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Trace elements in the si furnace. part I: behavior of impurities in quartz during
reduction

Abstract

Quartz and carbonaceous materials, which are used in the production of silicon as well as electrodes and
refractories in the silicon furnace, contain trace elements mostly in the form of oxides. These oxides can
be reduced to gaseous compounds and leave the furnace or stay in the reaction products—metal and
slag. This article examines the behavior of trace elements in hydrothermal quartz and quartzite in the
reaction of Si02 with Si or SiC. Mixtures of Si02 (quartz or quartzite), SiC, and Si in forms of lumps or
pellets were heated to 1923 K and 2123 K (1650°C and 1850°C) in high purity graphite crucibles under
Argon gas flow. The gaseous compounds condensed in the inner lining of the tube attached to the
crucible. The phases present in the reacted charge and the collected condensates were studied
quantitatively by X-ray diffraction (XRD) and qualitatively by Electron Probe Micro Analyzer (EPMA).
Contaminants in the charge materials, reacted charge and condensate were analyzed by Inductively
Coupled Plasma-Mass Spectroscopy (ICP-MS). Muscovite in the mineral phase of quartz melted and
formed two immiscible liquid phases: an Al-rich melt at the core of the mineral, and a SiO2-rich melt at the
mineral boundaries. B, Mn, and Pb in quartz were removed during heating in reducing atmosphere at
temperature above 1923 K (1650°C). Mn, Fe, Al and B diffused from quartz into silicon. P concentration
was under the detection limit. Quartzite and hydrothermal quartz had different initial impurity levels:
quartzite remained more impure after reduction experiment but approached purity of hydrothermal quartz
upon silica reduction.
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Trace Elements in the Si Furnace. Part |: Behavior of Impurities

in Quartz During Reduction

ELENA DAL MARTELLO, GABRIELLA TRANELL, OLEG OSTROVSKI,
GUANGQING ZHANG, OLA RAANESS, RUNE BERG LARSEN, KAI TANG,
and PRAMOD KOSHY

Quartz and carbonaceous materials, which are used in the production of silicon as well as
electrodes and refractories in the silicon furnace, contain trace elements mostly in the form of
oxides. These oxides can be reduced to gaseous compounds and leave the furnace or stay in the
reaction products—metal and slag. This article examines the behavior of trace elements in
hydrothermal quartz and quartzite in the reaction of SiO, with Si or SiC. Mixtures of SiO,
(quartz or quartzite), SiC, and Si in forms of lumps or pellets were heated to 1923 K and 2123 K
(1650°C and 1850°C) in high purity graphite crucibles under Argon gas flow. The gaseous
compounds condensed in the inner lining of the tube attached to the crucible. The phases
present in the reacted charge and the collected condensates were studied quantitatively by X-ray
diffraction (XRD) and qualitatively by Electron Probe Micro Analyzer (EPMA). Contaminants
in the charge materials, reacted charge and condensate were analyzed by Inductively Coupled
Plasma-Mass Spectroscopy (ICP-MS). Muscovite in the mineral phase of quartz melted and
formed two immiscible liquid phases: an Al-rich melt at the core of the mineral, and a SiO»-rich
melt at the mineral boundaries. B, Mn, and Pb in quartz were removed during heating in
reducing atmosphere at temperature above 1923 K (1650°C). Mn, Fe, Al and B diffused from
quartz into silicon. P concentration was under the detection limit. Quartzite and hydrothermal
quartz had different initial impurity levels: quartzite remained more impure after reduction

experiment but approached purity of hydrothermal quartz upon silica reduction.
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I. INTRODUCTION

IMPURITIES in silicon affect the final efficiency of
silicon solar cells. The required purity of solar grade
silicon was brought forward by Coletti and co-workers.!"!
The carbothermic production of silicon is an important
source of contamination: quartz, carbonaceous materi-
als, as well as electrode and refractories carry detrimen-
tal impurities which transfer to silicon. Impurities in
carbon material are mainly the oxides and sulfides
present in the ash. Because carbon is very porous, the
impurities are easily exposed to the furnace gases up in
the furnace, and the volatile compounds which form can
be easily removed when the charge is still at the top.>
The behavior of the impurities in quartz during the
carbothermic reduction is still not well understood. The
impurities present in the quartz do not have easy access
to the reducing atmosphere compared with carbon
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because the quartz is not porous. The quartz melts at
around 1973 K (1700°C) and may not be melted in the
production furnace until just above the cavity around
the cavity, created by the electric arc. Consequently, the
oxides of the additional elements embedded in the
quartz are believed to be accessible for reduction once
the quartz reaches the cavity,”) and any volatile com-
pound which may form might not leave the furnace
because of the interaction with the upper charge layer. If
cracks formed by quartz thermal expansion are invaded
by reducing gases, then the impurities can be exposed
earlier, however, this is a topic yet to be investigated.

SiO(g), CO(g), C(s), and SiC(s) are reducing agents
for the impurity oxides present in the charge material.
Oxides of Ni, Co, Fe, Pb, Cu, Cr, Mn, Zn, Na, and K
are easily reduced to metals, while oxides of Ca, Al, Ti,
and Mg are stable at temperatures and conditions of
quartz reduction. Impurities can be removed from
quartz with a gas phase if the reduced or oxidic species
are volatile. The vapor pressure of the reduced species is
also influenced by the activities of the species in the raw
materials and reaction products and by the reaction
temperature.

Lumpy quartz contains impurities in form of (1)
mineral inclusions, (2) liquid inclusions, and (3) trace
elements in the quartz lattice. In a recent process
developed for production of solar grade silicon from
pure raw materials,'! quartz is charged in the furnace in
form of pellets of intermixed SiO, and SiC. Quartz in
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these pellets is usually refined from mineral inclusions,
and does not contain fluid inclusions because most of
them are opened during the quartz milling process. An
example of a refining route for hydrothermal quartz was
studied by Dal Martello et al.l”l Figure 1 describes the
different paths and interactions of impurities (mineral
inclusions, liquid inclusions, and trace elements) while
heating lumpy quartz in a reducing atmosphere. The
case of pellets is a simplified version of Figure 1.

Mineral inclusions generally occur at the quartz grain
boundaries and often have a melting point below that of
quartz. How the mineral interacts with the silica matrix
during heating is not clear. The elements can diffuse
from the mineral into the silica matrix already at lower
temperature or melt and diffuse/react with the matrix at
higher temperatures. Alternatively, minerals with high
melting points may maintain their initial composition
until the silica melts with limited diffusion to the silica
matrix. The high-temperature properties of mica and
quartz were studied by Hammouda and Pechavant.™
They performed partial melting of an assemblage of
synthetic quartz and millimeter-sized single crystal
synthetic fluorine mica fluorophlogopite (KMgj;
(AlSi50¢)F,). The experiments were run under atmo-
spheric pressure conditions. After attaining 1523 K
(1250°C), 1-um-thick melt formed between the two
reactants. Above 1573 K (1300°C) and within 2 hours’
run duration, two immiscible melt phases formed: a
SiO,-rich melt in contact with the quartz, and a MgO-
and F-rich melt in contact with the mica. However,
muscovite is the common mica mineral found in quartz,
and its high-temperature properties are not yet under-
stood.

Liquid inclusions may contain several phases: liquid,
solid, and gas. The most common composition com-
prises water in solution with Na®, K*, F~, CI", CO,,
and CH, " However, Ca, Cr, Cu, Mg, Mn, Pb, and U
are also likely to be concentrated in submicroscopic fluid
inclusions.!"” Fluid inclusions are common in hydro-
thermal quartz and vary in size from 5 to 20 um. It is
not known as to how the trace elements in the quartz

Solid quartz

* Trace elements
+ Fluid inclusions
* Cracks

Not favourable
conditions

Favourable
conditions

* Mineral inclusions

lattice interact with fluid inclusions during the heating of
quartz. The gaseous phase might have formed and have
been released from quartz during fluid inclusions
decrepitation at temperatures below 873 K (600°C).l'!)

Trace elements are impurities locked in the quartz
lattice and accommodated at lattice-specific sites. Inter-
stitial cations, such as K, are situated into vacancies or
structural channels running parallel to the c-axis and
present ionic bonds.""%!'? Substitutional impurities, such
as Ti*", AP*, Fe’ ", B, and P°", replace Si*" site in
the Si-O tetrahedral and present strong ionic-covalent
bond.["?! How efficiently these impurities can diffuse to
the quartz surface and be available to the reducing
atmosphere is not well understood. The cations can
diffuse to the lumps surface, be reduced to gaseous
compounds, and leave the quartz or, alternatively, the
cations can remain in the quartz because of a combina-
tion of slow diffusivity, long diffusion path, (such as
inability for the reducing gas to permeate the quartz
cracks), or high stability to reduction into gaseous
compounds. If the cracks, featured in solid quartz
during heating can be invaded by reducing gases, then
the diffusion distance decreases considerably, and the
impurities are more easily exposed to reducing atmo-
sphere. However, it is not clear if the reducing gases are
able to invade these cracks.

The diffusivity of trace elements in solid quartz in a
reducing atmosphere at temperatures between 1973 K
and 2273 K (1600°C and 2000°C) is not well docu-
mented. The only available data on the diffusivity of
cations in quartz are in atmospheric air and at temper-
atures that are not representative of the silicon fur-
nace."* ! The diffusion of Ca, Na, Li, K, and Fe is fast
in quartz, while diffusion of Al and Ti is significantly
slower. In general, small cations diffuse more easily, and
voids, cracks and low density structures, such as high-
temperature (}uartz polymorphs, enhance the cations’
diffusion.?*?"" Geological studies on the diffusion of
impurities durin h?/drothermal alteration of quartz

K

show that Fe,?>2% K[22:2425) 31d BI2%) are mobile ions in
quartz.
Melted quartz
* Mineral inclusions
+ Trace elements
Favourable Not favourable
conditions conditions

Fig. 1—Possible paths of the impurities in solid and melted lumpy quartz during heating of quartz in reducing atmosphere. The conditions
which enhance the formation of gaseous compounds are favorable conditions. These are (1) interaction of trace elements with fluid inclusions
and formation of gaseous Cl-based compounds which are liberated during heating of quartz; (2) short diffusion distance of the dissolved impu-
rity to a reductive atmosphere combined with the ability to be reduced to gaseous compounds; and (3) mineral at its initial composition when

facing a reducing atmosphere.
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This series of two articles examines the behavior and
distribution of the impurities from quartz between
reaction solid products and the gas phase. In particular,
the purpose of Part 1 is to understand the redistribution
of elements in solid and molten quartz and how much
and which of the impurities remain in quartz after
reduction. The purpose of part 2 is to investigate the
concentration and form of impurities in gas and the
conditions which enhance gaseous compound’s forma-
tion.

II. MATERIALS AND METHODS

A. Materials

Hydrothermal vein quartz, quartzite, high-purity SiC,
and electronic grade Si (Eg-Si) were the materials used
in this study. The quartzite was of the common type
used for the production of metallurgical silicon and Fe-
Si alloys. The hydrothermal quartz is a new high-purity
source from a Norwegian deposit; it had been examined
in previous studies.?”** The electronic grade silicon was
supplied by Wacker, and the ultra-pure SiC was
produced by reduction of hydrothermal quartz with
high-purity carbon black. Ultra-pure saccharine by
Danisco AS C;,H»,0;>, was used as a binder in the
pellet production. Quartz and silicon carbide were
investigated both as pellets and lumps. The process of
making pellets was described elsewhere.!*”!

The reactions were studied in ultra pure graphite
crucibles of the isotropic type IG-110 supplied by Toyo
Tanso and in ultra-pure argon which contained H,O
<3.0 ppmw; O, <2.0 ppmw. Table I summarizes the
chemical compositions of SiC, Si, and graphite provided
by suppliers and determined at NTNU. The graphite
was analyzed by ICP-AES, SiC by GDMS, and Si by
ICP-MS. SiC and Si were also analyzed by ICP-MS
after crushing.

The chemical analyses of the quartz materials deter-
mined by ICP-MS at NTNU are presented in Table II.
The quartzes charged as pellets were jet milled before

pelletizing. Hydrothermal quartz was purer than quartz-
ite and contained generally lower amount of B, Al, Fe,
Mn, and Pb. The minerals present in the two quartz
sources were identified by EPMA. Fe-rich muscovite
and K-feldspar were found in hydrothermal quartz; Fe-
rich muscovite, K-feldspar, clay mineral, calcite, cli-
nochlore, and carbonate were found in quartzite. Al, Fe,
and K were the most abundant elements in the mineral
phase among the impurities studied.

B. Experimental Set Up and Conditions

The reduction experiments were carried out in a
23-kW graphite tube furnace (model 1000-3560-FP20).
The furnace chamber was 76 mm in diameter, and
153 mm in height. The experimental set-up is schemat-
ically presented in Figure 2. A crucible containing the
charge materials was connected to a gas ducting tube
500 mm long and 10 mm in inner diameter. The tube
end outside the furnace was connected to a two-way
valve. A type C thermocouple with hafnium oxide
insulator was inserted from the side of the furnace to
measure the temperature close to the crucible wall.

Mixtures of SiO,:SiC with 1:1 molar ratio, and
SiO,:Si also with 1:1 molar ratio were chosen to
represent different zones of the silicon furnace. The
mixtures were prepared in the form of lumps and pellets.
The experimental matrix is given in Table III. The
experimental condition ‘“‘pellet SiO, + SiC” refers to
pellets of silica and silicon carbide intermixed. The
experimental condition “‘pellet SiO, + Si”” refers to
pellets of quartz mixed with pieces of silicon. The
mixtures were heated at 60°C/minutes to 1923 K or
2123 K (1650°C or 1850°C).The chosen reaction tem-
peratures 1923 K and 2123 K (1650°C and 1850°C) are,
respectively, below and above the quartz melting point.
The melting point of the hydrothermal quartz was
estimated in a reducing atmosghere for a 3-mm particle
size to be 2092 K (1819°C).*"! As quartzite contains
more contaminants than hydrothermal quartz (Table II)
and the impurities in quartz lower the melting point of
quartz,* quartzite is expected to have a lower melting

Table I. Chemical Analysis (ppmw) of SiC, Si, and Graphite

Trace Element B P K Al Fe Mn Zn Pb
Isotropic graphite type 1G-110 (ref. from the supplier) 0.15 — 0.04 0.01 0.06 <0.001 — —
Ultra-pure SiC (ref. from the supplier) 0.45 0.02 — 6.1 0.37 — — —
Electronic grade silicon (ref. from the supplier) <0.001 <0.00 — <0.001 <0.001 <0.00 <0.001  <0.00
Ultra-pure SiC after crushing (NTNU) 1.43 — — 10.9 6.8 0.44 0.07 0.01
Ultra-pure SiC after milling (NTNU) 4.97 — — 267.9 39.53 1.16 2.38 0.08
Electronic grade silicon after crushing (NTNU) 33 — — 25.9 5.49 0.07 4.06 0.01

Table II. Chemical Analyses (ppmw) of Hydrothermal Quartz and Quartzite After Mechanical Crushing and Jet Milling

Trace element B P K Al Fe Mn Zn Pb Cr Ni Cu
Hydrothermal quartz after crushing 1.4 <3 <40 44 21 0.3 — 0.2 <1 <1 <1
Hydrothermal quartz after milling 3.7 — 142 199 182 1.9 1.5 0.3 <1 <1 <1
Quartzite after crushing 2.9 6.4 60 453 207 2.8 6.7 1.8 <1 <1 <1
Quartzite after milling 6.4 20.3 195 927 571 6.3 253 3.9 <l <1 <l

METALLURGICAL AND MATERIALS TRANSACTIONS B
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[ 1 Orange condensate

[ EBrown, white and green
condensate

Fig. 2—Experimental set in a graphite tube furnace. The condensate
was collected in two regions represented in the picture in pink and
yellow. Pink: mixture of white, brown, and green condensate sticking
on the tube surface; yellow: orange condensate in flaky-powdery
form nonsticking on the tube.

point than hydrothermal quartz. Therefore, a tempera-
ture of 1923 K (1650°C) was chosen to study the
behavior of both quartz-types in their solid states.

Two parallel experiments were run at 1923 K
(1650°C) using new charge materials in a new crucible
in each run and the same ducting tube.

The charge was directly heated to the targeted tem-
perature at 60°C/ minutes when lumps were used. The
charge with pellets was first heated to 1273 K (1000°C)
and kept for 10 minutes, to ensure the complete volatil-
ization of the binder, and then heated at 60°C/ minutes
to the targeted temperature. The furnace was cleaned
before the experiments by heating to 1173 K (1900°C)
for 3 hours purging argon at 1 l/minutes (16.6 cm?/s).
Argon passed through a tube furnace containing steel
wool at 673 K (400°C) before entering the graphite
furnace to flush out any oxygen impurity. The furnace
was evacuated to 4 x 1072 mbar before purging argon
to remove any adsorbed moisture and CO, from the
graphite parts of the furnace. The outer surface of the
graphite tube was coated with superglue, to ensure good
hermetic condition. The furnace leakage was measured
by keeping the furnace at vacuum for 1 day and was
estimated to be 1.1 mbar/hour. The temperature along
the ducting tube decreased sharply outside the chamber
and as a result, a condensate deposited on the inner
surface of the tube. The condensate eventually blocked
the tube. The experiment was terminated when the
overpressure in the chamber, owing to the condensate
blockage, reached approximately 50 kPa.

C. Sample Characterization

Four analytic methods were used for the analysis of
the samples after reaction: Inductively Coupled Plasma
Mass Spectrometry (ICP-MS); X-Ray Diffraction
(XRD); Electron Probe Micro-Analysis (EPMA); and
Leco TC 600.

236—VOLUME 44B, APRIL 2013

Single phases were taken, where possible, from the
reacted charge mix and analyzed by ICP-MS. It was not
possible to detach silica from silicon carbide in the
mixture “pellets SiO, + SiC” after reaction; therefore,
the analysis for this experimental series refers to the
mixture of SiC and SiO,.

EPMA, JEOL model 8500F, was used to identify the
trace minerals as inclusions in quartz and to investigate
the reacted minerals qualitatively by mapping and
quantitatively by point analysis. Standard microanalysis
reference materials, Astimex 53 Minerals Mount
MINM25-53, were used for the calibration of the
instrument.*%)

D8 Advance XRD, BRUKER-EVA was used to
analyze the reacted quartz.

A Leco TC600 oxygen and nitrogen analyzer was
used to determine the oxygen content in the reacted
sample. The free carbon content of the charges reacted
at 1923 K (1650°C) was measured by combustion
method. The procedure was based on the Australian
Standard for the ash content in coke*": powdery sample
was heated in air to 1088 K (815°C) in a muffle furnace
for 180 minutes, and the carbon content was calculated
from the mass change after incineration.

D. ICP-MS Analysis: Problems with SiC Dissolution

Two procedures of digestion were applied in this
study. If a sample contained SiC, then the procedure of
digestion was as follows: 20-40-mg sample was digested
in a mixture of 0.5 mL concentrated HNO3 + 0.5 ml
concentrated H,SO4 + 0.5 mL concentrated HF at
518 K (255°C) for 1 hour. It should be mentioned that
complete digestion of SiC was not achieved. A sample,
which did not contain SiC, was digested in a mixture
0.5 mL HF + 1.5 mL HNO; at 523 K (250°C) for
1 hour. The solution was digested in PTFE containers
in a digestion bomb.

The addition of H,SO, in the dissolution improved
the recovery of the elements. The major effects were on
B (+15pct), P (+5pct), Al (+10 pct), and K
(+9 pct). Fe, Mn, and Pb were less affected (+2 pct).
Therefore, the results were normalized accordingly.

Standard materials DIABASE W-2, BCS-CRM 313/
1, NIST 57b (Si), and JCRM R 021 (SiC) were used for
the ICP-MS calibration. Three scans were run for each
sample with an average error of 4 pct.

Tests on standards W-2 and NIST 57b showed that
the B and P concentrations were very close to the
reference values. This means that the losses of B and P
were negligible during digestion of samples in an
autoclave, and the analyses of B and P were reliable.

The gaseous products containing mainly SiO(g) and
CO(g) condense/react to a mixture of Si, SiC, and SiO,
which will be discussed further in Part 2 of this
publication. Gaseous compounds other than SiO(g)
and CO(g) were suggested to end up in the SiC, Si, or
SiO,. As SiC was not fully digested, an accurate
quantification of those elements is questionable. Silicon
carbide is very difficult to digest. The dissolution process
is extremely slow because what is really dissolved is not
the SiC itself but a very thin layer (around 100 nm

METALLURGICAL AND MATERIALS TRANSACTIONS B



Table III. Experimental Matrix

# Exp  Charge mixture  Temperature [K (°C)] Charge type Quartz Type SiO, SiC Si C

2 SiO, + SiC 1923 (1650) lumps hydro 1 mol 1 mol — —

2 quartzite

2 pellets hydro 0.9 mol 0.9 mol — 0.3 mol
2 quartzite

1 1923 (1850) lumps hydro 1 mol 1 mol — —

1 quartzite

1 pellets hydro 0.9 mol 0.9 mol — 0.3 mol
1 quartzite

2 SiO, + Si 1923 (1650) lumps hydro 1 mol — 1 mol —

2 quartzite

2 pellets of SiO,  hydro 0.9 mol — 1 mol 0.5 mol
2 quartzite

1 2123 (1850) lumps hydro 1 mol — 1 mol —

1 quartzite

1 pellets of SiO,  hydro 0.9 mol — I mol 0.5 mol
1 quartzite

C represents carbon contained in the binder used for manufacturing pellets.

(Presser et al. 2008)) of cristobalite formed on the SiC
surface. After the first silica layer had dissolved, a new
layer forms by thermal oxidation. As the condensed SiC
is in the form of :SiC (as will be shown in Part2), which
among the SiC polytypes has a relative open structure,
andtherefore, easier to digest, a completely recovery of
SiC in the condensate is assumed.

III. RESULTS

A. Morphology of the Reacted Charge

Table IV summarizes the morphology of the reacted
charge for the different experimental conditions. The
morphologies of the samples containing hydrothermal
quartz were structurally very similar to samples with
quartzite. The pictures in Table IV represent samples
with hydrothermal quartz. The experimental time,
which was limited by tube blockage by the condensate,
is also indicated in the table.

Analyses of the oxygen and carbon content in pellets
reduced at 1923 K (1650°C) showed that silica reacted
mainly with carbon in the binder. This series of exper-
iments is not representative for the reaction between
silica and silicon carbide but provides some information
for the comparison of reactions with quartzite and
hydrothermal quartz.

Itis worthy to note that at 1923 K (1650°C), the charge
mix “lumps SiO, + SiC”’ took more time to block the tube
with condensate than the charge mix “lumps SiO, + Si.”
The situation was the opposite at 2123 K (1850°C). This
qualitative result agrees with that of Andersen*?! who
studied the reactions between SiO, + SiC and SiO, + Si.
He observed that the rate of conversion of the SiO,-SiC
mixture was two times higher in comparison with the
Si0,-Simixture at 1923 K (1650°C) and nine times higher
at 2123 K (1850°C).

Microstructures of reacted quartz depended on the
reaction temperature, charge mix, and initial size.

METALLURGICAL AND MATERIALS TRANSACTIONS B

Reacted lumpy quartz (1-2 in Table IV) at 1923 K
(1650°C) was still solid and was characterized by a thick
network of microns-wide cracks. Cracks in the quartz
before and after heating are shown in the micrographs in
Figure 3. The distance between cracks was approxi-
mately 50 um. The reacted quartz was white and visibly
porous. Quartzite, originally with a brownish/reddish
resemblance, changed to white after reduction. Quartz
was crystallized to cristobalite. A few areas of interme-
diate amorphous phase appeared near the cracks.

Reacted lumpy quartz (3-4 in Table IV) melted at
2123 K (1850°C) and cracks disappeared. Melted SiO,
lumps were in the form of numerous spherical aggre-
gates when reacted with SiC, while fused to a single
piece when reacted with Si and cavities, previously filled
with silicon, are also visible.

Reacted pellets of quartz (5-6 in Table 1V) sintered at
1923 K (1650°C) regardless of the charge mix used.
Sintering decreases the initial porosity of the charge.
Cristobalite in the pelletized charge was the major phase
detected by XRD.

Reacted pellets (7-8 in Table IV) melted at 2123 K
(1850°C). (7) The charge mix “SiO, + SiC” at 2123 K
(1850°C) is characterized by a matrix of amorphous SiO,
containing SiC pieces. (8) The charge mix “SiO, + Si”’
resembled a quartz sponge stretched structure character-
ized by openings of 250-500 um size. This quartz spongy
structure was so fluid that it partially ran out of 2-mm
holes in the bottom of the graphite crucible which were
present to allow the Ar to flow into the crucible. Silicon
diffused and reacted into the graphite crucible, reacted
with the quartz, and only a small amount was found in the
reacted charge.

B. Impurities in Reacted Quartz

Chemical analysis of the reacted hydrothermal quartz
and quartzite was compared with their initial composi-
tion.

VOLUME 44B, APRIL 2013—237



Table IV. Reacted Charge Morphology for the Different Experimental Conditions: Visual Observations and Backscattering
Analyses

1) Lumps - Si04+81C - 5h at 1650°C

2) Lumps - Si02+8i - 2h at 1650°C

Amorphous quartz

Quartz microstructure
similar to case 1)

4) Lumps -S102+31 - 1h at 1850°C

Amorphous quartz
AT S

Quartz microstructure
similar to case 3)

6) Pellets - 810,+81 - 40 min at 1650°C

Amorphous quartz
SiC

Sintered quartz
particles

Silicon

100 um r'

8) Pellets - 810+ Si - 10 min at 1850°C

Melted quartz
Pores

Major focus is on the quartz charge. The cases 1-2 and the cases 3-4 show the same backscattering microstructure of quartz; therefore, only one

representative picture for the two cases is shown.

Figure 4 shows the change A in the impurity concen-
tration (ppmw) for the initially charged quartz and the
reacted quartz. The parameter A depends on both the
reduction of the impurity to the gas phase and the
change in the SiO, mass or SiO(g) production.
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Table V compares concentrations of impurities before
and after reaction in hydrothermal quartz and quartzite
presented as a ratio (mass). Quartzite was more polluted
than hydrothermal quartz both before reduction and
after reduction. However, the differences in concentrations
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Fig. 3—On the left: micro cracks, grain boundaries, and porosity in the original quartz sample. On the right: cracks developed in the sample

during heating.

decreased after reaction, particularly for the pellet
charge SiO, + SiC reduced at 1923 K (1650°C).

P values are not reported because the values were
under the detection limit (3.4 ppmw). The most consis-
tent trends in change in the concentration were observed
for Pb, Mn, B, Zn, and Al. Pb, Mn, Zn, and B had
preferentially negative A values, meaning that removal
of these impurities from quartz was more effective than
loss of SiO, in reduction. Al had positive A value
meaning that it was removed less effectively or remained
unaltered in the charge. The change in K concentration
was scattered with uncertain trend. A values for Fe were
more negative for lumps in comparison with pellets,
meaning that Fe was more effectively removed - or
remained less unaltered in the quartz when pellets
instead of lumps were used, in particular when hydro-
thermal quartz was used.

Impurities in Si for the “SiO, + Si”” charge were also
analyzed. Results presented in Table VI show that the
concentrations of B, Fe, Mn, and Al in silicon increased
after reaction. The phenomenon was particularly evi-
dent when pellets were used.

As described in the introduction, impurities in quartz
are present in the form of trace elements in the quartz
lattice and mineral inclusions. The minerals can be
partially removed in a beneficiation process when quartz
powder is produced; however, they remain in lumpy
quartz. Figure 5 illustrates the distribution of Fe, K, and
Al in muscovite mineral, during heating of lumpy
quartz. The picture refers to hydrothermal lumpy quartz
heated to 1923 K and 2123 K (1650°C and 1850°C). As
shown in Figure 5, Fe, K, and Al were partially
dissolved into the SiO,-matrix. K was distributed
uniformly in the mineral; while distribution of Al was
not uniform. The concentration of Fe in the musc