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Bootstrapping SVM Active Learning by Incorporating Unlabelled Images for
Image Retrieval

Lei Wang, Kap Luk Chan, Zhihua Zhang∗

School of Electrical and Electronic Engineering
Nanyang Technological University

Nanyang Avenue, Singapore, 639798
{elwang, eklchan}@ntu.edu.sg

Abstract

The performance of image retrieval with SVM active
learning is known to be poor when started with few labelled
images only. In this paper, the problem is solved by incor-
porating the unlabelled images into the bootstrapping of the
learning process. In this work, the initial SVM classifier
is trained with the few labelled images and the unlabelled
images randomly selected from the image database. Both
theoretical analysis and experimental results show that by
incorporating unlabelled images in the bootstrapping, the
efficiency of SVM active learning can be improved, and thus
improves the overall retrieval performance.

1. Introduction

Content-Based Image Retrieval (CBIR) is known to suf-
fer from the semantic gap, and learning from user’s rele-
vance feedback was considered as a way in an attempt to
bridge this gap [11, 9, 14, 3, 7]. However, the learning per-
formance is often constrained due to the problem of small
sample because a user is unwilling to label too many images
in a retrieval. Recently, Support Vector Machines (SVM)
based active learning has been proposed to deal with this
problem, in which the images shown to query the user are
the most uncertain images, e.g., those closest to the opti-
mal separating hyperplane, instead of the most positive im-
ages [13]. Though promising improvement is obtained, it
is also found that active learning would have difficulties to
learn well when it is started with few labelled images, e.g.,
only one positive and one negative image examples pro-
vided by the user at the beginning of retrieval. Currently,
this problem is tackled by asking the user to label more

∗The author is now with the Department of Computer Science, Hong
Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong.Email address: zhzhang@cs.ust.hk.

randomly selected images in the first round of relevance
feedback and starting active learning afterwards. Though
labelling more samples can get around this problem, it in-
creases the burden on the user. On the other hand, heuris-
tically labelling a fixed number of images, e.g. twenty
images, is not in the spirit of active learning because this
number varies with different retrieval tasks and the image
databases involved, and may not be known in advance.

In image retrieval, the images labelled by the user are
usually very limited in number, especially at the beginning
of retrieval. However, the unlabelled images are ample in
the image database and are easy to collect. In this paper, a
new bootstrapping strategy for SVM active learning is pro-
posed, in which the initial SVM classifier is trained with
few labelled images and the unlabelled images randomly
selected from the image database. We show, through theo-
retical analysis and experimental results, that by incorporat-
ing unlabelled images, the efficiency of SVM active learn-
ing can be improved, leading to an overall better retrieval
performance.

2. Background

SVM active learning can be well analyzed by using the
version space. In the following, the concept of version space
is briefly presented (For the detail, please see [4]).

Let Z be a set of training samples andZ =
{(x1, y1), (x2, y2), · · · , (xm, ym)}, wherex (x∈R

n) is an
n-dimensional input vector andy (y ∈ {+1,−1}) is the
true label ofx. Commonly, the class withy = +1 is named
aspositive while the class withy = −1 is named asneg-
ative. Given a kernelk(xi,xj) = 〈φ(xi), φ(xj)〉, where
φ(·) denotes a mapping and〈·, ·〉 denotes an inner product,
the input vectors inZ are implicitly mapped into a feature
space,F . Letw be the normal vector of a hyperplane inF ,
andf(x) = 〈φ(x),w〉 represents a hyperplane inF passing
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Figure 1. A version space in a 3D space

through the origin1. An unseen data,xu, can be labelled by
the sign off(xu). LetV(Z) denote the version space given
Z,

V(Z) = {w ∈ W | ‖w‖ = 1, ∀ i ∈ {1, · · · , m} : yi〈φ(xi),w〉 > 0}

whereW denotes the parameter space. A duality can be
found between anf(x) in F and aw in W. y〈φ(x),w〉 = 0
represents a hyperplane inF with the normal vectorw.
Also, it represents a hyperplane inW with the normal
vector yφ(x). Given a training sample,(xi, yi), there is
yi〈φ(xi),w〉 > 0 for a hyperplane,f(x), that can correctly
classify it. According to the duality, the corresponding hy-
perplane inW bisects the surface of the hypersphere of
‖w‖ = 1, and only the part satisfyingyi〈φ(xi),w〉 > 0
is favored. In this way, given the training setZ with m
training samples, the version space is a connected region on
the surface of the hypersphere, carved by the corresponding
m hyperplanes. Figure 1 illustrates such a version space in
a 3D parameter space carved by three hyperplanes. The
region closest to the viewer is the version space, andw
represents a normal vector therein. In a version space, an
SVM classifier has the following geometrical interpretation.
Imagining a largest hypersphere with its center restricted on
the version space and not intersecting with any hyperplane,
the normal vector of the optimal separating hyperplane,w∗,
lies at the center of this largest hypersphere. The train-
ing samples aresupport vectors if they correspond to the
hyperplanes which are tangent to this largest hypersphere.
Note that this interpretation is based on the assumption that
‖φ(x)‖ is a constant. It can be well satisfied when a Gaus-
sian RBF kernel is used.

In [13], considering that the normal vector of the optimal
separating hyperplane,w∗, can be well captured when the

1The version space introduced requires that the training data are lin-
early separable in the feature space and that the separating hyperplane
passes through the origin. As noted in [13], these two requirements can
be well satisfied by modifying the kernel or the input space. Here, it is
assumed that they have been satisfied.

size of version space becomes small enough2, Tong et al.
proposed to select the unlabelled sample which can reduce
the current version space as much as possible. Assuming
that only one unlabelled sample is selected in each learning
cycle, they proved that the hyperplane induced by this sam-
ple should halve the current version space, and proposed
the Simple method in which this sample is approximated
by the unlabelled sample closest to the current separating
hyperplane. TheSimple method is not the best method in
identifying the desired sample, and it often leads to poor
learning when active learning starts with few labelled data
only. However, this method is much less computational in-
tensive, and it is suitable for practical applications, such as
image retrieval where multiple samples are selected in each
learning cycle. In [2] and [10], selection strategies similar
to theSimple method are proposed from different perspec-
tives.

3. SVM active learning incorporating unla-
belled data

3.1. The theoretical analysis

Let D be a given database, andDi
l andDi

u are the la-
belled and unlabelled data sets in thei-th active learning
cycle, respectively. We haveD = Di

l∪Di
u andDi

l∩Di
u = ∅.

Let Vi denote the version space givenDi
l , andSVi

denotes
the size ofVi. Letwi be the normal vector of the separating
hyperplane givenVi. Let �wi = ‖wi − w∗‖ denote the
error betweenwi andw∗. The expectation of the squared
error,E(‖�wi‖2), can be expressed as follows.

E(‖�wi‖2)
=

∫
Vi

‖wi − w∗‖2p(wi,w
∗|Vi)dwidw

∗

=
∫
Vi

(‖wi‖2 − 2w�
i w∗ + ‖w∗‖2)p(wi,w

∗|Vi)dwidw
∗

= 2 − 2
∫
Vi

cos θp(wi,w
∗|Vi)dwidw

∗

< 2 − 2cos θmax
∫
Vi

p(wi,w
∗|Vi)dwidw

∗

= 2(1 − cos θmax) [θmax ∈ (0, π)]
(1)

whereθmax is the maximal angle betweenwi andw∗, and
it is positively correlated toSVi

. This equation indicates
that the larger theSVi

, the larger the deviation ofwi from
w∗. Hence, SVM active learning seeks the optimal normal
vector,w∗, by greedily reducing the size of version space.

In the case of selecting multiple queries in each learn-
ing cycle, the optimal selection strategy should also have
the version space reduced as much as possible. Hence, the
expectation of the size ofVi+1 in the (i + 1)-th learning
cycle, E

(
SVi+1

)
, should be minimized after the selected

k (k ≥ 1) unlabelled samples are labelled. LetDk be the

2Note that it has been assumed that the training data are linearly separa-
ble inF . Hence,w∗ will always lie in the series of version spaces induced
by the sequence of new samples because the optimal separating hyperplane
can always correctly classify all the training data.



set of thek selected unlabelled samples. The optimalDk

can be described as follows.

D∗
k = arg min

Dk⊂Di
u

E
(
SVi+1

)
(2)

Letnk denote the number of sub-regions into which the ver-
sion space,Vi, will be partitioned by thek induced hyper-
planes. LetRi,j (j = 1, 2, · · · , nk) be thej-th sub-region,
andSRi,j

denotes the size ofRi,j . We haveVi =
⋃nk

j=1 Ri,j

andSVi
=

∑nk

j=1 SRi,j
. Ri,j will becomeVi+1 if the opti-

mal normal vector,w∗, lies in it. In this way,

E
(
SVi+1

)
=

∑nk
j=1

[
SRi,j

P (w∗ ∈ Ri,j)
]

=
∑nk

j=1

[
SRi,j

∫
Ri,j

p(w∗|Vi)dw
∗
] (3)

where P (w∗ ∈ Ri,j) is the probability ofw∗ falling
into Ri,j . Considering thatw∗ can lie anywhere inVi

with equal probability, we have
∫
Ri,j

p(w∗|Vi)dw∗ =
1

SVi

∫
Ri,j

dw∗ =
SRi,j

SVi
. Hence, equation (3) becomes

E
(
SVi+1

)
=

1

SVi


 nk∑

j=1

S2
Ri,j


 ≥ 1

SVi

(∑nk
j=1 SRi,j

)2

nk
=

SVi

nk

(4)

According to Cauchy inequality, the equality can be
achieved if and only ifSRi,1 = SRi,2 = · · · = SRi,nk

=
SVi

nk
. This result indicates that the optimal selection strategy

for SVM active learning with multiple queries is to select
the unlabelled samples corresponding to thek hyperplanes
that can partition the current version space into as many as
possible equally-sized sub-regions. The optimal selection
strategy for the single query case given in [13] is then a
special case, wherek = 1. Also, equation (4) shows that
theSimple method, which selects thek unlabelled samples
closest towi, is not optimal for the case of multiple queries.
However, it is impractical to find the optimalk unlabelled
samples according to equation (4) because the parameter
spaceW often has a very high dimensionality, and theSim-
ple method is a viable option in practice. Hence, a way has
to be found to improve the efficiency of theSimple method.

Given a version space, the sum of the squared distances
of the hyperplanes induced by thek selected unlabelled
samples tow∗ can be used as an indicator of the selec-
tion efficiency by theSimple method. The smaller the sum,
the more likely the closer of thek hyperplanes tow∗, and
the support vectors can be selected with higher probability.
Also, a smaller sum means a tighter enclosure tow∗ and
a smaller version space is more likely resulted. Figure 2
shows a small version space,Vi, that can be approximated
by a region,ABCD, on a 2D plane. Thek hyperplanes
are represented byh1, h2, · · · , hk, respectively.Vi is par-
titioned into six pieces and the fourth (shadowed region) is
the next version space,Vi+1. The expectation of the sum of
the squared distances can be expressed as

W*
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VV ii

hhkk
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Figure 2. A Vi approximated by a 2D plane
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E


 k∑

j=1

d2
j


 = k

[
‖wi − w∗‖2(r1 + r2)2 +

2

3
(r2

1 + r1r2 + r2
2)

]

wheredj denotes the distance from thei-th hyperplane,hi,
to w∗. r1 andr2 are the minimum and maximum of the dis-
tances, respectively, and they are regarded as two constants
in a selection. This equation shows that a smaller‖wi−w∗‖
will incur a smallerE

(∑k
j=1 d2

j

)
. As a result, the selec-

tion efficiency by theSimple method will be higher, and
a smaller version space can be obtained. It means that re-
ducing the deviation ofw0 from w∗ can make the selection
by theSimple method more efficient. The way of labelling
more images in [13] was, in fact, to reduce this deviation.

3.2. Bootstrapping SVM active learning by incor-
porating unlabelled images

Recently, learning with labelled and unlabelled data, also
known as semi-supervised learning, has attracted much at-
tention [8, 1, 6]. It aims to achieve good classification per-
formance with the help of unlabelled data in the presence
of the small sample problem, and some promising results
have been reported. Enlightened by this, instead of ask-
ing the user to label more images, we incorporate the un-



labelled images before active learning starts. As shown in
Figure 3, at the beginning, the user launches a retrieval with
few initially labelled images. The labelled images consist
of at least one positive and one negative images. Then
the unlabelled images in the image database are incorpo-
rated to train the initial SVM classifier. By employing a
suitable algorithm for learning with labelled and unlabelled
data to bootstrap the SVM active learning, the deviation of
w0 from w∗, ‖�w0‖, can then be reduced. In the sub-
sequent learning cycles, the normal SVM active learning
is used. When active learning ends, the database images
are ranked in descending order of the distances to the fi-
nal separating hyperplane, and the top images are shown as
the retrieval result. The proposed method has the following
advantages. First, the initial classifier is improved by incor-
porating unlabelled images instead of heuristically labelling
more images. Hence, it reduces the labelling cost and thus
the burden on the user to improve the retrieval. Second, this
method is general such that any algorithm for learning from
labelled and unlabelled data can be incorporated.

4. Experimental results

The experiments aim to evaluate the effectiveness of the
proposed method. Transductive SVM (TSVM) is used as
the algorithm learning from labelled and unlabelled data [6].
In the following, the proposed method is named as TSVM-
SAL while the method in [13] is named as SAL. An ar-
tificial database and a real color image database are used.
The artificial database, as shown in [15], includes seven 2D
Gaussian-distributed classes. Each class has 100 samples
representing 100 “images”. The real color image database
includes 600 general color images composed fromVisTex of
MIT andCorel Stock Photos. Six image classes are defined
based on high-level semantics (i.e. defined by a group of
human observers), and each class includes 100 image sam-
ples. A perceptually uniform color space,CIE − Lab, is
used to represent general color images, and a feature vec-
tor of color moments [12] is defined for each image. The
two databases provide the ground truth for evaluation. Be-
sides retrieval precision (PR), classification accuracy (CA)
and selection efficiency (SE) are also calculated. Classifica-
tion accuracy is defined to be the percentage of the database
images that are correctly classified as positive and negative.
Selection efficiency is defined as the percentage of the true
support vectors among the selected unlabelled samples. The
true support vectors are found by training an SVM classifier
with the ground truth, e.g., the pre-classified databases.

4.1. Experimental procedure

(1) Treat classi (i = 1, 2, · · ·) as positive and the other
classes as negative.k0 images are randomly selected as

the initially labelled samples before active learning starts.
Among thek0 image samples, there are, at least, one pos-
itive and one negative image samples; (2) Based on the
k0 labelled images, the initial SVM classifier is trained by
TSVM-SAL and SAL, respectively. In TSVM-SAL,10%
unlabelled images in the image database are randomly se-
lected in the present work; (3) Selectk (k is set to20 to
be consistent with [13]) unlabelled images according to the
Simple method. Each image is labelled according to the
ground truth to simulate the user’s labelling in relevance
feedback; (4) Add thek newly labelled samples into the
current labelled sample set, and retrain the SVM classifier
with labelled images only; (5) Redo steps (3) to (4) with
three active learning cycles. In each cycle, after the SVM
classifier is trained, the database images are ranked and the
retrieval result is determined. The corresponding CA, SE,
and PR values are calculated for TSVM-SAL and SAL, re-
spectively; (6) To accumulate statistics, redo steps (1) to (5)
fifty times. For each method, the average of CA, SE, and
PR are calculated as the values when classi is treated as
positive; (7) Redo steps (1) to (6) until each class has been
treated as positive once. For each method, the average of
CA, SE, and PR on all the classes are calculated as the val-
ues for the whole database.

In the experiments, the software for training SVM (and
TSVM) is SVMlight [5]. Gaussian RBF kernel,k(x,y) =
exp

(
−‖x−y‖2

2σ2

)
, is used, whereσ is set to the average

of the Euclidean distances among the training samples.
The regularization parameter,C, is set to100 for the two
databases.

4.2. Results and discussions

Figure 4 shows the comparison between TSVM-SAL
and SAL on the artificial database. These sub-figures are
arranged, from top-left to bottom-right, according to the or-
der of the three active learning cycles. The horizontal axis
of each sub-figure shows the values ofk0 while the verti-
cal axis shows the value of CA, SE, or PR. It can be seen
that, by incorporating unlabelled images to train the initial
classifier, TSVM-SAL achieves overall better performance
on CA, SE, and PR. In sub-figure (a-1) corresponding to
the initial classifier, TSVM-SAL achieves higher CA val-
ues than SAL for the samek0. This indicates that the ini-
tial classifier is improved by incorporating the unlabelled
images. In sub-figure (a-2), the values of SE in the first
learning cycle are shown. It can be seen that, benefiting
from the improved initial classifier, higher SE values are
obtained by TSVM-SAL than SAL for the samek0. This
means that more support vectors are selected in these selec-
tions. Hence, better classification and retrieval performance
is achieved. These are reflected from the higher values of
PR and CA, given by TSVM-SAL after the first learning



cycle, shown in sub-figures (a-3) and (b-1), respectively. In
the subsequent two leaning cycles (from sub-figure (b-2)
to (c-3)), TSVM-SAL still shows better performance be-
cause it has a good starting point. Also, it can been seen
that, with the increasing values ofk0, the improvement of
TSVM-SAL becomes less. This is expected because, when
the number of initially labelled samples increases, a good
initial classifier can be obtained by using the labelled im-
ages only and the help from unlabelled images becomes
less. However, it can be seen that, when few labelled im-
ages are available only, TSVM-SAL still shows better per-
formance. By cross-referencing the results corresponding to
different values ofk0, it can be seen that, in sub-figures (a-
3), (b-3), and (c-3), the PR values of TSVM-SAL for a
smaller k0 are comparable to those of SAL for a larger
k0. This result means that, for the case of image retrieval,
when few labelled images are available only, incorporat-
ing unlabelled images can show the similar effect as asking
the user to label more images. Hence, incorporating unla-
belled samples is helpful to lighten the burden on the user.
Also, these results indicate that TSVM-SAL requires less
labelling for achieving a given retrieval precision. Figure 5
shows the comparison on the real color image database, and
similar conclusions are drawn. However, the improvement
of TSVM-SAL over SAL is less because complex distribu-
tions, such as heavily overlapped distributions, of real data
can degrade the efficiency of learning from labelled and un-
labelled data. Summarily, the above experimental results
demonstrate that bootstrapping SVM active learning by in-
corporating unlabelled data helps achieving efficient active
learning using few labelled images and hence a better re-
trieval performance. This achievement is at the expense of
introducing a bootstrapping step which incurs extra compu-
tational overhead although it can be reduced by incorporat-
ing less unlabelled samples. The benefit of incurring such
an overhead is justified in term of the improvement in per-
formance.

5. Conclusion

This paper gives a theoretical analysis on SVM active
learning by using the version space. Based on the analy-
sis, a method of bootstrapping SVM active learning is pro-
posed for image retrieval, in which the initial SVM classi-
fier is improved by incorporating unlabelled images instead
of asking the user to label more randomly selected images.
The proposed method can effectively improve the learning
and retrieval efficiency of SVM active learning without in-
creasing the burden on the user. The experimental results
on both artificial and real databases demonstrate the better
performance achieved by the proposed method.
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Figure 4. Comparison on the artificial database
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Figure 5. Comparison on the real color image database
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