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SPECTRAL FLOW INVARIANTS AND TWISTED CYCLIC THEORY FROM
THE HAAR STATE ON SUq(2)

A. L. CAREY, A. RENNIE, AND K. TONG

Abstract

In [CPR2], we presented a K-theoretic approach to finding invariants of algebras with no non-
trivial traces. This paper presents a new example that is more typical of the generic situation.
This is the case of an algebra that admits only non-faithful traces, namely SUq(2) and also KMS
states. Our main results are index theorems (which calculate spectral flow), one using ordinary
cyclic cohomology and the other using twisted cyclic cohomology, where the twisting comes from
the generator of the modular group of the Haar state. In contrast to the Cuntz algebras studied
in [CPR2], the computations are considerably more complex and interesting, because there are
nontrivial ‘eta’ contributions to this index.
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1. Introduction

Motivated by our study of semifinite spectral triples and Kasparov modules for graph algebras,
[CPR1, PR], we have found a new way of extracting invariants from algebras using non-tracial
states. The basic constructions and first examples are in [CPR2], where we studied the Cuntz
algebras using their unique KMS states for the canonical gauge action. However, we have found
that this example, though illuminating, is not generic. Here we study a more generic situation, the
example of SUq(2) using the Haar state, which is KMS for a certain circle action (which is not the
gauge action).
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2 A. L. CAREY, A. RENNIE, AND K. TONG

The approach of [CPR2] yields a local index formula in twisted cyclic cohomology, where the twisting
comes from the generator of the modular group of the KMS state. The chief drawback of twisted
cyclic theory, from the point of view of index theory, is that it does not pair with K-theory. However,
in [CPR2] we showed that there was an abelian group, called modular K1, which pairs with twisted
cyclic cohomology. It seems that in general we must understand algebras that admit both traces
(not necessarily faithful) and KMS states. The former situation, described in detail in Section 7 for
SUq(2), exploits semifinite index theory, using untwisted cyclic cohomology. The latter, in Section
8, uses the Haar state and the associated twisted cyclic theory, and leads to a pairing with modular
K1. In both cases the pairing is given by computing spectral flow in the semifinite sense as described
in [CP2]. This example points to the existence of a rich interplay between the tracial and KMS index
theories.

Many of the constructions of this paper mirror those of [CPR1, CPR2, PR], and we give precise
references to those papers for more information about our constructions and, where necessary, for
proofs. We focus here on the new aspects of these constructions that SUq(2) throws up.

There are two motivations for this study. First there is the observation [CLM] that there is a way
to associate directed graphs to Mumford curves and that from the corresponding graph C∗-algebras
we might extract topological information about the curves. It eventuates that SUq(2) is an example
of a graph algebra that shares with the Mumford curve graph algebras the property that it does
not admit faithful traces but does admit faithful KMS states for nontrivial circle actions. If we
are going to be able to exploit graph algebras to study invariants of Mumford curves then we need
to demonstrate that it is possible to actually calculate numerical invariants explicitly. We find in
Sections 7 and 8 that we are able to obtain not only abstract formulae but also the numbers produced
by these formulae for particular unitaries in matrix algebras over SUq(2).

The second motivation comes from the general formula obtained in the main result in Section 8,
namely Theorem 8.2. This Theorem shows that there are two contributions to spectral flow in the
twisted cocycle one of which comes from truncated eta type correction terms. This example points
to the existence of a ‘twisted eta cocycle’, a matter we plan to investigate further in another place.

The novel feature of our approach is to make use of the structure of SUq(2) as a graph C∗-algebra
and a small part of its Hopf algebra structure via the Haar state. We find that this is best described
by using an intermediate presentation of the algebra in terms of generators which are functions of the
graph algebra generators. The Haar state provides us with a natural faithful KMS state on SUq(2)
which we want to use because any trace on SUq(2) cannot be faithful. This has the consequence
that any Dixmier type trace on SUq(2) will only see ‘part’ of the algebra.

Nevertheless for non-faithful traces we can calculate what the odd semifinite local index formula
in noncommutative geometry [CPRS2] tells us. More specifically we construct a particular (1,∞)
summable semifinite spectral triple for SUq(2) in Section 7. Then in subsection 7.5 we use ideas
from [CPR1] to give some explicit computations which are actually the result of pairings with the
K−theory of a mapping cone algebra constructed from SUq(2). These calculations use general
formulae for spectral flow in von Neumann algebras found in [CP2, CPS2]. These pairings yield
rational functions of the deformation parameter q, in fact q-numbers, which are naturally interpreted
as q-winding numbers.

Then, in Section 8, we turn to the question of what information we can extract from the Haar state
or ‘twisted’ situation (where ‘twist’ refers to twisted cyclic cohomology). We constructed a twisted
cocycle and the pairing with what we termed ‘modular K-theory’ in [CPR2]. When applied to
particular unitaries in matrix algebras over SUq(2) the pairing of the twisted cocycle with modular
K1 gives a spectral flow invariant that is a polynomial function of the deformation parameter q.
These functions are distinct from those obtained in the tracial case although they depend on the
same variables. We believe that the mapping cone plays a role here as well but much further
investigation needs to be done to prove this.

We remark that our aims are different from those of [ChP1, ChP2, DLSSV] where the quantum
group structure of the algebra plays the main role through the construction of equivariant spectral
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triples, some satisfying conditions related to the axioms for a noncommutative spin manifold [Co2].
In this paper we ignore the quantum group structure of SUq(2) in order to explain by example an
‘index theory for KMS states’.

Acknowledgements. The first and last authors were supported by the Australian Research Coun-
cil. The last two authors were supported by Statens Naturvidenskabelige Forskningsr̊ad, Denmark.
We would like to thank John Phillips, Piotr Hajac, Ryszard Nest, David Pask, Aidan Sims, and Joe
Varilly for stimulating conversations on these topics.

2. The C∗-Algebra of SUq(2)

In this Section we will describe the relationship between two descriptions of the algebra C(SUq(2));
the ‘traditional’ q-deformation picture [W], and the graph algebra picture, [HS].

2.1. The q deformation picture of SUq(2). We recall the construction of the algebra A = SUq(2).

Proposition 1. Given any q ∈ [0, 1) there is a unital C∗-algebra A with elements a, b, b normal,
satisfying the relations

(1) a∗a+ b∗b = 1, aa∗ + q2bb∗ = 1, ab = qba, ab∗ = qb∗a,

with the following universal property. Let Acc be the algebra C[a, b] modulo the above relations.
Then every ∗-algebra homomorphism from Acc to a C∗-algebra B extends to a unique C∗-algebra
homomorphism from A to B. In particular Acc is dense in A.

Proof. This is a restatement of [W, Theorem 1.1]. �

For the rest of this paper, 0 ≤ q < 1. However we observe that the Haar state is not faithful for
q = 0, see Lemma 3 below, and so any statement relying on the faithfulness of the Haar state requires
0 < q < 1. We will use the following Z2-grading of Acc in many places below.

Proposition 2. The algebra Acc has a Z2-grading so that Acc =
⊕

(m,n)∈Z2 Acc[m,n]. With respect
to this grading we have deg(a) = (−1, 0), deg(b) = (0, 1).

It is well known, (we will amplify below), that for all 0 ≤ q < 1, the C∗-algebras of C(SUq(2)) are
all isomorphic. What changes with q is the quantum group structure, and this is captured, in part,
by the Haar state.

Proposition 3. For each q ∈ [0, 1), there is a state h, the Haar state, such that for all x ∈ Acc[m,n],
we have h(x) = 0 unless m = n = 0 and and on Acc[0, 0] the state h is given by

(2) h(b∗nbn) = (1− q2)/(1− q2n+2).

Proof. The existence of a unique invariant (with respect to the coproduct) state is given in [W,
chapter 1]. This coproduct restricts to the algebraic coproduct on Acc and so the restriction of this
state to Acc is invariant with respect to the algebraic coproduct. But the existence of, and the above
formula for, a unique invariant functional on Acc is given in [KS, section 4.3.2]. �

We now extend Propositions 2 and 3 to the C∗-algebra A.

Proposition 4. The Z2-grading of Acc extends to a Z2-grading of A and the Haar state satisfies
h(x) = 0 for all x ∈ A[m,n] with (m,n) 6= (0, 0).

Proof. We first define a function γ : T2 ×A→ A by

(3) γz,w(a) = z−1a, γz,w(b) = wb

and extend γz,w as a ∗-homomophism. It is clear that for all (z, w) ∈ T2 the elements z−1a,wa satisfy
the same relations as a, b, and so the above defines γz,w uniquely as an algebra homomorphism from
Acc to A. Using Proposition 1, γz,w is uniquely defined as a C∗-homomorphism from A to itself.
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It is easy to check that γ is a group action. To show it is strongly continuous, first note that by
definition γ acts on Acc strongly continuously. Let x ∈ A and ε > 0. Since Acc is dense in A, we
can choose some y ∈ Acc such that ‖x− y‖ < ε/3. Since γ acts by C∗-algebra homomorphisms, this
implies ‖γz,w(x)− γz,w(y)‖ < ε/3, for all (z, w) ∈ T2. Then for (z, w) sufficiently close to (0, 0), we
have ‖y − γz,w(y)‖ < ε/3. Combined with the other two inequalities this gives,

‖x− γz,w(x)‖ ≤ ‖x− y‖+ ‖y − γz,w(y)‖+ ‖γz,w(x)− γz,w(y)‖ < ε.

Since T2 is compact, we can construct the following operators Φm,n : A→ A,

(4) Φm,n(x) := (2π)−2

∫ 2π

0

∫ 2π

0

z−mw−nγz,w(x)dθdφ, z = eiθ, w = eiφ,

for (m,n) ∈ Z2. First note that for all m,n the map Φmn is continuous since

‖Φmn(x)‖ ≤ (2π)−2

∫ 2π

0

∫ 2π

0

‖z−mw−nγz,w(x)‖dθdφ = ‖x‖

since γ acts by isometries. Furthermore, by a change of variables in the defining integral we have

γz,wΦm,n(x) = zmwnΦm,n(x).

From this it follows that Φm,nΦm′,n′ = δm,m′δn,n′Φm,n, Since the Φm,n are continuous projections,
A[m,n] := Φm,nA is a closed subspace of A. Further, we have A = ⊕A[m,n] because Acc is dense in
A, while every element of Acc is a finite sum of elements of pure degree. Finally, given x ∈ A[m,n]
and y ∈ A[m′, n′] we have γz,w(xy) = zm+m′wn+n′xy This implies xy ∈ A[m+m′, n+n′]. Therefore
A = ⊕A[m,n] is an algebra grading of A. �

2.2. SUq(2) as a graph algebra. By a directed graph we mean a quadruple E = (E0, E1, r, s)
where E0 and E1 are countable sets which we call the vertices and edges of E and r, s are maps
from E1 to E0 which we call the range and source maps respectively. We call a vertex v a sink if
s−1(v) is empty.

A Cuntz-Krieger E-family in C∗-algebra B is a set of mutually orthogonal projections {pv : v ∈ E0}
and a set of partial isometries {Se : e ∈ E1} satisfying the Cuntz-Krieger relations:

(5) S∗eSe = pr(e) for e ∈ E1 and pv =
∑
s(e)=v

SeS
∗
e whenever v is not a sink.

There is a universal C∗ algebra C∗(E) generated by a non-zero Cuntz-Krieger E-family {Se, pv},
see for instance [KPR, Theorem 1.2] or [R]. More precisely, we have

Proposition 5. For every row finite directed graph E, there is a C∗-algebra C∗(E) containing a
Cuntz-Kreiger E-family {Se, pv}, with the property that for every C∗-algebra A containing a Cuntz-
Kreiger E-family {S′e, p′v}, there is a unique C∗-algebra homomorphism from C∗(E) to A that maps
{Se, pv} to {S′e, p′v}.

Denote by E∗ the set of finite directed paths in E. We can extend the range and source maps from
E1 to E∗. Given a path ρ = e1e2 · · · ek, we denote by Sρ ∈ C∗(E) the partial isometry Se1Se2 · · ·Sek

.
Some results we will use from the theory of graph C∗-algebras are

Proposition 6 ([KPR, R]). The algebra C∗(E) is densely spanned by the monomials of the form
SρS

∗
σ where ρ, σ are paths in E∗ with r(ρ) = r(σ) which form a subalgebra denoted by Ac.

Proposition 7 ([KPR, R]). If ρ, σ are paths of equal length then

(6) S∗ρSσ = δρ,σpr(ρ).

We now specialise to the graph algebra presentation of the C∗-algebra of SUq(2), 0 ≤ q < 1 which
is row-finite, that is the set s−1(v) := {e : s(e) = v} is finite for all v ∈ E0.

Definition 1. Let B be the Cuntz-Kreiger algebra associated to the graph given in Figure 1. The
vertex set E0 is {v, w} and the edge set is {µ, ν, ξ}.
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The particular Cuntz-Krieger relations here are

(7) S∗µSµ = SνS
∗
ν + SµS

∗
µ = pv, S∗ξSξ = S∗νSν = SξS

∗
ξ = pw.

Proposition 8 ([HS]). There is an isomorphism of C∗-algebras φ : A→ B satisfying

φ(a) =
∞∑
k=0

(√
1− q2(k+1) −

√
1− q2k

)
(Sµ + Sν)k(S∗µ + S∗ν)k+1(8)

φ(b) =
∞∑
k=0

qk(Sµ + Sν)kSξ(S∗µ + S∗ν)k(9)

By this isomorphism we identify A and B from now on, and use the letter A for both. We keep Acc
for the polynomials in a, b (the generators in the SUq(2) picture) and Ac for the dense subalgebra of
polynomials in the graph algebra generators. Note that elements of Ac are not in general polynomials
in the generators a, b of C(SUq(2)), and conversely. Next we prove Ac is a graded subalgebra of A.

Proposition 9. The elements Sµ, Sν have pure degree (1, 0) while Sξ has pure degree (0, 1).

Proof. Let γ̃ be the action of T2 on A given by

(10) γ̃z,w(Sµ) = zSµ, γ̃z,w(Sν) = zSν , γ̃z,w(Sξ) = wSξ.

By the universal property of graph C∗-algebras, this defines γ̃z,w uniquely as a C∗-algebra homo-
morphism from A to A. Equations (8) and (9) imply γ̃z,w(a) = z−1a and γ̃z,w(b) = wb. But this
is exactly how γ was uniquely defined, and so the two actions are equal. Thus we can combine
equations (10) and (4) to obtain the gradings of Sµ, Sν and Sξ. �

Before proceeding further we establish some notation for dealing with this algebra. This notation
represents a specialisation of the graph algebra notation for this particular graph.

Definition 2. Given any non-negative integer m, and n ∈ Z, let

(11) Tk =

{
pv k = 0
Skµ k ≥ 1

, T̃k =


pw k = 0
Sν k = 1
Sk−1
µ Sν k ≥ 2

, Un =


S
∗|n|
ξ n ≤ −1
pw n = 0
Snξ n ≥ 1

.

Lemma 1. The following hold in A, for all k, l ∈ N0 and n, n′ ∈ Z.

T̃k = T̃kpw,(12)
Tk = pvTkpv,(13)

T̃ ∗k T̃l = δklpw, T ∗kTk = pv(14)

T̃k+1T̃
∗
l+1 = TkT

∗
l − Tk+1T

∗
l+1,(15)

TkT
∗
k T̃l =

{
T̃l k ≤ l − 1,
0 k > l − 1.

(16)

UnUn′ = Un+n′(17)
TkTl = Tk+l(18)

Proof. Equations (12) and (13) are trivial. Equations (14) and (16) follow from (6). Equations (17)
and (18) follow from (7). From (18) and (7) we have

Tk+1T
∗
l+1 = TkSµS

∗
µTl = TkpvT

∗
l − TkSνS∗νTl

From the definition we have TkSν = T̃k+1, and along with (13), we obtain (15). �
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Lemma 2. The algebra Ac is generated, as a vector space, by elements of the form TkT
∗
l for k, l ∈ N0

and T̃kUnT̃ ∗l for k, l ∈ N0 and n ∈ Z. Hence elements of this type densely span A.

Proof. By Proposition 6, we need only show that for all ρ, σ ∈ E∗ with r(ρ) = r(σ), the monomial
SρS

∗
σ can be written in one of the above forms. First we consider the case r(ρ) = r(σ) = v. Since

there is no directed path from w to v, every path in E ending in v must have zero length or be of
the form µk for some k ≥ 1. Hence we have SρS∗σ = TkT

∗
l for some k, l ∈ N0, since the cases k = 0

and l = 0 deal with the cases when ρ and σ are respectively of zero length.

Next we have the case r(ρ) = r(σ) = w. By similar reasoning, Sρ and Sσ both take one of the
following forms

SkµSνS
l
ξ, SkSν , SνS

l
ξ, Sν , Slξ, pw.

Note that all of these can be written in the form T̃kUn where k, n ∈ N0. Hence SρS∗σ is of the form
T̃kUn−n′ T̃

∗
l by Equation (17). �

Lemma 3. We have the following formulae for the Haar state on generators:

h(T̃kUnT̃ ∗l ) = δn,0δk,lq
2k(1− q2),(19)

h(TkT ∗l ) = δk,lq
2k+2.(20)

Proof. By considering the grading of the terms on the left hand side and applying Proposition 4 we
are reduced to the case k = l and n = 0. We first simplify Equation (9). Since SνSµ = SνSν = 0,
when we expand (Sµ + Sν)k for k ≥ 1 we obtain exactly two terms, T̃k and Tk. Note that TkU1 = 0
by Equation (13). Hence for k > 0,

(Sµ + Sν)kSξ(Sµ + Sν)∗k = (T̃k + Tk)U1(T̃ ∗k + T ∗k ) = T̃kU1T̃
∗
k .

For k = 0 the corresponding formula is U1 = pwU1pw = T̃0U1T̃
∗
0 . Now T̃k is a partial isometry so

‖T̃k‖ = ‖T̃ ∗k ‖ = 1. Since U1 is also a partial isometry, T̃kU1T̃
∗
k has norm at most 1, and so the series

(21) b =
∞∑
k=0

qkT̃kU1T̃
∗
k

converges absolutely. Therefore we have

bb∗ =
∞∑

k,k′=0

qk+k′ T̃kU1T̃
∗
k T̃k′U−1T̃

∗
k′ =

∞∑
k,k′=0

δk,k′q
k+k′ T̃kU1pwU−1T̃

∗
k′ by (14)

=
∞∑

k,k′=0

δk,k′q
k+k′ T̃kT̃

∗
k′ =

∞∑
k=0

q2kT̃kT̃
∗
k .(22)

Raising the above to the n-th power and again applying Equation (14) we obtain

bnb∗n =
∞∑

k1,k2,...,kn=0

q2(k1+k2+...+kn)T̃k1 T̃
∗
k1 T̃k2 T̃

∗
k2 · · · T̃kn

T̃ ∗kn

=
∞∑

k1,k2,...,kn=0

δk1,k2δk2,k3 · · · δkn−1,knq
2(k1+k2+...+kn)T̃k1 T̃

∗
kn

=
∞∑
k=0

q2knT̃kT̃
∗
k

Evaluating the Haar state on both sides, Equation (2) gives

(23)
∞∑
k=0

q2knh(T̃kT̃ ∗k ) =
1− q2

1− q2(n+1)
.

From this we wish to calculate h(T̃kT̃ ∗k ) for all k ≥ 0. First we have shown the norm of T̃kT̃ ∗k is at
most 1. Therefore as |h(x)| ≤ ||x||,

(24)

∣∣∣∣∣
∞∑

k=l+1

q2knh(T̃kT̃ ∗k )

∣∣∣∣∣ ≤
∞∑

k=l+1

q2kn|h(T̃kT̃ ∗k )| ≤
∞∑

k=l+1

q2kn =
q2(l+1)n

1− q2n
,
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for all l ∈ N. We now prove h(T̃lT̃ ∗l ) = q2l(1 − q2) by induction. For the case l = 0, we take the
limit of Equation (23) as n → ∞. Then by Equation (24), the left hand side converges to h(T̃0T̃

∗
0 )

while the right hand side converges to 1 − q2. Given l > 0, the inductive hypothesis and Equation
(23) yield

(25)

(
l−1∑
k=0

q2k(n+1)(1− q2)

)
+ q2lnh(T̃lT̃ ∗l ) +

∞∑
k=l+1

q2knh(T̃lT̃ ∗l ) =
1− q2

1− q2(n+1)
.

Summing the first sum we obtain

(1− q2)(1− q2l(n+1))
1− q2(n+1)

+ q2lnh(T̃lT̃ ∗l ) +
∞∑

k=l+1

q2knh(T̃lT̃ ∗l ) =
1− q2

1− q2(n+1)
.

Cancelling and moving the remaining sum to the right hand side gives

− (1− q2)q2l(n+1)

1− q2(n+1)
+ q2lnh(T̃lT̃ ∗l ) = −

∞∑
k=l+1

q2knh(T̃lT̃ ∗l )

Taking the absolute value of both sides, and applying the estimate (24) we obtain

q2ln

∣∣∣∣h(T̃lT̃ ∗l )− (1− q2)q2l

1− q2(n+1)

∣∣∣∣ ≤ q2(l+1)n

1− q2n

Cancelling the q2ln on both sides and taking the limit as n→∞, we obtain Equation (??). Equation
(20) follows inductively from this, Equation (15) and h(1) = 1. �

Proposition 10. The Haar state h on A is KMS (for β = 1) with respect to the action σ : R×A→ A
defined by

σt(T̃k) = qit2kT̃k, σt(Tk) = qit2kTk, σt(Un) = Un, k ∈ N0, n ∈ Z.

Proof. Using the formulae for the Haar state on generators, it follows that h(ab) = h(σi(b)a) for
a, b ∈ Ac. For a, b ∈ {Tk, T̃k} we have a holomorphic function

Fa,b(z) = q−Im(z)2kh(σRe(z)(b)a) = h(σz(b)a)

in the strip 0 ≤ Im(z) ≤ 1, with boundary values given by

Fa,b(t+ 0i) = h(σt(b)a), Fa,b(t+ i) = q−2kh(σt(b)a) = h(σt+i(b)a) = h(aσt(b)).

The proposition now follows by standard theory see [BR1, Ped]. �

3. The GNS representation for the Haar state

As usual, since h is a state we may form the inner product on A given by 〈a, b〉 := h(a∗b). This gives
a norm ‖a‖Hh

:= 〈a, a〉1/2 and

(26) ‖a‖2Hh
= h(a∗a) ≤ h(‖a∗a‖1) = ‖a∗a‖.

We denote by Hh the completion of A with respect to this norm and we denote the extension of
this norm to Hh by ‖ · ‖Hh

. By construction we can consider A to be a subspace of Hh and as an
A-module Hh has a cyclic and separating vector, namely 1.

Proposition 11 ([KR, Proposition 9.2.3]). There is a self-adjoint unbounded operator H on Hh
and conjugate linear isometry J such that S = JH1/2 where S is defined by Sx · 1 = x∗ · 1, for all
x ∈ A. The operator H generates a one parameter group that implements, on the GNS space, the
modular automorphism group.

Lemma 4. The set {ek,n,l}n∈Z,k,l∈N where ek,n,l := (1−q2)−1/2q−lT̃kUnT̃
∗
l , is an orthonormal basis

for Hh. For all n ∈ Z and k, l ∈ N, ek,n,l is an eigenvector for the H with eigenvalue q2(k−l).
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Proof. First we show these elements are mutually orthogonal. By Equation (14) we have

〈T̃k′Un′ T̃ ∗l′ , T̃kUnT̃ ∗l 〉 = h(T̃l′U∗n′ T̃
∗
k′ T̃kUnT̃

∗
l ) = δk,k′h(T̃l′Un−n′ T̃ ∗l ).

The operator T̃l′Un−n′ T̃ ∗l has grading (l′ − l, n− n′) and so by Proposition 3, the above becomes

〈T̃k′Un′ T̃ ∗l′ , T̃kUnT̃ ∗l 〉 = δk,k′δl,l′δn,n′h(T̃lT̃ ∗l ).

Then the correct normalization follows from Equation (19). Thus the ek,n,l are orthonormal, and it
remains to show that they span Hh.

Lemma 2 shows that the linear span of the elements TkT ∗l , T̃l′UnT̃ ′∗k with l, l′, k, k′ ∈ N0, n ∈ Z, is
dense in A. By Equation (26) this set is also dense in Hh. Therefore it suffices to show that for each
k, l we can approximate TkT ∗l by elements of our basis. Indeed, by Equation (15) we have

(27)
N−1∑
j=0

T̃k+j+1T̃
∗
l+j+1 =

N−1∑
j=0

(Tk+jT
∗
l+j − Tk+j+1T

∗
l+j+1) = TkT

∗
l − Tk+NT

∗
l+N .

Now as N →∞ we have

‖Tk+NT
∗
l+N‖2Hh

= τ(Tl+NT ∗k+NTk+NT
∗
l+N ) = τ(Tl+NT ∗l+N ) = q2(l+N)+2 → 0

where we have used Equations (14), (12) and (20) above. Therefore taking the limit in Hh of both
sides of Equation (27) as N →∞ we obtain

TkT
∗
l =

∞∑
j=0

T̃k+j+1T̃
∗
l+j+1 =

∞∑
j=1

T̃k+j T̃
∗
l+j .

Note that this does not hold in the norm topology on A.

For any x, y ∈ A, we have

(28) 〈x∗, y∗〉 = 〈Sx, Sy〉 = 〈JH1/2x, JH1/2y〉 = 〈Hx, y〉

Now note that

e∗k,n,l = (1− q2)−1/2q−l(T̃kUnT̃ ∗l )∗ = (1− q2)−1/2q−lT̃lU−nT̃
∗
k = qk−lel,−n,k

Substituting this into Equation (28) we obtain

q2(k−l)〈el,−n,k, el′,−n′,k′〉 = 〈Hek,n,l, ek′,n′,l′〉

But we have already shown that

〈el,−n,k, el′,−n′,k′〉 = 〈ek,n,l, ek′,n′,l′〉 = δk,k′δn,n′δl,l′ ,

so we obtain
〈Hek,n,l, ek′,n′,l′〉 = q2(k−l)〈ek,n,l, ek′,n′,l′〉.

Since ek′,n′,l′ is an orthonormal basis of Hh, we have Hek,n,l = q2(k−l)ek,n,l. �

In fact the linear span of the eigenvectors ek,n,l form a core for H by [RS, Theorem VIII.11].

Lemma 5. There is a unique strongly continuous group action σ of T on A such that for all a ∈ A,
z ∈ T and ξ ∈ Hh,

(29) σz(a)ξ = HitaH−itξ,

where z = eit log q2 = q2it. This action satisfies

σz(T̃kUnT̃ ∗l ) = zk−lT̃kUnT̃
∗
l(30)

σz(TkT ∗l ) = zk−lTkT
∗
l , n ∈ Z, k, l ∈ N0(31)
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Proof. We define σz = γz,1 where γ is the action of T2 on A defined in the proof of Proposition
4. Since γ is a strongly continuous group action by C∗-algebra isomorphisms, so is σ. Comparing
Equations (30) and (31) with Lemma 4, it is clear that Equation (29) holds whenever a ∈ Ac
and ξ ∈ Hh. The usual ε/3 proof now shows that Equation (29) holds on all of A. Uniqueness
follows from the faithfulness of the Haar state. That is, A→ B(Hh) is injective. This follows from
considering the action on 1 ∈ Hh. Therefore Equation (29) determines σz uniquely. �

Observation If ρ is a path in E∗ then we denote by |ρ|′ the number of edges in ρ counting only the
edges µ and ν. Then the action σ is analogous to the gauge action in [PR] while | · |′ is analogous to
path length in [PR]. As a result many of the proofs in [PR] also apply here with only these changes
allowing us to avoid repetition of these arguments.

4. The Kasparov module

We denote by F = Aσ the fixed point algebra for the KMS action of Lemma 5. Since this action of
the reals factors through the circle, we can define a positive faithful expectation Φ : A→ F by

(32) Φ(x) =
− log q2

2π

∫ (2π)/−log q2

0

σz(x)dt, z = eit log q2 .

We form the norm ‖ · ‖X on A by setting ‖a‖2X := ‖Φ(a∗a)‖F . Note that this norm is always greater
than the GNS norm h(a∗a) since

h(a∗a) = h(Φ(a∗a)) ≤ ‖Φ(a∗a)‖h(1) = ‖Φ(a∗a)‖

Therefore we can consider the completion X of A with respect to ‖ · ‖X to lie in Hh. We denote by
Xc the image of Ac in X. For each z ∈ T, σz is a norm continuous map from A to A. We also have

‖σz(x)‖X = ‖Φ(σz(x)∗σz(x))‖A = ‖Φ(σz(x∗x))‖ = ‖Φ(x∗x)‖ = ‖x‖X
for all x ∈ A. Hence for all z ∈ T, σz is an isometry with respect to the norm ‖ · ‖X , and so extends
to an isometry from X to X. This defines a strongly continuous action of T on X. We define an
F -valued inner product on X by (x|y)F = Φ(x∗y).

Given m ∈ Z and x ∈ X define the map Φm : X → X by

(33) Φm(x) =
− log q2

2π

∫ 2π/−log q2

0

z−mσz(x)dt, z = eit log q2 .

Lemma 6. The operators Φm restrict to continuous operators from A to A and as such they are
the projections onto the space ⊕n∈ZA[m,n].

Proof. The first statement follows from the definition of Φm, and the fact that σz is a strongly
continuous action on A. Since the Φm and the projections ⊕nΦm,n are both norm continuous maps
on A, it suffices to show that they coincide on the monomials of Lemma 2. This follows from
Equations (30) and (31) and the definition of the algebra grading. �

The proofs of the next three statements are minor reworkings of the proofs of the analogous state-
ments in [PR], as the reader may check.

Lemma 7. The operators Φm are adjointable endomorphisms of the F -module X such that Φ∗m =
Φm = Φ2

m and ΦlΦm = δl,mΦl. The sum
∑
m∈Z Φm converges strictly to the identity operator in X.

Corollary 1. For all x ∈ X, the sum
∑
m∈Z xm where xm = Φmx, converges in X to x.

We may now define an unbounded self-adjoint regular operator D on X as in [PR].

Proposition 12. Let XD be the set of all x ∈ X such that ‖
∑
m∈Z m

2(xm|xm)F ‖ < ∞ where
xm = Φmx. Define the operator D : XD → X by Dx =

∑
m∈Z mxm. Then D is a self-adjoint regular

unbounded operator on X.
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To show that the pair (X,D) gives us a Kasparov module, we need to analyse the spectral projections
of D as endomorphisms of the module X. To do this, we recall the following

Definition 3. Rank 1-operators on the right C∗-F -module X, Θx,y for some x, y ∈ X, are given by

(34) Θx,y(z) = x(y|z)F , x, y, z ∈ X.

Denote by End00
F (X) the linear span of the rank one operators, which we call the finite rank operators.

Denote by End0
F (X) the closure of End00

F (X) with respect to the operator norm ‖·‖End on EndF (X).
We call elements of End0

F (X) compact endomorphisms.

Lemma 8. For all a ∈ A and m ∈ Z the operator aΦm belongs to End00
F (X).

Proof. For any rank 1 operator Θx,y we have aΘx,y = Θax,y so it suffices to show that for each
m ∈ Z we have Φm ∈ End00

F (X). Indeed, we show the following;

(35) Φm =


ΘTm,Tm

+ ΘT̃m,T̃m
, m ≥ 1,

Θ1,1, m = 0,
ΘT∗m,T

∗
m

+ ΘT̃∗m,T̃
∗
m
, m ≤ −1.

Recall that we can write any x in the form x =
∑
l∈Z xl where xl = Φlx. Therefore if y ∈ ΦmX, we

have
Θy,yx = Θy,y

∑
l∈Z

xl =
∑
l∈Z

Θy,yxl =
∑
l∈Z

yΦ(y∗xl).

Now by Lemma 6 we have Φ(y∗xl) = δl,my
∗xl and so the above implies that Θy,yx = yy∗Φmx.

Thus it suffices to prove that whenever x ∈ ΦmX we have

(36) x =


TmT

∗
mx+ T̃mT̃

∗
mx, m ≥ 1,

x, m = 0,
T ∗mTmx+ T̃ ∗mT̃mx, m ≤ −1.

By continuity it suffices to consider the case where x ∈ Xc. By linearity we are then reduced to the
case where x is one of the monomials of Lemma 2.

When m = 0 there is nothing to prove. When m ≥ 1, x has the form T̃m+kUnT̃
∗
k for some k ≥ 0 and

n ∈ Z or Tm+kT
∗
k for some k ≥ 0. Now T̃mT̃

∗
m+TmT ∗m = Tm−1T

∗
m−1 for m > 1 and T̃1T̃

∗
1 +T1T

∗
1 = pv

by the definitions. So for m ≥ 1, Lemma 1 gives us

(T̃mT̃ ∗m + TmT
∗
m)x = Tm−1T

∗
m−1x = x.

When m ≤ −1 note that T ∗mTm = pv and T̃ ∗mT̃m = pw, and pv + pw = 1A acts as the identity of the
C∗-module X, so we are done. �

Lemma 8 underlies the proof of the following result which is analogous to [PR].

Lemma 9. The operator a(1+D2)−1/2 is a compact operator for all a ∈ A. Let V = D(1+D2)−1/2.
Then (X,V ) is a Kasparov A,F module, and so represents a class in KK1(A,F ).

We shall refer to this Kasparov module as the Haar module for A,F , since (X,V ) only depends on
the algebra A, the action σt and the Haar state.

5. K-theory

Recall the well known results K0(A) = Z and K1(A) = Z from for example [HS]. The generators of
these groups are [1] and [pv + U1] respectively. Now we need to examine the algebra F .

Lemma 10. The fixed point algebra F is the minimal unitization of the algebra ⊕∞i=0C(S1).
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Proof. Given any x ∈ F choose a sequence (yn) ⊂ Acc with yn → x. Then Φyn → x also. Now
by [W, Theorem 1.2], Acc is spanned by monomials of the form ai1bi2b∗i3 and a∗i1bi2b∗i3 . The
expectation Φ acts on Acc is zero except on the monomials bi2b∗i3 , on which it acts as the identity.
Thus F is densely spanned by powers of b and b∗. Since b is normal, by the Stone-Weierstrass
Theorem we have F = C(spec(b))

Now we show that spec(b∗b) = {0, . . . , q2k, . . . , q4, q2, 1}. First recall that

spec(a∗a) ∪ {0} = spec(aa∗) ∪ {0}.

Applying the relations in Equation (1) and the spectral mapping theorem, the above implies

(1− spec(b∗b)) ∪ {0} = (1− q2 spec(b∗b)) ∪ {0}.

This implies
spec(b∗b) ∪ {1} = (q2 spec(b∗b)) ∪ {1}.

The only sets that satisfy the above are {0} and the hypothesised spectrum of spec(b∗b). But we
know that spec(b∗b) is not {0} because this would imply b was zero.

By the spectral theorem, using the map z 7→ zz, we know that spec(b) is a subset of the closure of
the union of circles {z : ‖z‖ = qm, m ≥ 0}, and must contain at least one point in each circle. The
action γ1,w sends b to wb, where γ is the action of T2 on A defined in the proof of Proposition 4.
However since it is an isomorphism it preserves the spectrum of b. Therefore spec(b) contains the
union of circles {z : ‖z‖ = qm, m ≥ 0}. Since it is closed it also contains 0. Hence it is exactly this
set. This is also the one point compactification of the disjoint union of countably many circles, so
F is the minimal unitization of ⊕∞i=0C(S1). �

Corollary 2. The group K0(F ) is given by K0(F ) = Z⊕
⊕∞

i=0 Z and is freely generated by 1 and
T̃kT̃

∗
k for k ∈ N0. The group K1(F ) =

⊕∞
i=0 Z and has generators 1− T̃kT̃ ∗k + T̃kU1T̃

∗
k for k ∈ N0.

Proof. The K-theory of F is generated by the projections onto each of the circles (connected com-
ponents) in spec b, and 1. Thus we need to show the spectral projection onto the circle with radius
qk is T̃kT̃ ∗k . As each circle is connected, the spectral projection of b corresponding to each circle has
no non-zero proper sub-projections, and by the spectral theorem is also the spectral projection onto
the point q2k in the spectrum of bb∗. Therefore it suffices, since T̃kT̃ ∗k is nonzero by the universality
of the graph C∗-algebra, to show that T̃kT̃ ∗k satisfies bb∗T̃kT̃ ∗k = q2kT̃kT̃

∗
k . This follows from the

formula for bb∗, Equation (22), by the following calculation

bb∗T̃kT̃
∗
k =

( ∞∑
l=0

q2lT̃lT̃
∗
l

)
T̃kT̃

∗
k

=
∞∑
l=0

q2lδl,kT̃lpwT̃
∗
k by Equation (14)

= q2kT̃kT̃
∗
k by Equation (12).

We can use the trace h|F to map K0(F ) to the real numbers. By Lemma 3 we obtain

h∗(K0(F )) = Z +
∞∑
i=0

(1− q2)q2iZ = Z[q2].

Here the first copy of Z is generated by h(1) = 1, while the other terms come from h(T̃kT̃ ∗k ) =
(1 − q2)q2k. From these we may generate any polynomial in q2. As all the generators of K0(F )
are clearly independent, we obtain the whole polynomial group Z[q2]. The generators of K1(F ) =
⊕∞K1(C(S1)) are given by [1 − T̃kT̃ ∗k + q−kbT̃kT̃

∗
k ]. In order to write these in terms of the graph

algebra generators we first expand b according to Equation (21), and then apply Equation (14);

q−kbT̃kT̃
∗
k = q−k

( ∞∑
l=0

qlT̃lU1T̃
∗
l

)
T̃kT̃

∗
k = T̃kU1T̃

∗
k .
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�

We also require the K-theory of the mapping cone algebra M(F,A) for the inclusion of F in A.
Recall that the mapping cone is the C∗-algebra

M(F,A) = {f : [0, 1]→ A : f is continuous, f(1) = 0, f(0) ∈ F}.

The even K-theory group of the mapping cone algebra can be described as homotopy classes of
partial isometries v ∈M∞(A) with vv∗, v∗v ∈M∞(F ) [P].

Lemma 11. The group K0(M(F,A)) is generated by the classes of partial isometries [T1] and [T̃k]
for k ∈ N. An alternative generating set is [Tk], k ∈ N along with [T̃1].

Proof. From the exact sequence 0→ C0(0, 1)⊗A→M(F,A)→ F → 0 we obtain the exact sequence
in K-theory

K1(A) → K0(M(F,A)) ev∗→ K0(F )
↑ ↓ j∗

K1(F ) ← K1(M(F,A)) ← K0(A)

where ev is evaluation at 1 and j : F → A is the inclusion map. By an explicit construction (see
[CPR1, P]), a partial isometry v ∈M∞(A) satisfying vv∗, v∗v ∈M∞(F ) gives a projection pv in the
matrices over the unitization of M(F,A), and [pv]− [1] ∈ K0(M(F,A)). In particular the evaluation
at 1 of this matrix is given by

(37)
(

1− v∗v v∗

v 1− vv∗
)(

1 0
0 0

)(
1− v∗v v∗

v 1− vv∗
)
−
(

1 0
0 0

)
.

One easily checks that this gives the class [vv∗] − [v∗v] ∈ K0(F ). On the other hand the map
from K1(A) to K0(M(F,A)) takes a unitary over A to itself, considered as a partial isometry
with range and source 1. To see this, observe that the isomorphism between homotopy classes of
partial isometries and K0(M(F,A)) given in [P] takes a class [u] ∈ K1(A) to the class [pu] − [1] ∈
K0(M(F,A)). The projection pu defining the class [pu] − [1] is the same as the projection used to
define the map which identifies K1(A) and K0(C0(0, 1)⊗A), [HR].

Now we need the map from K1(F ) to K1(A). We can compute this map from the other boundary
map using Bott periodicity. In particular applying the same reasoning to the same mapping cone
exact sequence tensored by C0(0, 1), we find that this map is given by the composition

K1(F ) '−−−−→ K0(C0(0, 1)⊗ F )
j∗−−−−→ K0(C0(0, 1)⊗A) '−−−−→ K1(A).

We only need to know the image of this map, and since the generator [pv + U1] of K1(A) is also a
generator of K1(F ), this map is surjective. Therefore the map from K1(A) to K0(M(F,A)) is the
zero map. Therefore the map from K0(M(F,A)) to K0(F ) is injective, and we have K0(M(F,A)) =
ev−1
∗ (ker j∗).

To calculate ker j∗ on K0(F ), first note the following Murray-von Neumann equivalences in A;

T̃kT̃
∗
k ∼ T̃ ∗k T̃k = pw,(38)

pv = SµS
∗
µ + SνS

∗
ν = (Sµ + Sν)(Sµ + Sν)∗

∼ (Sµ + Sν)∗(Sµ + Sν) = S∗µSµ + S∗νSν = pv + pw.(39)

Together these imply [T̃kT̃ ∗k ] = [0] in K0(A) for all k ∈ N0. The other generator [1] of K0(F ) is the
generator of K0(A). Therefore ker j∗ is generated by [T̃kT̃ ∗k ] for k ∈ N0.

We may also then say that ker j∗ is generated by the elements [T̃0T̃
∗
0 ] = [pw] and [T̃kT̃ ∗k ] − [pw] for

k ∈ N. We can invert these elements under the map ev∗ as follows

[pw] = [(S∗µ + S∗ν)(S∗µ + S∗ν)∗]− [(S∗µ + S∗ν)∗(S∗µ + S∗ν)] = ev∗[Sµ + Sν ](40)

[T̃kT̃ ∗k ]− [pw] = [T̃kT̃ ∗k ]− [T̃ ∗k T̃k] = ev∗([T̃k])(41)



SPECTRAL FLOW INVARIANTS AND TWISTED CYCLIC THEORY FROM THE HAAR STATE ON SUq(2) 13

Therefore K0(M(F,A)) is generated by [Sµ+Sν ] and [T̃k] for k ∈ N. Since Sµ and Sν have orthogonal
ranges, by [CPR1, Lemma 3.4] we have

[Sµ + Sν ] = [Sµ] + [Sν ] = [T̃1] + [T1].

Thus, in the notation we prefer, we may say that K0(M(F,A)) is generated by the classes [T1] and
[T̃k] for k ≥ 1. To prove the claim about the other generating set, we use [CPR1, Lemmas 3.3, 3.4]
again to show that

[Tk] = [Skµ] = [SkµSµS
∗
µ] + [SkµSνS

∗
ν ]

= [Sk+1
µ ]− [Sµ] + [SkµSν ]− [Sν ]

= [Tk+1]− [T1] + [T̃k+1]− [T̃1]

This is enough to give our other generating set. �

6. The index pairing for the mapping cone

We are interested in the odd pairing in KK-theory. So let u be a unitary in Mk(A), and (Y, 2P −1),
P a projection, an odd Kasparov module for the algebras A,F , see [K] for more information. The
pairing in KK-theory between [u] ∈ K1(A) and [(Y, 2P − 1)] ∈ KK1(A,F ) is given, [PR], by the
map

H : K1(A)×KK1(A,B)→ K0(B),

H([u], [(Y, 2P − 1)]) := [ker(PkuPk)]− [coker(PkuPk)],

where Pk = P ⊗ Idk, where Idk is the identity of Mk(C), and we are computing the index of the
map PkuPk : PkY k → PkY

k. However, the generator of K1(SUq(2)) is (the class of) pv +U1, which
commutes with D, and so with the nonnegative spectral projection of D. Hence the pairing of our
Kasparov module for SUq(2) with K-theory is zero.

The index pairing of the following definition was introduced in [CPR1]. To show that it is well-
defined requires extending an odd Kasparov module for A,F (with F ⊂ A a subalgebra) to an even
Kasparov module for M(A,F ), F , where M(F,A) is the mapping cone algebra for the inclusion of
F into A.

Definition 4 ([CPR1]). For [v] ∈ K0(M(F,A)) and (Y, 2P − 1) an odd (A,F )-Kasparov module
with P commuting with F ⊂ A acting on the left, define

〈[v], (Y, V )〉 := Index(PvP : v∗vPY → vv∗PY )(42)
= [ker(PvP )]− [coker(PvP )] ∈ K0(F ).

Proposition 13. Let (X,D) be the Haar module of A = C(SUq(2)), and P = χ[0,∞](D). The pairing
of Equation (42) for (X,D) is determined by the following pairings on generators of K0(M(F,A)):

〈[Tk], [(X,D)]〉 = −
k−1∑
l=0

[TkT ∗kΦl], 〈[T̃k], [(X,D)]〉 = −
k−1∑
l=0

[T̃kT̃ ∗kΦl].

The pairing for the adjoints is of course given by the negatives of these classes.

Proof. We first calculate the kernel and cokernel of the map PvP : v∗vPX → vv∗PX when v is
given by one of T̃k, T̃ ∗k , Tk, T

∗
k . By Lemma 6, TkΦm = Φm+kTk. This implies

(43) PTk = Tkχ[−k,∞)(D), TkP = χ[k,∞)(D)Tk.

where χ[−k,∞) is the characteristic function of the interval [−k,∞). Therefore we can rewrite the
operator in question as

Tkχ[−k,∞)(D)P : T ∗kTkPX → TkT
∗
kPX.

This is the same as the operator

(44) TkP : T ∗kTkPX → TkT
∗
kPX.
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Now the range and source projections of Tk lie in F and hence commute with all the spectral
projections of D. Therefore we can use Equation (43) to restrict the isomorphism Tk : T ∗kTkX →
TkT

∗
kX to obtain an isomorphism

Tk : T ∗kTkPX → TkT
∗
kχ[k,∞)(D)X.

From this it is evident that the kernel of the operator in Equation (44) is zero and the cokernel is
TkT

∗
kχ[0,k−1](D)X. Similarly for the partial isometry T ∗k we may write the operator PT ∗kP as

(45) T ∗kχ[k,∞)(D) : TkT ∗kPX → T ∗kTkPX.

By the same methods as before we obtain the isomorphism

T ∗k : TkT ∗kχ[k,∞)(D)X → T ∗kTkPX.

From this we can see that the cokernel of the operator in Equation (45) is empty while the kernel is
TkT

∗
kχ[0,k−1](D)X. Exactly the same reasoning gives the result for the cases T̃k and T̃ ∗k . �

We will relate this K0(F )-valued index to two different numerical indices in the next two Sections.

7. The semifinite spectral triple for SUq(2)

We now wish to consider the Hilbert space Hh again, this time to construct a von Neumann algebra
which has a semifinite trace induced by h. From this we can construct a semifinite spectral triple,
which we use to compute the index pairing using the spectral flow formula of [CP2].

7.1. Semifinite spectral triples. We use the viewpoint of [CPRS2] on semifinite spectral triples.
Given a von Neumann algebra N with a faithful, normal, semifinite trace τ , there is a norm closed
ideal KN generated by the projections E ∈ N with τ(E) <∞.

Definition 5. A semifinite spectral triple (A,H,D) is given by a Hilbert space H, a ∗-algebra
A ⊂ N where N is a semifinite von Neumann algebra acting on H, and a densely defined unbounded
self-adjoint operator D affiliated to N such that [D, a] is densely defined and extends to a bounded
operator for all a ∈ A and a(λ − D)−1 ∈ KN for all λ /∈ R and all a ∈ A. The triple is said to be
even if there is some Γ ∈ N such that Γ∗ = Γ,Γ2 = 1, aΓ = Γa for all a ∈ A and DΓ + ΓD = 0.
Otherwise it is odd.

We note that if T ∈ N and [D, T ] is bounded, then [D, T ] ∈ N .

Definition 6. A ∗-algebra A is smooth if it is Fréchet and ∗-isomorphic to a proper dense subalgebra
i(A) of a C∗-algebra A which is stable under the holomorphic functional calculus.

Asking for i(A) to be a proper dense subalgebra of A immediately implies that the Fréchet topology of
A is finer than the C∗-topology of A (since Fréchet means locally convex, metrizable and complete.)
We will write A = A, as A will be represented on a Hilbert space and the notation A is unambiguous.

It has been shown that if A is smooth in A then Mn(A) is smooth in Mn(A), [GVF, S]. This
ensures that the K-theories of the two algebras are isomorphic, the isomorphism being induced by
the inclusion map i. This definition ensures that a smooth algebra is a ‘good’ algebra, [GVF], so
these algebras have a sensible spectral theory which agrees with that defined using the C∗-closure,
and the group of invertibles is open.

The following Lemma, proved in [R1], explains one method of constructing smooth spectral triples.

Lemma 12. If the algebra A in (A,H,D) is in the domain δn for n = 1, 2, 3, . . . where δ is the
partial derivation δ = ad(|D|) then the completion of A in the locally convex topology determined by
the seminorms

qn,i(a) = ‖δndi(a)‖, n ≥ 0, i = 0, 1,
where d(a) = [D, a] is a smooth algebra.

We call the topology on A determined by the seminorms qni of Lemma 12 the δ-topology.
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7.2. Summability. In the following, let N be a semifinite von Neumann algebra with faithful
normal trace τ . Recall from [FK] that if S ∈ N , the tth generalized singular value of S for each real
t > 0 is given by

µt(S) = inf{‖SE‖ : E is a projection in N with τ(1− E) ≤ t}.

The ideal L1(N ) consists of those operators T ∈ N such that ‖T‖1 := τ(|T |) < ∞ where |T | =√
T ∗T . In the Type I setting this is the usual trace class ideal. We will simply write L1 for this ideal

in order to simplify the notation, and denote the norm on L1 by ‖ · ‖1. An alternative definition in
terms of singular values is that T ∈ L1 if ‖T‖1 :=

∫∞
0
µt(T )dt <∞.

Note that in the case where N 6= B(H), L1 is not complete in this norm but it is complete in the
norm ‖ · ‖1 + ‖ · ‖∞. (where ‖ · ‖∞ is the uniform norm). Another important ideal for us is the
domain of the Dixmier trace:

L(1,∞)(N ) =
{
T ∈ N : ‖T‖

L(1,∞) := sup
t>0

1
log(1 + t)

∫ t

0

µs(T )ds <∞
}
.

We will suppress the (N ) in our notation for these ideals, as N will always be clear from context.
The reader should note that L(1,∞) is often taken to mean an ideal in the algebra Ñ of τ -measurable
operators affiliated to N . Our notation is however consistent with that of [C] in the special case
N = B(H). With this convention the ideal of τ -compact operators, K(N ), consists of those T ∈ N
(as opposed to Ñ ) such that µ∞(T ) := limt→∞ µt(T ) = 0.

Definition 7. A semifinite spectral triple (A,H,D), with A a unital algebra, is (1,∞)-summable if
(D − λ)−1 ∈ L(1,∞) for λ ∈ C \ R.

We need to briefly discuss the Dixmier trace (for more information on semifinite Dixmier traces, see
[CPS2]). For T ∈ L(1,∞), T ≥ 0, the function

FT : t 7→ 1
log(1 + t)

∫ t

0

µs(T )ds

is bounded. For certain functionals ω ∈ L∞(R+
∗ )∗ (called Dixmier functionals in [CPS2]), we obtain

a positive functional on L(1,∞) by setting τω(T ) = ω(FT ). This is the Dixmier trace associated to
the semifinite normal trace τ , denoted τω, and we extend it to all of L(1,∞) by linearity, where of
course it is a trace. The Dixmier trace τω vanishes on the ideal of trace class operators. Whenever
the function FT has a limit α at infinity then for all Dixmier functionals ω(FT ) = α.

The following result (see [C] for the original statement) relates measurability and residues in the
semifinite case. We state the result for the (1,∞)-summable case.

Proposition 14 ([CPS2, Theorem 3.8]). Let A ∈ N , T ≥ 0, T ∈ L(1,∞)(N ) and suppose that
lims→1+(s− 1)τ(AT s) exists, then it is equal to τω(AT ) for any Dixmier functional ω.

7.3. The spectral flow formula. Once we have constructed our semifinite spectral triple for
SUq(2), we will want to examine the pairing with K-theory, just as for the K0(F )-valued pairing in
KK-theory. It will turn out that our construction has zero pairing with K1(SUq(2)) (for the same
reasons as in the KK-construction), but has nonzero pairing with the mapping cone algebra of the
inclusion F ↪→ A. As this involves pairing with partial isometries (at least in the odd formulation
of the problem; see [CPR1]), the spectral flow formula is a priori more complicated and given by
[CP2, Corollary 8.11].

Proposition 15. Let (A,H,D0) be an odd unbounded θ-summable semifinite spectral triple relative
to (M, φ). For any ε > 0 we define a one-form αε on the affine space M0 = D0 +Msa by

αε(A) =
√
ε

π
φ(Ae−εD

2
)
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for D ∈ M0 and A ∈ TD(M0) =Msa. Then the integral of αε is independent of the piecewise C1

path in M0 and if {Dt = Da +At}t∈[a,b] is any piecewise C1 path in M0 joining Da and Db then

sf(Da,Db) =
√
ε

π

∫ b

a

φ(D′te−εD
2
t )dt+

1
2
ηε(Db)−

1
2
ηε(Da) +

1
2
φ ([ker(Db)]− [ker(Da)]) .

Here the truncated eta is given by ηε(D) = 1√
π

∫∞
ε
φ(De−tD2

)t−1/2dt, and the integral converges for
any ε > 0.

We want to employ this formula in a finitely summable setting, so we need to Laplace transform the
various terms appearing in the formula. We introduce the notation Cr :=

√
πΓ(r−1/2)

Γ(r) .

Lemma 13. Let D be a self-adjoint operator on the Hilbert space H, affiliated to the semifinite von
Neumann algebra M. Suppose that for a fixed faithful, normal, semifinite trace φ on M we have
(1+D2)−r/2 ∈ L1(M, φ) for all Re(r) > 1. Then the Laplace transform of the truncated eta function
of D is given by

1
Cr
ηD(r) =

1
Cr

∫ ∞
1

φ(D(1 + sD2)−r)s−1/2ds, Re(r) > 1.

Proof. To Laplace transform the ‘θ summable formula’ for the truncated η we write it as

ηε(D) =
√
ε

π

∫ ∞
1

φ(De−εsD
2
)s−1/2ds.

Now for Re(r) > 1, the Laplace transform is

1
Cr
ηD(r) =

1√
πΓ(r − 1/2)

∫ ∞
0

εr−1e−ε
∫ ∞

1

φ(De−εsD
2
)s−1/2dsdε

=
1√

πΓ(r − 1/2)

∫ ∞
1

s−1/2φ(D
∫ ∞

0

εr−1e−ε(1+sD2)dε)ds

=
Γ(r)√

πΓ(r − 1/2)

∫ ∞
1

s−1/2φ(D(1 + sD2)−r)ds.(46)

�

Proposition 16. Let Da be a self-adjoint densely defined unbounded operator on the Hilbert space
H, affiliated to the semifinite von Neumann algebra M. Suppose that for a fixed faithful, normal,
semifinite trace φ on M we have for Re(r) > 1, (1 + D2

a)−r/2 ∈ L1(M, φ). Let Db differ from Da
by a bounded self adjoint operator in M. Then for any piecewise C1 path {Dt = Da +At}; t ∈ [a, b]
joining Da and Db, the spectral flow is given by the formula

sf(Da,Db) =
1
Cr

∫ b

a

φ(Ḋt(1 +D2
t )
−r)dt+

1
2Cr

(ηDb
(r)− ηDa

(r))

+
1
2

(φ(PkerDb
)− φ(PkerDa)) , Re(r) > 1.(47)

Proof. We apply the Laplace transform to the general spectral flow formula. The computation of
the Laplace transform of the eta invariants is above, and the Laplace transform of the other integral
is in [CP2], Section 9. �

We now obtain a residue formula for the spectral flow. The importance of such a formula is the
drastic simplification of computations in the next few subsections, as we may throw away terms that
are holomorphic in a neighbourhood of the critical point r = 1/2.

Proposition 17. Let Da be a self-adjoint densely defined unbounded operator on the Hilbert space
H, affiliated to the semifinite von Neumann algebra M. Suppose that for a fixed faithful, normal,
semifinite trace φ on M we have for Re(r) > 1, (1 +D2

a)−r/2 ∈ L1(M, φ). Let Db differ from Da by
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a bounded self adjoint operator in M. Then for any piecewise C1 path {Dt = Da +At}, t ∈ [a, b] in
M0 joining Da and Db, the spectral flow is given by the formula

sf(Da,Db) = Resr=1/2 Crsf(Da,Db) = Resr=1/2

(∫ b

a

φ(Ḋt(1 +D2
t )
−r)dt+

1
2

(ηDb
(r)− ηDa

(r))

)

+
1
2

(φ(PkerDb
)− φ(PkerDa))(48)

and in particular the sum in large brackets extends to a meromorphic function of r with a simple
pole at r = 1/2.

7.4. The SUq(2) spectral triple. We now return to our task of building a semifinite spectral triple
for SUq(2). We recall the unbounded Kasparov module (X,D) from Section 4. The following basic
results are proved in [PR].

Lemma 14. Any endomorphism of X leaving Xc invariant extends uniquely to a bounded linear
operator on Hh. In particular, the operators Φm extend to operators on Hh. The maps Φm are
mutually orthogonal projections that sum strongly to the identity. The operator D extends to an
unbounded self-adjoint operator on Hh.

By Lemma 4 the following holds in B(Hh);

(49) ΦmH = HΦm = q2mΦm.

Lemma 15. The algebra Ac is contained in the smooth domain of the derivation δ where for T ∈
B(Hh), δ(T ) = [|D|, T ]. That is Ac ⊂ ∩n≥0domδn.

Definition 8. Define the ∗-algebra A ⊂ A to be the completion of Ac in the δ-topology, so A is
Fréchet and stable under the holomorphic functional calculus.

From this data we will construct a (1,∞)-summable spectral triple by constructing a trace h̃ using
the same methods as in [PR]. However, later we will see that we may twist h̃ with the modular
operator as in [CPR2] to obtain a normal weight hD. In [CPR2] it was necessary to twist with the
modular operator in order to obtain finite summability. For SUq(2), both the twisted and untwisted
traces give the same summability. However, the Dixmier trace we obtain from h̃ is highly degenerate,
while the ‘Dixmier weight’ obtained from hD recovers the (faithful) Haar state.

In the remainder of this Section we will define a semifinite von Neumann algebra N , and a faithful,
semifinite, normal trace h̃ on N which enable us to prove the following theorem.

Theorem 1. The triple (A,Hh,D) is a QC∞, (1,∞)-summable, odd, local, semifinite spectral triple
(relative to (N , h̃)). The operator (1 +D2)−1/2 is not trace class, and

(50) h̃ω(f(1 +D2)−1/2) =
{
6= 0 0 < f ∈ C∗(TkT ∗k , k ≥ 0)
0 otherwise ,

where h̃ω is any Dixmier trace associated to h̃.

We have a number of computations to make with finite rank endomorphisms, defined not on X but
on the dense submodule Ac ⊂ X.

Definition 9. Let End00
F (Ac) be the finite rank endomorphisms of the pre-C∗-module Ac ⊂ X. By

Lemma 14, these endomorphisms act as bounded operators on Hh, and we let N := (End00
F (Xc))′′.

Lemma 16. There exists a faithful, semifinite, normal trace h̃ on the algebra N = (End00
F (Xc))′′.

Moreover,
End00

F (Xc) ⊂ Nh̃ := span{T ∈ N+ : h̃(T ) <∞},
the domain of definition of h̃, and on the rank 1 operators this trace is given by

(51) h̃(Θx,y) = 〈y, x〉 = h(y∗x).
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Proof. This is a simple adaptation of [PR, Prop 5.11] using the following definition of the trace h̃.
We define vector states ωm for m ∈ Z by setting, for V ∈ N , ω0(V ) = 〈1, V 1〉 and

ωm(V ) = 〈Tm, V Tm〉+ 〈T̃m, V T̃m〉, m > 0,

ωm(V ) = 〈T ∗m, V T ∗m〉+ 〈T̃ ∗m, V T̃ ∗m〉, m < 0.

Then we define
h̃(V ) = lim

L↗

∑
m∈L⊂Z

ωm(V ),

where L ranges over the finite subsets of Z. Then h̃ is by definition normal. The rest of the claim
is proved just as in [PR]. �

Lemma 17. The operator D acting on H is (1,∞)-summable, i.e. (1 + D2)−1/2 ∈ L(1,∞)(N , h̃).
For any Dixmier trace h̃ω associated to h̃ we have

h̃ω(f(1 +D2)−1/2) =
{

1 f = TkT
∗
k , k ≥ 0

0 f /∈ C∗(TkT ∗k , k ≥ 0) .

The functional on A defined by a→ h̃ω(a(1 +D2)−1/2) is continuous, and supported on C∗(TkT ∗k ).

Proof. It is relatively simple to check that for n 6= 0 we have h̃(T̃kUnT̃ ∗kΦm) = 0 for all k ≥ 0 and
m ∈ Z. For n = 0 we have, using Lemma 16 and the description of Φm as a sum of rank one
projections given by Equation (56),

h̃(T̃kT̃ ∗kΦm) =


h(T ∗mT̃kT̃

∗
kTm + T̃ ∗mT̃kT̃

∗
k T̃m) m ≥ 1

h(T̃kT̃ ∗k ) m = 0
h(T|m|T̃kT̃ ∗kT

∗
|m| + T̃|m|T̃kT̃

∗
k T̃
∗
|m|) m ≤ −1

=


0 m ≥ k + 1
h(pw) m = k

h(T̃k−mT̃ ∗k−m) 1 ≤ m ≤ k − 1
h(T̃kT̃ ∗k ) m = 0
h(T|m|+k−1T

∗
|m|+k−1 − T|m|+kT

∗
|m|+k) m ≤ −1

=


0 m ≥ k + 1
q2(k−m)(1− q2) 0 ≤ m ≤ k
q2(|m|+k)(1− q2) m ≤ −1

.

(These formulae may lead the reader to doubt the faithfulness of h̃; however the operators above
on which h̃ is zero are themselves the zero operator.) We have used the formulae of Lemma 1
several times here. Since q < 1 it is now easy to check that h̃(T̃kT̃ ∗k (1 + D2)−1/2) < ∞, and so
h̃ω(T̃kT̃ ∗k (1 + D2)−1/2) = 0. For the generators TkT ∗k we have an entirely analogous calculation
which yields

h̃(TkT ∗kΦm) =


1 m ≥ k + 1
q2(k−m+1) 0 ≤ m ≤ k
q2(k+|m|+1) m ≤ −1

.

Here the situation is different, as the result is constant for m ≥ k and so h̃ω(TkT ∗k (1 +D2)−1/2) = 1.
Finally, we can use gauge invariance to show that h̃ of TkT ∗l or T̃kT̃ ∗l is zero unless k = l. Since
(1 +D2)−1/2 has finite Dixmier trace, a→ h̃ω(a(1 +D2)−1/2) defines a continuous linear functional
on A and so we can extend these computations from monomials, to the finite span, and so to the
C∗-completion. �

Remarks. Elements of A regarded as operators in N are not in the domain of h̃. In addition,
observing that a→ Ress=0 h̃(a(1 +D2)−1/2−s) is not a faithful trace (since A has no faithful trace),
this means that the residue/Dixmier trace cannot detect parts of the algebra. We observe that the
following pathological behaviour lies behind the vanishing of the residue trace on some elements:
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the operator T̃kT̃ ∗kD is trace class for all k. In the graph algebra picture we can then say, somewhat
loosely, that as soon as a path leaves the loop µ, it becomes invisible to the residue trace.

7.5. The mapping cone pairing and spectral flow. We want to compute the spectral flow from
vv∗D to vDv∗ for partial isometries v ∈ A satisfying v∗v, vv∗ ∈ F . By Lemma 11 it suffices to
consider the pairing on the generators v = Tk, T̃k. We first compute the various terms.

Lemma 18. For v ∈ A a partial isometry with vv∗, v∗v ∈ F , we have

h̃(vΦ0v
∗)− h̃(vv∗Φ0) = h̃((v∗v − vv∗)Φ0) = h(v∗v − vv∗).

For the generators of K0(M(F,A)) we have

h̃((v∗v − vv∗)Φ0) =
{
q2(1− q2k) v = Tk
(1− q2)(1− q2k) v = T̃k

.

Proof. This result follows because Φ0 = Θ1,1, so h̃(aΦ0) = h̃(Θa,1) = h(a), the last equality following
from Equation (51). The values of these traces is computed using Lemma 3. �

Lemma 19. Modulo functions of r holomorphic in a neighbourhood of r = 1/2, the difference

ηr(vDv∗)− ηr(vv∗D) =
∫ ∞

1

h̃((v∗v − vv∗)D(1 + sD2)−r)s−1/2ds

is given by

ηr(vDv∗)− ηr(vv∗D) = Cr ×

{
k − q2(1 + q2) 1−q2k

1−q2 v = Tk

−(1 + q2)(1− q2k) v = T̃k

Proof. The first equality comes from the functional calculus, the trace property and the fact that
vv∗ commutes with D:

h̃
(
(vDv∗)(1 + (vDv∗)2)−r

)
= h̃

(
vD(1 +D2)−rv∗

)
= h̃

(
v∗vD(1 +D2)−r

)
,

and similarly for vv∗D. Using Lemma 17, we find that

h̃ ((T ∗kTk − TkT ∗k )Φm) =


0 m > k
1− q2(k−m+1) 0 < m ≤ k
q2(|m|+1)(1− q2k) m ≤ 0

,

h̃
(

(T̃ ∗k T̃k − T̃kT̃ ∗k )Φm
)

=


0 m > k
−q2(k−m)(1− q2) 1 ≤ m ≤ k
q2|m|(1− q2)(1− q2k) m ≤ 0

.

Since q < 1, this means that
∑
mmh̃((v∗v − vv∗)Φm) < ∞ for v = Tk, T̃k. This allows us to

interchange the order of the summation and integral in

ηr(vDv∗)− ηr(vv∗D) =
∫ ∞

1

∑
m6=0

m(1 + sm2)−rs−1/2h̃ ((v∗v − vv∗)Φm) ds.

Since

r →
∫ 1

0

∑
m

m(1 + sm2)−rh̃((v∗v − vv∗)Φm)s−1/2ds

defines a function of r holomorphic at r = 1/2, we have

Resr=1/2

∫ ∞
1

∑
m 6=0

k(1 + sm2)−rs−1/2h̃ ((v∗v − vv∗)Φm) ds

= Resr=1/2

∫ ∞
0

∑
m 6=0

m(1 + sm2)−rs−1/2h̃ ((v∗v − vv∗)Φm) ds.
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Performing the interchange yields the integral
∫∞

0
(1 + sm2)−rs−1/2ds = Cr/|m|. So

Resr=1/2(ηr(vDv)− ηr(vv∗D)) =
∑
m 6=0

m

|m|
h̃ ((v∗v − vv∗)Φm) .

The sums involved are just geometric series (with finitely many terms for m > 0 and infinitely many
terms for m < 0), which are easily summed to give the stated results. �

The last contribution to the index we require is from the integral along the path. Using Section 6
of [CPR2], we may show that modulo functions of r holomorphic at r = 1/2∫ 1

0

h̃
(
v[D, v∗](1 + (D + tv[D, v∗])2)−r

)
dt = h̃

(
v[D, v∗](1 +D2)−r

)
.

Using the formulae T̃k[D, T̃ ∗k ] = −kT̃kT̃ ∗k , Tk[D, T ∗k ] = −kTkT ∗k , Lemma 17 gives us

(52) Resr=1/2 h̃(v[D, v∗](1 +D2)−r) =
1
2

Resr′=0 h̃(v[D, v∗](1 +D2)−1/2−r′) =

{
−k/2 v = Tk

0 v = T̃k

Putting the pieces together yields

sf(vv∗D, vDv∗) =

{
−q4 1−q2k

1−q2 v = Tk

−q2(1− q2k) v = T̃k
=
{
−q4[k]q v = Tk
−q2(1− q2)[k]q v = T̃k

,

where [k]q is the q-integer given by the definition [k]q := (1 − q2k)/(1 − q2). These computations
prove the following Proposition, which shows that the analytic pairing of our spectral triple with
K0(M(F,A)) is simply related to the KK-pairing.

Proposition 18. The trace h̃ induces a homomorphism on K0(F ) by choosing as representative
of each class x ∈ K0(F ) a projection Q ∈ End0

F (X), and defining h̃∗(x) := h̃(Q). Let P be the
non-negative spectral projection of D, as an operator on X, and for v a partial isometry in A with
range and source in F , let Index(PvP ) ∈ K0(F ) be the class obtained from the KK index pairing
of (X,D) and v. Then

h̃∗(Index(PvP )) = sf(vv∗D, vDv∗).

Proof. We need to compute h̃∗(Index(PvP )) for the generating partial isometries of K0(M(F,A)).
By Proposition 13 and Lemma 17 we have

h̃∗〈[Tk], [(X,D)]〉 = −
k−1∑
j=0

h̃(TkT ∗kΦj) = −
k−1∑
j=0

q2(k−j)q2 = −q4 1− q2k

1− q2
;

h̃∗〈[T̃k], [(X,D)]〉 = −
k−1∑
j=0

h̃(T̃kT̃ ∗kΦj) = −
k−1∑
j=0

q2(k−j)(1− q2) = −q2(1− q2k);

Thus the values obtained from the spectral flow formula and the map h̃∗ agree. �

Remarks. (i) This is a special case of a result in [KNR] (other special cases appeared in [PR, PRS]).

(ii) The formulae for the pairing of Tk, T̃k have three factors: an overall q2; then either q2 or (1−q2),
which is h(v∗v) for v = Tk, T̃k respectively, and the q-number [k]q. We view this formula as giving
a kind of weighted q-winding number, though this is heuristic.

8. The modular spectral triple for SUq(2)

Our aim in this Section is to construct a ‘modular spectral triple’ for SUq(2). The only real difference
between the semifinite triple constructed already and the modular triple, is the replacement of
T → h̃(T ) by T → h̃(HT ). This changes not just the analytic behaviour but also the homological
behaviour. These modular triples do not pair with ordinary K-theory, but with modular K-theory
which we describe next.
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8.1. Modular K-theory. The unitary U1 + pv generating K1(A) commutes with our operator D,
so there is no pairing between the Haar module and K1(A). Nonetheless, we have many self-adjoint
unitaries of the form

uv :=
(

1− v∗v v∗

v 1− vv∗
)
,

where v is a partial isometry with range and source projection in F . Whilst such unitaries are self-
adjoint and so give the trivial class in K1(A), we showed in [CPR2] that they give rise to nontrivial
index pairings in twisted cyclic cohomology. We summarise the key ideas from [CPR2].

Definition 10. Let A be a ∗-algebra and σ : A → A an algebra automorphism such that σ(a)∗ =
σ−1(a∗) then we say that σ is a regular automorphism, [KMT].

Definition 11. Let u be a unitary over A (respectively matrix algebra over A), and σ : A → A
a regular automorphism with fixed point algebra F = Aσ. We say that u satisfies the modular
condition with respect to σ if both the operators uσ(u∗) and u∗σ(u) are in (resp. a matrix algebra
over) the algebra F . We denote by Uσ the set of modular unitaries.

Remarks. (i) We are of course thinking of the case σ(a) = H−1aH, where H implements the
modular group for some weight on A. Hence the terminology modular unitaries.
(ii) For unitaries in matrix algebras over A we use σ ⊗ Idn to state the modular condition, where
Idn is the identity of Mn(C).

Example. If σ is a regular automorphism of an algebra A with fixed point algebra F , and v ∈ A
is a partial isometry with range and source projections in F , and moreover has vσ(v∗), v∗σ(v) in F ,
then

uv =
(

1− v∗v v∗

v 1− vv∗
)

is a modular unitary, and uv ∼ uv∗ . These statements are proved in [CPR2].

The following definitions and results are also from [CPR2].

Definition 12. Let ut be a continuous path of modular unitaries such that utσ(u∗t ) and u∗tσ(ut) are
also continuous paths in F . Then we say that ut is a modular homotopy, and that u0 and u1 are
modular homotopic.

Lemma 20. The binary operation on modular homotopy classes in Uσ [u] + [v] := [u⊕v] is abelian.

Definition 13. Let σ be a regular automorphism of the ∗-algebra A. Define K1(A, σ) to be the
abelian semigroup with one generator [u] for each unitary u ∈Ml(A) satisfying the modular condition
and with the following relations:

1) [1] = 0,
2) [u] + [v] = [u⊕ v],
3) If ut, t ∈ [0, 1] is a continuous paths of unitaries in Ml(A)

satisfying the modular condition then [u0] = [u1].

The modular K1 group does not pair with ordinary K-homology, or KK-theory.

On the GNS Hilbert space of the Haar state τ we are going to construct a semifinite Neumann
algebra N with the ∗-algebra A faithfully represented in N and having the following properties:

1) there is a faithful normal semifinite weight φ on N such that the modular automorphism group
of φ is an inner automorphism group σ̃ of N with σ̃|A = σ,

2) φ restricts to a faithful semifinite trace on M = N σ,

3) If D is the generator of the one parameter group which implements the modular automorphism
group of (N , φ) then [D, a] extends to a bounded operator (in N ) for all a ∈ A and for λ in the
resolvent set of D we have f(λ − D)−1 ∈ K(M, φ|M), where f ∈ Aσ, and K(M, φ|M) is the ideal
of compact operators in M relative to φ|M. In particular, D is affiliated to M.
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For ease of reference we will follow the practice of [CPR2] and refer to any triple (A,H,D) carrying
the extra data (1), (2), (3) above as a modular spectral triple. For modular spectral triples there is
also a residue type formula for the spectral flow, which is a Corollary of Proposition 17.

Theorem 2. Let (A,H,D) be a QC∞, (1,∞)-summable, modular spectral triple relative to (N , φ),
such that D commutes with F = Aσ. Then for any modular unitary u and any Dixmier trace φω
associated to φ (restricted to M) we have sfφ(D, uDu∗) given by the residue at r = 1/2 of the
analytic continuation of

φ
(
u[D, u∗](1 +D2)−r

)
+

1
2

∫ ∞
1

φ
(
(σ(u∗)u− 1)D(1 + sD2)−r

)
s−1/2ds.

Proof. The cancellation of the kernel corrections we will prove later. The methods of Section 6 of
[CPS2] imply the formula for the first term and some elementary algebraic manipulations produce
the eta term. �

Remarks. The two functionals A⊗A 3 a0 ⊗ a1 → φ(a0[D, a1](1 +D2)−r), and

A⊗A 3 a0 ⊗ a1 →
1
2

∫ ∞
1

φ
(
(σ(u∗)u− 1)D(1 + sD2)−r

)
s−1/2ds,

are easily seen to algebraically satisfy the relations for twisted b, B-cocycles with twisting coming
from σ. This is basically the situation found in [CPR2] for the Cuntz algebras. However here the
presence of the eta correction term complicates the analytic aspects of the cocycle condition and
so we will defer this analysis to a future work. We will also defer discussion of the question of
dependence of spectral flow on the homotopy class of a modular unitary to another place; the proof
needs considerable additional information about modular unitaries.

8.2. The modular spectral triple and the index pairing. Our final aim is to construct a
modular spectral triple for A = SUq(2), and compute the twisted index pairing. In the following,
N refers to the von Neumann algebra of Lemma 16 acting on the GNS Hilbert space for the Haar
state of SUq(2). We let h̃ be the faithful, normal, semifinite trace defined on N in Lemma 16.

Definition 14. Let hD be the trace h̃ twisted by the modular operator, that is

(53) hD(T ) := h̃(HT )

for all operators T such that HT ∈ Nh̃.

The functional hD is no longer a trace on N , but is a faithful, normal, semifinite weight. The
restriction of hD to M := N σ is a faithful, normal, semifinite trace.

Lemma 21. The operators Φm are hD-compact in the von-Neumann algebra M, and

Resr=1/2 hD(T̃kT̃ ∗k (1 +D2)−r) =
1
2
q2k(1− q2) =

1
2
h(T̃kT̃ ∗k )

Resr=1/2 hD(TkT ∗k (1 +D2)−r) =
1
2
q2k+2 =

1
2
h(TkT ∗k ).

In particular, (1 +D2)−1/2 ∈ L(1,∞)(M, hD).

Remark. Both h̃ and hD give us (1,∞) summability, but only hD recovers the Haar state using
the Dixmier trace. In particular, the functional a→ Resr=1/2 hD(a(1 +D2)−r) is faithful on A.

Proof. We will prove compactness by showing that the Φm are finite for hD using the formulae of
Lemma 8. We can apply the trace h̃ to both sides of Equation (35) to obtain

h̃(Φm) =


h̃(ΘTm,Tm

) + h̃(ΘT̃m,T̃m
), m ≥ 1,

h̃(Θ1,1), m = 0,
h̃(ΘT∗m,T

∗
m

) + h̃(ΘT̃∗m,T̃
∗
m

), m ≤ −1.
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Equation (51) then gives

(54) h̃(Φm) =


h(T ∗mTm) + h(T̃ ∗mT̃m) m ≥ 1
h(1) m = 0
h(TmT ∗m) + h(T̃mT̃ ∗m) m ≤ −1

.

The relation (6) implies T ∗mTm = pv and T̃ ∗mT̃ = pw. On the other hand we have formulae for the
trace on these and the other elements given above, in Equations (19) and (20). Substituting these
values we obtain

(55) h̃(Φm) = qmax(0,−2m), m ∈ Z.

So by Equation (49) we have

hD(Φm) = h̃(HΦm) = q2mh̃(Φm) = q2m+max(0,−2m) = qmax(0,2m), m ∈ Z.

Since aΘx,y = Θax,y for a ∈ A, we can multiply both sides of Equation (35) by TkT ∗k to obtain

(56) TkT
∗
kΦm =


ΘTkT∗k Tm,Tm + ΘTkT∗k T̃m,T̃m

, m ≥ 1,

ΘTkT∗k ,1
, m = 0,

ΘTkT∗k T
∗
m,T

∗
m

+ ΘTkT∗k T̃
∗
m,T̃

∗
m
, m ≤ −1.

Taking the trace of both sides and again applying Equation (51), we obtain

h̃(TkT ∗kΦm) =


h(T ∗mTkT

∗
kTm) + h(T̃ ∗mTkT

∗
k T̃m), m ≥ 1,

h(TkT ∗k ), m = 0,
h(TmTkT ∗kT

∗
m) + h(T̃mTkT ∗k T̃

∗
m), m ≤ −1.

Now we apply Lemma 17 to find

h̃(TkT ∗kΦm) =


1 m ≥ k + 1,
q2(k−m+1) 0 ≤ m ≤ k,
q2(k+|m|+1) m ≤ −1.

Since TkT ∗k commutes with H, we find

hD(TkT ∗kΦm) =


q2m m ≥ k + 1,
q2(k+1) 0 ≤ m ≤ k,
q2(k+1) m ≤ −1.

=

{
q2m m ≥ k + 1
q2(k+1) m ≤ k

.

From this the summability of D is computed as follows;

(57) hD((1 +D2)−s/2) =
∑
m∈Z

qmax(2m,0)(1 +m2)−s/2 =
∞∑
m=0

(1 +m2)−s/2 + C(s),

where C(s) is finite for all s ≥ 1. Thus the whole sum is finite for <(s) > 1 and has a simple pole
at s = 1. Similarly we have

(58) hD(TkT ∗k (1 +D2)−s/2) = q2k+2
∞∑
m=k

(1 +m2)−s/2 + Ck(s),

Putting r = s/2 and taking the residues of both sides, we obtain

Resr=1/2 hD((1 +D2)−r) = 1/2, Resr=1/2 hD(TkT ∗k (1 +D2)−r) = q2k+2/2(59)

A similar calculation yields

hD(T̃kT̃ ∗kΦm) =

{
0 m ≥ k + 1
q2k(1− q2) m ≤ k

,

and so Resr=1/2 hD(T̃kT̃ ∗k (1 +D2)−r) = q2k(1− q2)/2. �
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Theorem 3. The triple (A,H,D) carries the additional structure of a modular spectral triple. The
index pairings with the modular unitaries uTk

and uT̃k
are given by

〈[uTk
], (A,H,D)〉 = kq2(1− q2k), 〈[uT̃k

], (A,H,D)〉 = k(1− q2)(1− q2k).

Proof. That (A,H,D) is a modular spectral triple is a consequence of our constructions. We are
interested in computing the index pairing. Since for f ∈ F we have hD(fPkerD) = h̃(fPkerD) = h(f),
for any modular unitary we have hD((σ(u∗)u−1)PkerD) = h(σ(u∗)u−1) = 0. For the eta corrections
we first compute, with v = Tk, T̃k,

σ(uv)uv − 1 =
(
σ(v)v∗ − vv∗ 0

0 σ(v∗)v − v∗v

)
,

and so
hD((σ(uv)uv − 1)Φm) = q2mh̃(((q−2k − 1)vv∗ + (q2k − 1)v∗v)Φm).

Using our previous computations we find

hD((σ(uTk
)uTk

− 1)Φm) =

 q2m(q2k + q−2k − 2) m ≥ k + 1
q2(1− q2k) + q2m(q2k − 1) 1 ≤ m ≤ k
0 m ≤ 0

and

hD((σ(uT̃k
)uT̃k

− 1)Φm) =


0 m > k
(1− q2)(1− q2k) 1 ≤ m ≤ k
(1− q2)(1 + (1− q2k)) m = 0
0 m ≤ −1

.

Just as in the semifinite case we may replace the integral over [1,∞) by an integral over [0,∞)
without affecting the residue, and interchange the sum and integral. Proceeding just as in that case
we have modulo functions of r holomorphic at r = 1/2,∫ ∞

1

hD((σ(uv)uv − 1)D(1 + sD2)−r)s−1/2ds = Cr

{
kq2(1− q2k) v = Tk
k(1− q2)(1− q2k) v = T̃k

.

So the contribution from the eta invariants is

Resr=1/2
1
2

(ηr(uvDuv)− ηr(D)) =
1
2

{
kq2(1− q2k) v = Tk
k(1− q2)(1− q2k) v = T̃k

.

The remaining piece of the computation is

Resr=1/2 hD(uv[D, uv](1 +D2)−r) =
1
2

{
kq2(1− q2k) v = Tk
k(1− q2)(1− q2k) v = T̃k

.

Combining these two pieces, we arrive at the final index as stated in the theorem. �

9. Concluding Remarks

(i) The algebra A = SUq(2) contains as a subalgebra a copy of C(S1). The map in odd K-theory
K1(C(S1)) → K1(A) induced by the inclusion C(S1) → A is an isomorphism. Therefore for any
odd spectral triple (A,H,D) where A is smooth in A, we can restrict to B := C(S1) ∩ A to obtain
a spectral triple (B,H,D), with B smooth in C(S1) to get the following isomorphisms

K1(B)→ K1(C(S1))→ K1(A)← K1(A).

Therefore an odd spectral triple (A,H,D), from the point of view of index pairings with unitaries,
contains the same information as (B,H,D) where B is a smooth subalgebra of C(S1).

(ii) The semifinite index is known to be related to pairings in KK-theory, [CPR1, KNR], but the
modular index introduced here is still mysterious. We will return to an investigation of this new
index pairing in a later work.
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