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Impact of Signaling Schemes on Iterative Linear 
Minimum-Mean-Square-Error Detection 

Li Ping, Jun Tong, Xiaojun Yuan, and Qinghua Guo  
 Department of Electronic Engineering, City University of Hong Kong, Hong Kong 

E-mail: eeliping@cityu.edu.hk 
 
 

Abstract—In this paper, we study the iterative detection 
problem for a coded system with multi-ary modulation. We show 
that, with iterative linear minimum-mean-square-error 
(LMMSE) detection, superposition coded modulation (SCM) can 
provide performance superior to that with other traditional sig-
naling schemes used in trellis coded modulation (TCM) and 
bit-interleaved coded modulation (BICM). This finding provides 
a useful guideline for system design considering inter-symbol in-
terference (ISI) and other forms of interference. Simulation re-
sults are provided to illustrate the efficiency of the iterative 
LMMSE detection with different signaling schemes. 

I. INTRODUCTION 
Consider the iterative detection problem for a system in-

volving multi-ary modulation using a size-2M constellation. 
The channel may include, e.g., inter-symbol interference (ISI), 
multiple-access interference and cross-antenna interference. 
The complexity of the optimal receiver for such channels is 
usually prohibitively high, e.g., O(2ML) for a detector involving 
L paths [1]. The iterative linear minimum-mean-square-error 
(LMMSE) detection provides a relatively low-cost alternative 
[2]-[6]. Good performance has been reported for such LMMSE 
receivers for binary phase shift keying (BPSK) [2], [3] or qu-
adrature phase shift keying (QPSK) modulated signals [6].  

It remains an interesting topic to examine the effectiveness 
of iterative LMMSE detection in systems involving multi-ary 
modulated signals. In this regard, it is reported in [7] that the 
quadrature-amplitude-modulation (QAM) with Gray mapping 
can outperform other options when iterative LMMSE detection 
is involved.  It is shown [7] that the performance of an iterative 
LMMSE receiver is closely related to the signaling method at 
the transmitter side. This is because during iterative LMMSE 
detection, the accuracy of interference estimation is a function 
of signaling method. Such accuracy can be measured using the 
mean squared error (MSE) of interference estimation (for given 
feedbacks from the decoder).  

In this paper, we establish the minimum limit for the MSE of 
interference estimation mentioned above. We show that this 
limit is achievable by superposition coded modulation (SCM) 
[8], [9]. The MSE achieved by QAM with Gray mapping is also 
quite close to this limit, but many other signaling schemes (e.g., 
those used for trellis coded modulation (TCM) and 
bit-interleaved coded modulation with iterative decoding 
(BICM-ID) [10]) are sub-optimal in this regard. Numerical 
results are provided to show that SCM can significantly out-
perform (in terms of bit-error-rate (BER) performance) other 

alternative signaling schemes. We will also show that SCM is 
a good solution with respect to receiver complexity.   

 
II. SYSTEM MODEL  

A. Transmission Model 
The transmitter scheme follows the principles of BICM-ID 

[10], as shown in the upper part of Fig. 1. The source data is 
first encoded by the encoder (ENC) using a binary for-
ward-error-control (FEC) code, and permuted by an interleaver 
(marked by Π) to produce a bit sequence b. Let b be segmented 
into N sub-blocks 

b ≡ {b(0), b(1), …,  b(N−1)}                        (1) 
where each b(i) is a sub-block of M bits: 

b(i) ≡ {b(0)(i), b(1)(i), …, b(M−1)(i)}.               (2) 
We naturally assume that each b(m)(i) is equally taken over {0, 
1}. The mapper then maps each b(i) onto a signaling point x(i) 
in a constellation S of size 2M. The mapping rule b(i) � x(i) ∈ 
S is denoted by R .  

 
Fig. 1. The transmitter and iterative receiver structure of a coded 
multi-ary modulated system. Π denotes the interleaver and Π−1 the 
corresponding de-interleaver. 
 

Let matrix H represent the multiplicative effect of the 
channel. The received signal is given by 

y = Hx + η,                                        (3) 
where y is the received signal vector, x the transmitted signal 
vector and η a vector of additive white Gaussian noise (AWGN) 
with mean 0 and covariance matrix σ2I. In this paper, we al-
ways assume that H is known perfectly at the receiver.  
 
B. Iterative Detection Principles 

The iterative receiver structure is shown in the lower part of 
Fig. 1. The elementary signal estimator (ESE) computes the 
extrinsic log-likelihood ratio (LLR) for each b(m)(i) as 
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with the FEC coding constraint ignored, i.e., the ESE operates 
as if b contains un-coded bits. The decoder (DEC) performs a 
posteriori probability (APP) decoding using {λ(m)(i)} as the 
inputs, and producing the extrinsic LLRs 
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(5) 
After decoding, the ESE operations can be executed again to 

refine the estimates in (4) using the feedbacks {γ(m)(i)}. This 
process continues iteratively for a preset number of iterations. 
Hard decision is then performed in the final iteration to produce 
the data estimates. Detailed discussions on the above iterative 
detection process can be found in [2], [3], [5]. The APP de-
coding in (5) is a standard function. In what follows, we focus 
on the realization of the ESE function in (4). 

C. The ESE Function 
The following approach to the ESE is a low-cost, 

sub-optimal solution. As shown in Fig. 2, the detection process 
can be divided into the three steps listed below. 
 (a)  Gaussian Approximation: We approximate each x(i) 

as a Gaussian random variable with mean E(x(i)) and 
variance Var(x(i)) computed using the DEC feedbacks 
{γ(m)(i), ∀m} (with details discussed in Section III). We 
assume that the entries of x are uncorrelated, which can 
be (approximately) ensured using interleaving. We 
denote E(x) = [E(x(0)), E(x(1)), ..., E(x(N−1))]T and V ≡ 
diag(Var(x(0)), Var(x(1)), …, Var(x(N−1))). 

(b)  LMMSE Estimation: Based on the Gaussian approx-
imation, the LMMSE estimate of x is [11] 

H 1ˆ E( | ) E( ) ( E( ))−≡ = + −x x y x VH R y y ,       (6) 
          where E( ) E( )≡y H x , and 

              ( )( )HE( E( ) E( ) )≡ − −R y y y y  
H 2σ= +HVH I .                                           (7) 

(c)   Demapping: We next calculate {λ(m)(i), ∀m} based on 
ˆ( )x i , the ith entry of x̂ . We rewrite ˆ( )x i as 

ˆ( ) ( ) ( )+ ( )x i i x i iϕ ξ= ,                             (8) 
where H 1( ) Var( ( )) ( ) ( )i x i i iϕ −≡ h R h , h(i) is the ith column 
of H, and ξ(i) is assumed as a Gaussian noise indepen-
dent of x(i). Using (8), (4) can be implemented based on 
the maximum a posteriori probability (MAP) principle 
as  
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where 0
mS and 1

mS denote the subset of the constellation 
points in S  whose mth bit carriers 0 and 1, respectively. 

In (9), 
1 ( )
0

Pr( ) Pr( ( ))
M m
m

s b i
−

=
= ∏  where ( )Pr( ( ))mb i can be 

computed from γ(m)(i) (as detailed in Section III). The 
complexity in (9) is O(2M).  

 

E( ),x V

x̂

 
Fig. 2. The LMMSE approach to the ESE. 

D. Discussions 
Recall that x is an N-dimensional vector with entries drawn 

from a constellation S of size 2M. The complexity for exactly 
evaluating (4) is O(2MN) that is usually very high.  

The discussion in Section II-C gives a low-cost alternative. 
Two approximations are involved here. First, each entry of x is 
approximated by a continuous Gaussian variable in step (a) and, 
second, ξ(i) is approximated by an additive Gaussian noise in 
step (c). With these two approximations, the complexity is re-
duced to O(2M+N2) (with O(2M) for step (a) and (c) and O(N2) 
for step (b)). 

The impact of the first Gaussian approximation can be 
measured using Var(x(i)). A smaller Var(x(i)) implies that the 
first approximation is more accurate (as then E(x(i)) is statis-
tically closer to the true value of x(i)). Interestingly, for given 
{γ(m)(i)}, Var(x(i)) is a function of the signaling scheme, as we 
will see later. This implies that the accuracy of the first Gaus-
sian approximation is different for different signaling methods. 
The choice of signaling methods also affects the second Gaus-
sian approximation, since it can be shown that ξ(i) in (8) is a 
function of {Var(x(i)}.  

III. IMPACT OF SIGNALING SCHEMES 

Continuing from Section II-D, we now consider minimizing 
{Var(x(i))} in a statistical sense. For simplicity, we omit the 
time index i in this section unless it is necessary for discussion. 

A. Signaling Scheme 
Denote by R : b → s the mapping from a set of M bits b = {b(0), 

b(1), …, b(M−1)} to a constellation point s ∈ S of size 2M. We 
assume that S is unbiased and with normalized power, i.e., 

0
s

s
∈

=�
S

    and  21 1
2M

s

s
∈

=�
S

.               (11) 

The signaling scheme is then fully characterized by (S, R). 

B. Estimation of Mean and Variance 
Let {γ (m)} be the set of a priori LLR values of {b(m)} input to 

the ESE, i.e., 
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In practice, {γ (m)} is updated using the feedbacks from the DEC. 
From (12), 
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For s mapped from a particular bit-combination b = {b(m)}, 
1
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0

Pr( ) Pr( )
M

m

m

s b
−

=

= ∏ ,                         (14) 

where Pr(b(m)) is either Pr(b(m)=0) or Pr(b(m)=1), depending on 
mapping rule R . Let x be the symbol associated with {γ (m)}. 
Then, the mean and variance of x are, respectively, 

E( ) Pr( )
s

x s s
∈

=�
S

,                        (15a) 

2Var( ) | E( ) | Pr( )
s

x s x s
∈

= −�
S

.                  (15b) 

 
C. The MMSE in Gaussian Approximation  

Clearly, Var(x) in (15b) is a function of {γ(m)}. We now treat 
{γ(m)} as random variables and consider minimizing [Var( )]x�  
where [ ]⋅�  is the expectation taken over the distribution of 
{γ(m)}. Here [Var( )]x�  can also be seen as the MSE in esti-
mating x using E(x). Note that [Var( )]x�  is a function of 
S and R . The discussion below is to find the MMSE over all 
possible signaling methods with respect to the Gaussian ap-
proximation in Section II-C, which may potentially lead to 
improved performance.  

Considering interleaving, we can treat {γ(m)} as i.i.d. random 
variables drawn from a distribution pγ(γ). Recall that {γ(m)} are 
updated using the feedback LLRs from the APP decoder. In this 
case, LLRs can be modeled as observations from an AWGN 
channel [3], [12]-[14] satisfying the following symmetric con-
dition. 

Assumption I: ( ) ( )p pγ γγ γ= − .                                          (16) 

Define ( )[Var(( 1) )]mbρ ≡ −� , ∀m. Here ρ is not a function 
of m since {γ(m)} are i.i.d. 

Theorem I: Under Assumption I and over all possible S sa-
tisfying (11) and mapping rulesR , 
                              [ ]min Var( )x ρ=

,S R
� . 

Proof: See Appendix.                                                    
 

D. Superposition Coded Modulation (SCM) 
SCM represents a special pair of S and R defined below. 

Definition I: Given a set of M arbitrary complex coefficients 
{α(m)} and given a binary bit set b ≡ {b(m)}, the superposition 
mapping R : b → s is defined as 

( )
1

( )

0
( 1)

m
M

m b

m
s α

−

=

= −� ;                               (17) 

A superposition constellation S is formed by running (17) over 
2M binary combinations of b. 

Theorem II: The minimum [Var( )]x�  given in Theorem I can 
be achieved by and only by SCM. 
Proof: See Appendix.                                                    

Theorem I and II, together with the discussion in Section 
II-D, indicate that using SCM at the transmitter can potentially 
improve the performance of an iterative LMMSE detector. 
Some numerical examples are given later for illustration. 

An additional advantage of SCM is its low complexity. Due 
to the similarity between the signalling in (17) and that of in-
terleave-division multiple-access systems [6], the Gaus-
sian-approximation-based detection method outlined in [6] can 
be applied to compute the demapper outputs for SCM. This 
approach has complexity O(M). For other conventional sig-
nalling schemes, the MAP method in (9) has to be used, which 
has complexity O(2M).  

E. Examples 
From [14], {γ(m)} can be approximated as independent sam-

ples from an AWGN channel, i.e., γ ∼ (2 , 4 )dμ μ� ,  ∀γ  ∈ 
{γ(m)}, where d = ±1 with equal probability and μ is the sig-
nal-to-noise ratio (SNR) of the channel. Fig. 3 compares the 
MSE versus μ for SCM with that for three other signaling 
schemes, namely, the 16-QAM signaling with the modified 
set-partitioning (MSP), Mixed and Gray mappings [10]. SCM 
has a uniformly lower MSE than its alternatives, which agrees 
with Theorem I and II. 
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Fig. 3. Comparison of the MSE achieved by SCM and three other 
16-QAM signaling schemes. For the SCM, M = 4, {α{m}}={1, j, 1.5, 
1.5j}, where 1j = − . 
 

We next show the effect of minimized MSE on the system 
performance. Fig. 4 and Fig. 5 compare the BER performance 
of BICM-ID using the signaling schemes in Fig. 3 over the 
AWGN channel and the Porat channel [13], respectively. We 
focus on a target BER of 10-5. In the AWGN channel, the 
LMMSE detector becomes the optimal MAP detector since 
there is no ISI in this case (i.e., ξ(i) in (8) contains only channel 
noise). The minimization of MSE then has no effect on ξ(i). In 
this case, as shown in Fig. 4, the 16-QAM with the Mixed and 
MSP mapping demonstrates better performance at BER = 10-5. 
However, in the ISI channel where the LMMSE estimation is 

�(dB) 
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necessary, the SCM performs better since it leads to improved 
performance of the LMMSE detector.  
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Fig. 4. Comparison of BICM-ID with different signaling schemes over 
the AWGN channel. A rate-1/2 convolutional code (23, 35)8 is used 
and the information block length is 32768. System throughput = 2 
bits/channel use.  
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Fig. 5. Comparison of BICM-ID with different signaling schemes over 
the Porat channel. The coding parameters are the same as those in Fig. 
4. The Porat channel [a 5-tap ISI channel (2-0.4j, 1.5+1.8j, 1, 1.2-1.3j, 
0.8+1.6j)] is normalized in simulations.  

V. CONCLUSIONS 
We have shown by the MSE analysis that the SCM signaling 

is advantageous for iterative LMMSE detection. Numerical 
results demonstrate that SCM can outperform other conven-
tional signaling schemes over single-user ISI channels. We are 
studying the applications of the finding of this paper in mul-
tiple-user and multiple-antenna systems.  

APPENDIX: PROOF OF THEOREM I AND II 
A. Preliminaries 

In this subsection, we drop, with some abuse of notation, 
superscript m for b(m) and γ (m). Let γ be the LLR of bit b. The 
following are easy to verify: 

exp( )Pr( 0)
1 exp( )

b γ
γ

= =
+

 and 1Pr( 1)
1 exp( )

b
γ

= =
+

,      (A.1a) 

exp( ) 1E(( 1) ) Pr( 0) Pr( 1)
exp( ) 1

b b b γ
γ

−− = = − = =
+

,               (A.1b) 

    2Var(( 1) ) 1 E(( 1) )b b− = − −  
2

exp( ) 11 4Pr( 0) Pr( 1)
exp( ) 1

b bγ
γ

� �−= − = = =� �+� �
.  (A.1c) 

When γ is a random variable, the above quantities are also 
random variables. Assume that γ meets the symmetric condi-
tion (16). From (A.1a) and (16), 

exp( )[Pr( 0)]
exp( ) 1

b γ
γ
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� �  

                    
(a) exp( ) ( )

exp( ) 1
p dγ

γ γ γ
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= −
+�  

                   1 ( )
exp( ) 1

p d
γ γ

γ γ γ
γ

+∞′=−

−∞

′ ′=
′ +�  

                     [Pr( 1)]b= =�                                                 (A.2) 
where equality (a) follows from (16). Since 
Pr( 0) Pr( 1) 1b b= + = = , (A.2) leads to 

[Pr( 0)] [Pr( 1)] 1/ 2b b= = = =� � .                 (A.3) 
From the definition below (16), we have [Var(( 1) )]bρ = −� . 
From (A.1c), 

4 [Pr( 0)Pr( 1)]b bρ = = =� .                    (A.4a) 
Again since Pr( 0) Pr( 1) 1b b= + = = , 

2 22 4 [Pr( 0) ] 2 4 [Pr( 1) ]b bρ = − = = − =� � . 
Thus,  

2 2 1[Pr( 0) ] [Pr( 1) ]
2 4

b b ρ= = = = −� � .            (A.4b) 

B. Proof of Theorem I 
Now consider a constellation S = {sb} of size 2M and the 

corresponding mapping rule R: b → s∈ S . Define a vector s ≡ 
[s0, s1, …, s2M−1]T where b (different from those in the previous 
subsection) is treated as an integer using binary expression, 

b = (b(0)⋅⋅⋅b(M−1)). 
From (15), we have 

T

 

E( ) Pr( )
s

x s s
∈

= =� s p
S

,                 (A.5) 

where p is a vector formed by {Pr(sb)}. For example, when M 
= 2, R  is 

(b(0)=0, b(1)=0) → s0,  (b(0)=0, b(1)=1)→s1, 
(b(0)=1, b(1)=0)→s2,    (b(0)=1, b(1)=1)→s3, 

and p is (“⊗” for Kronecker product) 

(0) (1)
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= =� � �

p . 

(A.6) 
For a general M, p in (A.5) can be obtained using a chain of 
Kronecker products, 

p = p(0)⊗⋅⋅⋅⊗p(m)⊗⋅⋅⋅⊗p(M−1)                    (A.7) 

where 
( )

( )
( )

Pr( 0)
Pr( 1)

m
m

m

b
b

	 
=
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p . Define ( ) ( ) ( )T[ ]m m m≡Q p p� , 

∀m. From (A.4), we have 
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and its eigenvalues {λ0, λ1} and eigenvectors {g0, g1} are 
λ0 = 1/2 corresponding to g0 = [1/2, 1/2]T, and 

λ1 = (1−ρ)/2 corresponding to g1 = [1/2, −1/2]T. 
Define Q H[ ]≡ pp� . From (A.7), we can see that 

Q = Q(0)⊗⋅⋅⋅⊗Q(m)⊗⋅⋅⋅⊗Q(M−1).            (A.8) 
From (A.8) and the spectrum property of Kronecker product 
[15], the eigenvalues of Q is given by the diagonal of 

 times

1/2 0 1/2 0
0 (1 )/2 0 (1 )/2

M

ρ ρ
	 
 	 


⊗ ⊗� � � �− − �  �
�

�����������������
,          (A.9a) 

and the corresponding eigenvectors given by the columns in 
[ ] [ ]0 1 0 1

 times

, ,
M

⊗ ⊗g g g g���������� .                             (A.9b) 

Since ( ) 20 (E(( 1) )) 1mb≤ − ≤ , thus 0 ≤ ρ = 
( ) 21 [(E(( 1) )) ]mb− −� ≤ 1. Therefore, the largest eigenvalue in 

(A.9a) is 2−M with corresponding eigenvector 2−M/21, where 1 is 
an all-one vector with proper size. Also, the second largest 
eigenvalue of Q is 2−M(1−ρ) that corresponds to M eigenvectors 
below 

/ 2

 times 1 times

1 1 1 1 1
2

1 1 1 1 1
M

m M m

−

− −

	 
 	 
 	 
 	 
 	 

⊗ ⊗ ⊗ ⊗ ⊗ ⊗� � � � � � � � � �− �  �  �  �  �
� �

������� �������

, 0≤m≤M−1. (A.10a) 

The vectors defined in (A.10a) are normalized versions of the 
column vectors contained in 

+1 +1 +1
+1 +1 1
+1 1 +1

1 1 1

	 

� �−� �
� �−
� �
� �
� �− − − �

G =

�
�
�

� �
�

,                           (A.10b) 

where the bth row of G forms the binary expression of b over 
{−1, +1}. From (A.3), we have 

[ ] ( )
1

Pr( ) Pr( ) 2
M m M
m

s b −
=

= =	 
 �∏� � .             (A.11) 

Then, 

 

[ ]

[ ]

2 2

2 2

H

Var( ) | | Pr( ) |E( )|

| | Pr( ) [|E( )| ]

1 ,

s

s

x s s x

s s x
∈

∈

	 

= −� �

� � �

= −

−

�
�

= s Qs

� �

� �
S

S

      (A.12) 

The last equality in (A.12) follows from (A.5) and (A.11). 
Minimizing (A.12) is equivalent to maximizing sHQs, which is 
achieved when s takes the direction of the eigenvector for the 
maximum eigenvalue of Q. However, s cannot be 2−M/21 
because it does not satisfy the condition 0s s∈Σ =S  in (11). 
Furthermore, it can be verified from (A.9b) that 0s s∈Σ =S  
when s takes the direction of any other eigenvector g ≠ 2−M/21. 
Thus, s must be orthogonal to 2−M/21 (otherwise 0s s∈Σ ≠S ). 

Therefore we turn to the second largest eigenvalue 2−M(1−ρ). 
Then s must fall in the space spanned by the columns of G in 
(A.10b), i.e., 

 s = Gα ,                                   (A.13) 
for any M×1 vector α with ||α||2 = 1. Thus, 

[ ] Hmin Var( ) 1 1 2 2 (1 )M Mx ρ ρ−= − − ⋅ ⋅ − =s Qs =�
S,R

.    

C. Proof of Theorem II 
Eqn. (A.13) is simply a vector form expression of (17) for the 

SCM with the constraints in (11).                                       
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