iterative receiver is shown in the lower part of Fig. 2. It 
consists of three modules: a channel estimator, a channel 
equalizer and a decoder. We follow the framework of iterative 
channel estimation and detection detailed in [7] and [8]. The 
following is a brief outline of the function of each module in the 
iterative process. 
� The channel estimator provides the estimates of { l

kh } (in 
the form of {E( l

kh )} and {V( l
kh )}) based on the output of 

the channel decoder and the statistical property of the 
time-varying channel.  

� Based on the a priori information about {xj} from the 
channel decoder and the channel estimates from the channel 
estimator, the channel equalizer computes the extrinsic 
LLRs for {xj} as given in (11).  

� Based on the output of the channel equalizer and the FEC 
coding constraint, the channel decoder refines the data 
estimates. We assume that standard a posteriori probability 
(APP) decoding [15] is used. 

The above three modules work in an iterative manner. The 
decoder makes hard decisions on the information bits during 
the final iteration. Refer to [5-9] for the detailed discussions for 
the above iteration process.  

d̂

Π

Π

1−Π

η

 
Fig. 2. The transmitter and turbo receiver. ∏ and ∏-1 denote interleaver 
and de-interleaver, respectively. 

In the following, we will discuss the details for the channel 
estimator and equalizer, respectively. 

IV. CHANNEL ESTIMATION  

Rewrite (16) in a matrix form as 

k k k k= +r A h n ,                                    (17) 

where Ak is formed based on kx and 0 1[ , ,..., ]L T
k k k kh h h=h .  

First, we assume that {xk} are perfect known. Based on (17), 
we can estimate hk using the standard MMSE estimator (2). 

Alternatively, to avoid matrix inversion, we can employ the 
following low-complexity tap-by-tap estimation technique.  

We focus on l
kh and rewrite (17) as 

,
l

k k l k k,lh= +r a ζ ,                                  (18) 
where ,k la is the lth column of Ak, and  

, , '
'

l'
k l k l k k

l l

h
≠

= +�a nζ ,                               (19) 

represents the noise plus interference from other taps. Its mean 
vector and covariance matrix are given by 

, , '
'

) ) )l'
k l k l k k

l l

h
≠

Ε( = Ε( + Ε(�a nζ ,                    (20a) 

,V( ) V( ) V( )H
k l k k k k= +A h A nζ .                  (20b) 

In general ,V( )k lζ  is a full matrix. To reduce complexity, we 
approximate ,V( )k lζ using its diagonal part 

( ), ,V( )k l k l diag
=D ζ .                                (21) 

Based on the above approximation and (2), we have 
1

, , , ,
1

, , ,

V( ) ( ) ( ))
E ( ) E( )

V( ) 1

l H l
k k l k l k k l k l kp l l

k k l H
k k l k l k l

h h
h h

h

−

−

− Ε( − Ε
≈ +

+
a D r a

a D a
ζ

,   (22a) 

1
, , ,

V( )V ( )
V( ) 1

l
p l k

k l H
k k l k l k l

hh
h −≈

+a D a
.                       (22b) 

In the above equations, E( )l
kh  and V( )l

kh  denote the a priori 
mean and variance of the concerned variable l

kh , and , )k lΕ(ζ  
and ,k lD  are related to noise plus interference.  

In the iterative process, the channel estimation results in the 
last iteration can be used as a priori information for the current 
iteration. Specifically, { }E ( ),V ( ), 'p l' p l'

k kh h l l≠  calculated in 

the last iteration can be used to update , )k lΕ(ζ  and ,k lD  in (22) 

based on (20) and (21). 2  In contrast, E ( )p l
kh and V ( )p l

kh  
calculated in the last iteration should not be used as the a priori 
information E( )l

kh and V( )l
kh  in (22) to estimate l

kh in the 
current iteration, since the a priori information should be 
“extrinsic” according to the turbo principle. However, the 
extrinsic a priori information of l

kh can come from its adjacent 
segments due to the correlation of time-varying channels. In 
other words, the estimation results for segments k-1 and k+1 
can be used as extrinsic a priori information for the estimation 
of the concerned segment k, as discussed below.  
    We assume that the channel taps are independent of each 
other, and use the following first-order autoregressive model to 
approximately characterize the time-varying channel: 

 1
l l
k l k lh h wβ −= + , l = 0, 1, …, L,                      (23) 

 
2 { , )k lΕ(ζ , ,k lD , l = 0,…, L } can be updated in parallel based on the results in 
the last iteration. Alternatively, we can update them in serial to accelerate the 
algorithm convergence. In this case, the updating of { , )k lΕ(ζ , ,k lD , l = 0, …, L } 

should be based on the most updated { }E ( ), V ( )p l' p l'
k kh h (i.e., some of them are 

computed in the current iteration). This means that the estimation of {hl
k, l = 0, 

…, L} based on (22)  is also performed in serial. 
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where �l is a constant, and wl denotes white Gaussian process 
with power pl. The parameters �l and pl can be determined 
based on the correlation function of the time-varying channel. 
We can use the following bi-directional algorithm (similar to 
Kalman smoothing) to exploit correlation information of 
time-varying channels.  
1. Forward Recursion 

Assume that { }1 1E ( ),V ( )Fwd Fwd
p l p l

k - k -h h  are available, where 
the subscript “Fwd” denotes “forward”. Set 

1E( ) E ( )Fwd
l p l
k l k -h hβ= and 2

1V( ) V ( )Fwd
l p l
k l k - lh h pβ= + , and 

then compute { }E ( ),V ( )Fwd Fwd
p l p l

k kh h using (22).  
2. Backward Recursion 

Assume that { }1 1E ( ),V ( )Bwd Bwd
p l p l

k+ k+h h are available, where 
the subscript “Bwd” denotes “backward”. Set 

1
1E( ) E ( )Bwd

l p l
k l k+h hβ −= and 2

1V( ) (V ( ) )Bwd
l p l
k l k+ lh h pβ −= + , 

and then compute { }E ( ),V ( )Fwd Fwd
p l p l

k kh h using (22). 
3. Combining the Forward and Backward Information 

After the forward and backward recursions, the final 
estimates { }E ( ),V ( )p l p l

k kh h are calculated as  
1

2
1

1 1V ( )
V ( ) (V ( ) )Fwd Bwd

p l
k p l p l

k l k+ l

h
h h pβ

−

−

	 

= +� �� �+ �

,            (24a) 

1
1

2
1

E ( ) E ( )
E ( ) V ( )

V ( ) (V ( ) )
Fwd Bwd

Fwd Bwd

p l p l
k l k+p l p l

k kp l p l
k l k+ l

h h
h h

h h p
β

β

−

−

	 

= +� �� �+ �

.  (24b) 

Calculating E( )l
kh  and V( )l

kh in the forward and backward 
recursions and combining information in (24) are related to 
the Gaussian message passing technique. Refer to [11] for 
details. 

     The complexity of the above described channel estimation 
algorithm is O(M) per tap. 
    In the above discussions, we assume that {xk} are exactly 
known to construct matrices {Ak}. In practice, only the means 
{E(xk)} are available. In this case, we simply use E(xk) to form 
Ak . 

V. SEGMENT-BY-SEGMENT EQUALIZATION 
We now turn our attention to the equalizer in Fig. 2. We first 

assume perfect knowledge of {hk} at the receiver.  
The equalizer in (12) can be realized in a 

segment-by-segment manner (see Fig.1). Based on the 
assumption that the channel is static within a segment, we can 
efficiently implement the equalizer using FFT. This is in 
principle equivalent to FDE [1] [13], but the matrix form 
derivation below is more concise and insightful. 

We define the following two vectors with length N = M+L: 

�
1

[ , 0,...,0 ]T T
k k

M replicas−

=�h h , and �[ ,0,...,0]T T
k k

L replicas

=x x� .            (25) 

Then  (16a) can be rewritten as 
k k k k= ⊗ +r h x n� � ,                                   (26) 

where “⊗” denotes the cyclic convolution operation. Here, 
appending zeros to hk and xk transforms the linear convolution 
in (16a) into the cyclic convolution in (26).  

Define F as the normalized discrete Fourier transform 
(DFT) matrix with size N × N, i.e., the (m, n)th element of F is 

given by 1/ 2 2 /( , ) i mn Nm n N e π− −=F  . Hence FFH  = I. According 
to the property of cyclic convolution, we can rewrite (26) as 

 k k k kN N N N= •Fr Fh Fx + Fn� � ,            (27) 
where “�” denotes element-wise product. Denote the DFT of 

k
�h as: 

,0 ,1 , 1[ , ,... ]T
k k k k NN g g g −=Fh� ,                  (28) 

and define a diagonal matrix  
,0 ,1 , 1{ , ,... }k k k k Ndiag g g g −=G .                  (29) 

Then (27) can be rewritten in a matrix form as 
  

k

H
k k k k= ������

A

r F G F x + n .                              (30) 

From (16b), we can see that  
1 1E( ) E( ) E( )Inter Inter

k k k− += +n y y ,                        (31a) 
2

1 1V( ) V( ) V( ) + 2Inter Inter
k k k σ− += +n y y I .           (31b) 

Define v as the average variance of {xj}, and αk as the 
average of diagonal elements of matrix V(nk). The following 
two approximations may incur marginal performance loss but 
lead to considerable cost reduction:  

V( kx~ ) ≈ vI,                    (32a) 
V(nk) ≈ αkI,            (32b) 

where αk can be calculated as 

 2 1 2 2
1 1

0
2 ( ) ( | | ( ) | | )

L
l l

k k k
l

v M L l h L l hα σ −
− +

=

= + + + −� .       (33) 

Based on (30) and (32), we have 
V( ) V( ) ( )H H H

k k k kv ν α= + =r AA n F G G + I F .       (34) 
Hence  

( )1V( )H
k k k kdiag

u− =U = A r A I ,                     (35) 

where 

( ) 11 1 2 2
, ,0

| | | |N
k k n k n kn

u N g gν α
−− −

=
= +� .            (36) 

Based on (34), (35) and (12), we have 

]

1 1( ) 4(1 ) ( )

( E( ) E( )) E( )

H H H
k k k k k k

k k k k k k

e u

u

ν ν α− −�= − �
− − +� �

x S F G G G + I

z G F x F n x
, (37) 

where [ , ]M M M N× ×= 0S I , and k kz = Fr . 
Remarks: 
1. The matrix inversion involved in (37) is trivial because the 

related matrix is diagonal. 
2. The operation related to F and FH can be efficiently 

realized using FFT. The complexity involved in (37) is 
only O(log2N) per entry. 

3. The term “-FE(nk)” involved in (37) provides soft 
cancellation of the interference from the adjacent segments   
k+1 and k-1. (See (16b) for the definition of nk.) Here, 

1 1E( ) E( ) E( )Inter Inter
k k k− += +n y y can be efficiently computed 

based on FFT as follows:  
1 1 1

1 1

1 1

E( ) E([ ( * ),0,...,0] )

E([ ( ),0,...,0] )

[ ( E( )),0,...,0]

Inter T
k k k

T
k k

H T
k k

tail

tail

tail

− − −

− −

− −

=

= ⊗

=

y h x
h x

F G F x

� �
�

. 
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Note that the term E( )k k�G F x is involved in (37), which 
indicates that 1 1E( )k k− −�G F x  can be shared by e(xk-1) and 
e(xk). A similar treatment can be applied to 1E( )Inter

k +y .  
    The above provides a fast technique to implement the 
equalizer in (12). 

In practice, only the means {E(hk)} are available. In this case, 
we simply replace hk by E(hk) in the above discussed algorithm. 

VI. START UP THE ITERATIVE PROCESS USING PILOT SIGNAL 
    In the iterative joint process discussed above, channel 
estimation should be first performed at the receiver. According 
to the discussions in Section IV, we need set up matrices {Ak} 
based on the mean vectors {E{xk}} that are updated based on 
the feedbacks from the decoder in the iterative process. 
However, in the first iteration, there are no decoder feedbacks 
available, and in general we don’t have a priori information 
about them, which means {E(xk) = 0}. This causes difficulty in 
evaluating (22). Pilot signal can be used to solve this problem.  

Fig. 3 shows the placement of the pilot signal. The pilot 
signal is superposed with the data signal, which only incurs 
power loss (without rate loss).  

 
Fig. 3.  Placement of pilot signal. The pilot signal only involves power 
loss (without spectral loss). 

The transmitted signal can be represented as 
x = p + c,                                     (38) 

where p denotes the pilot signal and c denotes the data signal. In 
the first iteration, 

E(x) = E(p) + E (c)= p.                         (39) 
The iterative process can be started here. Note that, in 
equalization, some extra operations should be included to 
handle the contribution of the pilot signal. 

Now we conclude the overall iterative process as follows: 
Step 1.  Based on the feedbacks from the decoder, the channel 

estimator performs channel estimation via forward and 
backward recursions based on (22) and (24). 

Step 2. Based on the channel estimate information from the 
channel estimator and the feedbacks from the decoder, 
the channel equalizer resolves ISI and inter-segment 
interference to provide data estimates based on (37). 

Step 3.  The decoder refines the data estimates, and the results 
will be used by the channel estimator and equalizer in 
the next iteration. Then go to Step 1.  

Hard decisions on the information bits are made by the decoder 
during the final iteration.  

VII. SIMULATION RESULTS 
    We first examine the proposed segment-by-segment 
equalization algorithm in quasi-static ISI channels under the 
assumption of perfect CSI at receiver side. This example is to 
compare the performance of the proposed method with the 
known performance limit. 

Example 1: Quasi-static channels with perfect CSI 
In this example, the encoding scheme is a rate-1/2 

convolutional code with generator (23, 35)8, and the 
information length is 4096. QPSK modulation is used. Hence 
the length of block (i.e., length of x) is also 4096. The segment 
length (i.e., the length of xk) is set to be 64. The number of 
iterations is 10. The length of ISI channels is 17. The 17 
coefficients remain constant for all the segments in a block, and 
they are independently drawn from a complex Gaussian 
distribution with mean 0 and variance 1 for different blocks. In 
each channel realization, the channel energy is normalized to 1. 

We know that the performance of the system over such ISI 
channels is bounded by the performance of the code over an 
AWGN channel. The performance is shown in Fig. 4, from 
which we can clearly see that the proposed equalization 
algorithm can almost achieve the ISI-free performance at 
relatively high Eb/No, which also implies that the inter-segment 
interference is almost eliminated. 
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Fig. 4. Performance of the proposed algorithm in 17-tap quasi-static 
ISI channels with energy 1. Segment length is 64 and the number of 
iterations is 10. 

Next we examine the proposed joint channel estimation, 
equalization and decoding scheme over a doubly selective 
channel. 
Example 2: Doubly selective channels with estimated CSI 

We adopt the basis expansion model (BEM) detailed in [12]. 
In this model, the channel coefficients are generated by  

,
0

q
Q

i jl
j l q

q
h e ωλ

=

=� , l = 0, 1,…L,                   (40) 

where ωq = 2π(q-Q/2)/N, Q = �fmaxT�, fmax represents Doppler 
spread, and T is the time duration of a block. Define Ts and Ns as 
the symbol duration and the number of symbols in one block, 
then T = NsTs.  The BEM coefficients λl,q is a zero-mean, 
complex Gaussian random variable with variance σ2

l,q. We set 
carrier frequency f0 = 2 GHz, sampling period Ts = 10 �s, and 
mobile speed v = 140 km/hr. The corresponding Doppler spread 
fmax = 259Hz (i.e., the normalized Doppler spread fmaxTs = 
0.00259). The Doppler power spectrum is chosen as  

( ) 1
2 2 ,

( )
0 ,

max max
c

max

f f f f
S f

f f

π
−� − ≤�= �

� >�

                        (41)  

The number of multi-paths is 9, and the multipath intensity 
profile is selected as ( ) exp( 0.1 / )sp Tτ τ= − . The variance 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.

978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 5



 

1
, ( ) ( /( ))l q s c sp lT S q NTλ α−=  with 

', '
( ' ) ( '/( ))s c sl q

p l T S q NTα =� . 

The coding scheme is a rate-1/2 convolutional code with 
generator (23, 35)8. QPSK modulation is used. The information 
length is 4096, and so is the block length. 

We first examine the performance of the proposed scheme 
with CSI available at the receiver. In this case, our focus is the 
effect of different segment lengths on system performance. We 
assume that CSI corresponding to the middle point of each 
block is exactly known at the receiver. Fig. 5 shows the system 
performance when the segment length M is 16, 32, 64, and 128, 
respectively. We can clearly observe that the performance 
degrades with the increase of segment length. (Performance is 
relatively poor at M = 64 compared with M = 32 and 16. A high 
error floor occurs at M = 128.) This is because the algorithm 
assumes a static ISI channel within a segment. This assumption 
is invalid when M = 64 and 128. We can also see that the 
performance with M = 16 and 32 is almost the same, which 
indicates that the static channel assumption is valid when M � 
32.  

If the conventional FDE is used with M = 32, the use of CP 
will incur extra power loss of 1 dB and spectral loss of 20%. 
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Fig. 5.  Performance of the proposed approach over doubly selective 
channels. The power loss due to the use of pilot is included in Eb/No. 
The normalized Doppler spread fmaxTs = 0.00259. The number of 
iterations is 10. 

We next examine the performance of the proposed scheme 
with estimated CSI. We set M = 32 at which the channel can be 
regarded as approximately static within a segment. The pilot 
segments are superposed with the data segments. The power 
ratio of the pilot signal and data signal is 1/4. Hence the power 
loss due to pilot signal is 10log10(5/4) ≈ 1dB. From Fig. 5, we 
can see that the performance gap between the scheme with CSI 
and estimated CSI is less than 3dB at the BER of 1.0×10-5. Here 
the power loss of about 1dB due to pilot signal is included in 
Eb/No. 

VIII. CONCLUSIONS 

We have proposed a low-complexity iterative joint channel 
estimation, equalization and decoding scheme for doubly 
selective channels. The key is a segment-by-segment 
processing technique. A bi-directional channel estimation 
algorithm has been developed to exploit correlation of 

time-varying channels. The proposed channel equalizer inherits 
the low-complexity advantage of FDE technique, but does not 
resort to cyclic prefixing and so avoids the related power and 
spectral overheads. Simulation results demonstrate the 
efficiency of the proposed algorithms.    
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