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ABSTRACT 

A high-performance protective structure utilising non-composite steel-concrete-steel (SCS) sandwich 

panels for protecting buildings and facilities against close-range detonation of VBIEDs and heavy ve-

hicle impacts has been developed. Unlike other existing composite sandwich panels, no shear connec-

tors between the steel faceplates are utilised to construct protective panels in order to simplify the con-

struction process. The concrete core of the panel is included to provide the mass for increased inertia 

effects, and the steel faceplates are designed to develop tensile membrane resistance at large displace-

ment to dissipate impulsive energy. The energy dissipation capability and high ductility of the axially-

restrained non-composite SCS panels have been verified through a series of high energy impact tests on 

scaled panels using the drop hammer facility at UoW. High-fidelity finite element models for the pro-

tective barriers were developed and subjected to close range detonation of high explosive using the 

non-linear explicit dynamics code LS-DYNA. Using the validated modelling techniques, a full-scale 

blast barrier structure composed of non-composite sandwich panels and steel posts was studies for its 

performance to provide resistance against close range bomb explosion. It was established that the non-

composite SCS barrier construction could provide a highly effective means for protecting critical facili-

ties and personnel against effects of an external bomb attack. 
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INTRODUCTION 

Composite steel-concrete-steel (SCS) or double skin composite structures consist of a concrete core 

connected to two steel faceplates using mechanical shear connectors. Crawford and Lan (2006) pre-

sented the design concept of non-composite SCS panels without shear connectors for resisting blast 

loading and provided experimental verification for the full-scale blast wall. Remennikov et al. (2010a, 

b) further evaluated the concept of non-composite SCS sandwich panels and established that this form 

of construction has high energy absorption capability, and viable economic and technological charac-

teristics. In this concept, the mass of the concrete core provides inertial resistance, which is beneficial 

in resisting high-intensity impulsive loads. The imparted energy is dissipated by axial stretching of the 

steel faceplates and crushing of the concrete core. When the protective SCS panels are damaged, no 

hazardous projectiles are generated since the concrete core is confined by the steel faceplates. Addi-

tionally, the overall cost of construction is reduced by not providing shear connectors between the 

faceplates, thus simplifying their constructability and installation procedures. 

 

Based on a comprehensive literature review, it was found that no studies so far have addressed a de-

tailed analytical and experimental investigation of non-composite SCS sandwich panels with axially 

restrained connections. This study was initiated with the objective of providing insight into the behav-

iour of non-composite SCS panels under extreme loading, and to formulate recommendations for the 



design of axially restrained non-composite SCS sandwich panels as barrier structures for protection 

against high-speed vehicle impact and close-range detonation of high yield explosive devices. Prelimi-

nary results of axially restrained non-composite SCS panels subjected to impact loading reported by 

Remennikov et al. (2010a, b) demonstrated that the panels were capable of developing very high resis-

tance through the tensile membrane mechanism in the steel faceplates at large deformation. 

 

This paper presents the results of experimental investigation of the response of scaled models of axially 

restrained non-composite SCS panels subjected to the impact of a 600 kg free-falling drop hammer re-

leased from a height of 3 meters. The experimental data were used for calibrating the high-fidelity fi-

nite element (FE) models of SCS panels using the non-linear transient dynamic finite element program 

LS-DYNA. Using the validated FE models, a full-scale barrier structure composed of axially restrained 

non-composite SCS panels and steel posts has been numerically investigated in order to determine its 

performance under blast loads due to the close-range detonation of high explosives and high-speed ve-

hicle impact. 
           

METHODOLOGY 

 

High energy impact tests on scaled models of SCS panels  

The geometry and dimensions of a prototype full-scale non-composite SCS panel and its connection 

details are illustrated in Figure 1. The SCS panel design utilizes two steel faceplates, each with a thick-

ness of 10 mm, and a concrete core with a thickness of 200 mm, such that the overall thickness of the 

panel is 220 mm. The length of the panel between the flared ends is 3500 mm, and the height of the 

panel is 3500 mm. The angle of the flared ends is 30 deg as shown in Figure 1. The panels are sup-

ported by a steel post system, with the keyed connections allowing restraining of the flared ends of the 

panel. The post is composed of a welded plate section with a pre-fabricated keyed connection, as 

shown in Figure 1(b). The bracing elements are used to limit the local plastic deformation of the post 

flanges due to the reaction force between the panels and the keyed connections, which can cause pull-

out failure of the panel.  

 

The dimensions of the post system were determined based on the optimum configuration of the keyed 

connections. To effectively restrain the in-plane movement of the panel and to prevent local bending 

deformation of the post flanges, an angle of inclination of 30 deg was chosen. Based on this angle of 

inclination, the required section depth of the post was selected as 600 mm for the 220 mm thick panel. 

The geometrical details of the post are illustrated in Figure 1(c). The height of the post was 3500 mm. 

The voids in the keyed connections were filled with 40 MPa concrete. 
  

High-velocity impact tests were performed on six scaled models of non-composite SCS panels with 

different designs of the core and faceplates. The model scale was approximately 1:3. The performance 

of two panel designs — with a normal weight concrete core and with a lightweight concrete core — 

will be discussed in this paper. The Control panel (CP) design included the normal weight concrete 

core and mild steel faceplates. For the Lightweight core panel (LP) design, the panel was filled with 

lightweight concrete with a density of 1400 kg/m
3
 and a concrete compressive strength of 11 MPa. The 

thickness of the mild steel faceplates was 3 mm, and the thickness of the concrete core was 80 mm. The 

length of the panel between the flared ends was 1250 mm. 

 



 

Figure 1. Geometry of the prototype barrier system components: (a) sandwich steel-concrete-steel 

panel with flared ends, (b) keyed connection details, and (c) dimensions of the post. 

 

Validation of high-fidelity FE models 

The explicit dynamics non-linear finite element code 

LS-DYNA was used to simulate the impact tests for 

non-composite SCS panels. In the FE models devel-

oped for this study, only a quarter of the experimental 

setup was considered due to the symmetry of the 

specimen, loading and support conditions. The axial 

restraints, including the keyed inserts, bolted connec-

tions, steel UC section, and steel I-beam were mod-

elled in detail, as shown in Figure 2. A detailed de-

scription of the simulation techniques of non-

composite SCS panels under drop mass impact can be 

found in Kong et al. (2012). From the convergence 

study, a mesh size of 10 mm was found to be appro-

priate for the concrete core and the steel faceplates. 

Fully integrated selectively reduced (S/R) solid ele-

ment formulation was used to model the steel UC sec-

tion, I-beam, and the bolts; while the concrete core of 

the panel was modelled using constant stress solid elements. The steel faceplates were modelled using 

Belytschko-Tsay shell elements.  

 

The mild steel was modelled using the LS-DYNA Piecewise Linear Plasticity material model with a 

yield stress of 270 MPa. The non-linear behaviour after yielding was considered by defining the plastic 

stress-strain relationships according to the tensile coupon test results. The strain rate effects of the mild 

steel were considered in the model by specifying the Cowper-Symonds coefficients, which are 40.4 (D) 

and 5 (q). The impactor was assumed to be absolutely rigid since there was no deformation observed on 

the drop hammer during the tests. The steel UC section, I-beam and bolts were assumed to behave as 

elastic-perfectly plastic materials and were modelled using the LS-DYNA Plastic Kinematic material 

model (*MAT_PLASTIC_KINEMATIC). The yield stress for the UC section and I-beam was assumed 

to be 300 MPa, whereas a yield stress of 640 MPa was assumed for the high-strength bolts.  
 

Figure 2. LS-DYNA model of experimental 

setup for SCS sandwich panels  

 



The Continuous Surface Cap Model 159 in LS-DYNA (*MAT_CSCM_CONCRETE) was used to 

model the concrete infill material. The density of the lightweight concrete was 1400 kg/m
3
, and no ag-

gregates were used in the mix. Single element simulation was carried out to evaluate the ability of the 

concrete model CSCM (*MAT_159) to generate parameters for the lightweight concrete. It was found 

that by using a density of 1400 kg/m
3
 and a concrete compressive strength of 16 MPa, and by ignoring 

the aggregate size, the concrete model can generate a stress-strain curve with a compressive strength of 

10.8 MPa and tensile strength of 0.9 MPa. It was assumed that this stress-strain relationship was appro-

priate for the lightweight concrete used in this study.  

 

Numerically predicted contact forces and mid-span displacements are compared to the experimental 

results in Figures 3 and 4. From the comparison between the predicted and experimental load time his-

tories, one can notice that the numerical models were able to predict the initial flexural response of the 

panels, followed by the tensile membrane resistance at large deformation. It shows that the numerical 

models have the capacity to predict the initial inertial effects and the flexural response of the panels 

quite closely. After that, the FE models could not predict the significant drop in the flexural resistance 

due to fracture of the concrete core. The FE models predicted the peak membrane resistance of 384 kN 

and 358 kN for the Control panel and the Lightweight Core panel, respectively. The predicted peak 

membrane resistance was 8 percent higher than the experimental results of both panels. The predicted 

maximum displacement for the Control panel was 182 mm, and 174 mm for the Lightweight panel. 

Therefore, the FE model underestimated the maximum displacement of the Control panel and the 

Lightweight Core panel by 9 and 11 percent, respectively. From the comparison of the numerical and 

test data for the impact load and maximum displacements, it can be concluded that the finite element 

model is capable of capturing the most important structural response characteristics of non-composite 

SCS panels. 
 

           

Figure 3. A comparison between the experimental and predicted results for the Control panel: 

 (a) impact load time histories, and (b) displacement time histories. 

          

Figure 4. A comparison between the experimental and predicted results for the Lightweight core 

panel:  (a) load time histories, and (b) displacement time histories. 



Performance of the prototype protective barrier under close-range blast 

Following the validation study for the FE models of the reduced-scale sandwich panels, a full-scale 

protective barrier based on the design features presented in Figure 1 was investigated for its perform-

ance under blast loading and vehicle impact. Two types of steel posts were investigated: 1) steel posts 

constructed from mild steel plates, and 2) steel posts utilizing high-strength steel plates. The static yield 

stress of mild steel and high-strength steel was 270 MPa and 690 MPa, respectively. The effects of the 

soil-post interaction were not considered in this study and it was assumed that the posts acted as canti-

lever beams. Figure 5 shows the FE model of the protective barrier wall system. Three panels were 

modelled: the centre panel positioned in front of the blast threat was modelled using a finer mesh size 

of approximately 25 mm, and the side panels were modelled using a mesh size of approximately 

50 mm.  
 

 

Figure 5. FE model of the modular barrier wall system. 

The steel plates in the post were modelled using Belytschko-Tsay shell elements, whereas the concrete 

infill was modelled using constant stress solid elements. The Automatic-Surface-to-Surface contact al-

gorithm was used to model the interaction between the panels and the keyed connections, with a dy-

namic coefficient of friction of 0.2. The mild steel and the high-strength steel were modelled using the 

Plastic Kinematic material model in LS-DYNA. Fracture strains of 0.25 and 0.15 were defined for the 

mild steel and high-strength steel, respectively. The concrete core material was modelled using the 

concrete model Damage Release III (Mat_72R3). The concrete infill in the posts and at the flared zones 

of the panels was modelled using the CSCM 159 material model. The concrete compressive strength 

was 40 MPa, and the strain rate effect of concrete was ignored. The Flanagan-Belytschko stiffness form 

with exact volume integration for solid elements (type 5) was used to control the hourglass energy in 

the concrete core.  

 

The blast loads acting on the barrier structure were calculated by performing Computational Fluid Dy-

namics analysis of the blast wave interaction with the barrier structure utilizing the computer program 

Air3D (Rose, 2006). The reflected pressure time histories were applied to the front faceplate of the 

panels and the flanges of the posts, which were divided into segments ranging from 100 x 100 mm in 

the vicinity of the explosion to 250 x 250 mm at locations further away from the blast. 

 

For the barrier supported by the mild steel posts, three blast loading scenarios were considered: 250 kg, 

500 kg and 750 kg TNT at a stand-off distance of 5 m. The response of the barrier supported by the 

mild steel posts was similar when it was subjected to increased blast threat loading conditions. The re-

sponse of the barrier can be exemplified by the response of the centre panel of the barrier subjected to 

blast loading due to the detonation of 500 kg TNT at a 5 m stand-off distance, as shown in Figure 6. 



The centre panel and the supporting posts showed the most severe deformation as the charge was posi-

tioned on the ground surface, 5 m from the mid-span of the centre panel. 

 

When subjected to the blast loading, the panels and the posts started responding almost simultaneously. 

At the early stage of response, the extensive damage of the concrete core near the posts can be attrib-

uted to the shear failure of the unreinforced concrete core. Moderate damage of the concrete was ob-

served at the concrete infill in the flared zone of the panels. As panel deformation increases, the con-

crete is severely damaged and the front faceplate is separated from the concrete core. The rear faceplate 

is pushed in the direction of the blast loading by the concrete core and it starts yielding at the flared 

zone and the mid-span. At the maximum displacement, it was observed that no significant local bend-

ing deformation occurred at the supporting flanges, and the keyed connections were effective in re-

straining the in-plane displacement of the panel. The in-plane displacement of the posts was less than 

10 mm.  
 

 

Figure 6. The response of the protective barrier with mild steel posts subjected to blast loading due to 

detonation of 500 kg TNT at 5 m stand-off distance. 

Table 1 summarises the maximum displacements of the centre panel and of the posts supporting the 

centre panel. The maximum displacement of the panels and the posts increased as the blast loading in-

creased. It shows that the maximum displacement of the centre panel was non-uniform along the 

height, with the maximum displacement being at the top edge. The maximum displacement at the bot-

tom of the panel is found to be higher than that at the centre, due to positioning the charge near the 

ground surface. The centre panel showed the highest maximum displacement at the top due to the de-

flection of the cantilever posts. The rear faceplate yielded at the mid-span and the flared ends. When 

blast load energy is increased, plastic deformation starts concentrating at the flared ends. The maximum 

support rotation of the centre panel was about 20 deg
 
when the barrier was subjected to a blast loading 

resulting from the detonation of 750 kg TNT at a stand-off distance of 5 m. 

Table 1. Deformations of SCS panel and posts for the barrier supported by mild steel posts under in-

creasing blast loading effects. 

Blast Threat Sce-

nario 

Displacements of centre panel (mm) Posts Keyed connection 

Bottom 

Mid-

height Top 

Displ. 

(mm) 

Rotation 

(deg) 

Displ. 

(mm) 

Rotation 

(deg) 

250 kg TNT at 5 m 243 240 269 83 1.4 2.8 0.65 

500 kg TNT at 5 m 445 404 451 267 4.4 5.3 1.2 

750 kg TNT at 5 m 652 577 677 490 8 9.2 2.2 



For all the blast loading scenarios considered, the mild steel posts supporting the centre panel yielded 

and formed a plastic hinge at the base. When the barrier was subjected to a blast loading due to the 

detonation of 250 kg TNT at 5 m stand-off distance, the maximum support rotation for the post was 1.4 

deg, and the maximum strain at the base was approximately 0.08. The maximum support rotation of the 

post increased to 4.4 deg and the maximum strain approached the fracture strain of mild steel when the 

blast threat increased to 500 kg TNT. Further increase of the blast threat to 750 kg TNT at a 5 m stand-

off distance resulted in the fracture failure of the post keyed connections and the unzipping failure of 

the rear faceplate. The maximum angle of rotation for the keyed connection was 2.2 deg for the blast 

threat based on the detonation of 750 kg TNT at 5 m stand-off distance. These results show that the 

keyed connection design had sufficient capacity to provide axial restraint to the SCS panels. The failure 

of the posts is found to be the critical limiting parameter in the design of SCS barriers supported by 

posts utilizing mild steel plate elements.                

 

Table 2 demonstrates the relative contributions of the SCS panels and posts to the overall blast energy 

absorption capability of the modular SCS barrier construction with axially restrained panels. It shows 

that about 50% of the initial blast energy is dissipated by the SCS panels when the posts utilize mild 

steel plates. The proportion of the blast energy absorbed by the SCS panels is increased to 70% when 

the panels are restrained by posts that utilize high-strength steel plates. The absorbed energy balance 

between the SCS panels and the posts remains fairly consistent for the range of blast threat scenarios 

shown in Table 2. These results also show that SCS panels supported by high-strength steel posts dem-

onstrate higher effectiveness in resisting high intensity close-range blast loads, since they are capable 

of achieving a higher percentage of their theoretical capacity determined by the steel faceplate mem-

brane mechanism. 

Table 2. Proportion of blast energy absorbed by the SCS panels and steel posts. 

Blast Threat Sce-

nario 

Proportion of blast energy absorbed by: 

SCS panel (%) 
Mild steel posts 

(%) 
SCS panel (%) 

High-strength 

steel posts (%) 

250 kg TNT at 5 m 45.5 54.5 70.5 29.5 

500 kg TNT at 5 m 29.6 70.4 78.0 22.0 

750 kg TNT at 5 m 32.5 67.5 74.4 25.6 

1000 kg TNT at 5 m - - 70.0 30.0 
 

 

CONCLUSIONS  

An extensive study on the dynamic response of non-composite steel-concrete-steel sandwich panels 

under impact and blast loading conditions has been undertaken. The experimental program was carried 

out to investigate the response of non-composite SCS panels under impact loading. Three-dimensional 

FE models of the impact tests were generated and validated against the experimental results. Based on 

the modelling techniques presented, the predicted peak tensile membrane resistance and peak mid-span 

displacements correlated well with the experimental results. Using the validated modelling techniques, 

a full-scale barrier structure composed of axially restrained non-composite SCS panels was subjected to 

blast loading and head-on impact by a single unit truck. Some conclusions based on observations made 

in this research can be summarised as follows: 

 

1. High-speed impact tests on the reduced-scale axially restrained non-composite SCS panels 

confirmed the viability of this type of construction for achieving very high load carrying ca-



pacity through the tensile membrane mechanism in the steel faceplates. The panels demon-

strated high ductility and an ability to sustain large support rotations of up to 18 degrees with-

out collapse. 

2. The infill materials have minor effect on the ultimate load carrying capacity of the axially re-

strained non-composite SCS panels. Utilisation of lightweight concrete or low-strength con-

crete as compared to the normal strength and normal weight concrete for the sandwich core 

would not significantly affect the performance at large deformation due to the prevailing con-

tribution of the tensile membrane mechanism in the steel faceplates. 

3. For the post and SCS panel barrier construction subjected to severe blast loading, a certain 

percentage of the initial kinetic energy of the panels is dissipated by the posts due to the inter-

action between the panels and the posts. As the blast energy is increased, the posts and the 

panels undergo large deformations, and the failure modes identified in this study are related to 

fracture of the steel plates at the bottom of the posts as well as unzipping of the rear faceplate. 

The use of high-strength steel for the posts is beneficial as they deform less than mild steel 

posts under the same blast loading condition, thereby facilitating more effective utilization of 

the steel plate membrane capacity. 
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